Домой Гинекология Особенности кроветворения у детей. Показатели крови в различные возрастные периоды

Особенности кроветворения у детей. Показатели крови в различные возрастные периоды

(лейкопоэз) и тромбоцитов (тромбоцитопоэз).

У взрослых животных он совершается в красном костном мозге, где образуются эритроциты, все зернистые лейкоциты, моноциты, тромбоциты, В-лимфоциты и предшественники Т-лимфоцитов. В тимусе проходит дифференцировка Т-лимфоцитов, в селезенке и лимфатических узлах — дифференцировка В-лимфоцитов и размножение Т-лимфоцитов.

Общей родоначальной клеткой всех клеток крови является полипотентная стволовая клетка крови, которая способна к дифференцировке и может дать начало роста любым форменным элементам крови и способна к длительному самоподдержанию. Каждая стволовая кроветворная клетка при своем делении превращается в две дочерние клетки, одна из которых включается в процесс пролиферации, а вторая идет на продолжение класса полипотентных клеток. Дифференцировка стволовой кроветворной клетки происходит под влиянием гуморальных факторов. В результате развития и дифференцировки разные клетки приобретают морфологические и функциональные особенности.

Эритропоэз проходит в миелоидной ткани костного мозга. Средняя продолжительность жизни эритроцитов составляет 100-120 сут. В сутки образуется до 2 * 10 11 клеток.

Рис. Регуляция эритропоэза

Регуляция эритропоэза осуществляется эритропоэтинами, образующимися в почках. Эритропоэз стимулируется мужскими половыми гормонами, тироксином и катехоламинами. Для образования эритроцитов нужны витамин В 12 и фолиевая кислота, а также внутренний фактор кроветворения, который образуется в слизистой оболочке желудка, железо, медь, кобальт, витамины. В нормальных условиях продуцируется небольшое количество эритропоэтина, который достигает клеток красного мозга и взаимодействует с рецепторами эритропоэтина, в результате чего изменяется концентрация в клетке цАМФ, что повышает синтез гемоглобина. Стимуляция эритропоэза осуществляется также под влиянием таких неспецифических факторов, как АКТГ, глюкокортикоиды, катехоламины, андрогены, а также при активации симпатической нервной системы.

Разрушаются эритроциты путем внутриклеточного гемолиза мононуклеарами в селезенке и внутри сосудов.

Лейкопоэз происходит в красном костном мозге и лимфоидной ткани. Этот процесс стимулируется специфическими ростовыми факторами, или лейкопоэтинами, которые воздействуют на определенные предшественники. Важную роль в лейкопоэзе играют интерлейкины, которые усиливают рост базофилов и эозинофилов. Лейкопоэз также стимулируется продуктами распада лейкоцитов и тканей, микроорганизмами, токсинами.

Тромбоцитопоэз регулируется тромбоцитопоэтинами, образующимися в костном мозге, селезенке, печени, а также интерлейкинами. Благодаря тромбоцитопоэтинам регулируется оптимальное соотношение между процессами разрушения и образования кровяных пластинок.

Гемоцитопоэз и его регуляция

Гемоцитопоэз (гемопоэз, кроветворение) - совокупность процессов преобразования стволовых гемопоэтических клеток в разные типы зрелых клеток крови (эритроцитов — эритропоэз, лейкоцитов — лейкопоэз и тромбоцитов — тромбоцитопоэз), обеспечивающих их естественную убыль в организме.

Современные представления о гемопоэзе, включающие пути дифференциации полипотентных стволовых гемопоэтических клеток, важнейшие цитокины и гормоны, регулирующие процессы самообновления, пролиферации и дифференциации полипотентных стволовых клеток в зрелые клетки крови представлены на рис. 1.

Полипотентные стволовые гемопоэтические клетки находятся в красном костном мозге и способны к самообновлению. Они могут также циркулировать в крови вне органов кроветворения. ПСГК костного мозга при обычной дифференциации дают начало всем типам зрелых клеток крови — эритроцитам, тромбоцитам, базофилам, эозинофилам, нейтрофилам, моноцитам, В- и Т-лимфоцитам. Для поддержания клеточного состава крови на должном уровне в организме человека ежесуточно образуется в среднем 2,00 . 10 11 эритроцитов, 0,45 . 10 11 нейтрофилов, 0,01 . 10 11 моноцитов, 1,75 . 10 11 тромбоцитов. У здоровых людей эти показатели достаточно стабильны, хотя в условиях повышенной потребности (адаптация к высокогорью, острая кровопотеря, инфекция) процессы созревания костномозговых предшественников ускоряются. Высокая пролиферативная активность стволовых гемопоэтических клеток перекрывается физиологической гибелью (апоптозом) их избыточного потомства (в костном мозге, селезенке или других органах), а в случае необходимости и их самих.

Рис. 1. Иерархическая модель гемоцитопоэза, включающая пути дифференциации (ПСГК) и важнейшие цитокины и гормоны, регулирующие процессы самообновления, пролиферации и дифференциации ПСГК в зрелые клетки крови: А — миелоидная стволовая клетка (КОЕ-ГЭММ), являющаяся предшественницей моноцитов, гранулоцитов, тромбоцитов и эротроцитов; Б — лимфоидная стволовая клетка-предшественница лимфоцитов

Подсчитано, что каждый день в организме человека теряется (2-5) . 10 11 клеток крови, которые замешаются на равное количество новых. Чтобы удовлетворить эту огромную постоянную потребность организма в новых клетках, гемоцитопоэз не прерывается в течение всей жизни. В среднем у человека за 70 лет жизни (при массе тела 70 кг) образуется: эритроцитов — 460 кг, гранулоцитов и моноцитов — 5400 кг, тромбоцитов — 40 кг, лимфоцитов — 275 кг. Поэтому кроветворные ткани рассматриваются как одни из наиболее митотически активных.

Современные представления о гемоцитопоэзе базируются на теории стволовой клетки, основы которой были заложены русским гематологом А.А. Максимовым в начале XX в. Согласно данной теории, все форменные элементы крови происходят из единой (первичной) полипотентной стволовой гемопоэтической (кроветворной) клетки (ПСГК). Эти клетки способны к длительному самообновлению и в результате дифференциации могут дать начало любому ростку форменных элементов крови (см. рис. 1.) и одновременно сохранять их жизнеспособность и свойства.

Стволовые клетки (СК) являются уникальными клетками, способными к самообновлению и дифференцировке не только в клетки крови, но и в клетки других тканей. По происхождению и источнику образования и выделения СК разделяют на три группы: эмбриональные (СК эмбриона и тканей плода); региональные, или соматические (СК взрослого организма); индуцированные (СК, полученные в результате репрограммирования зрелых соматических клеток). По способности к дифференцировке выделяют тоти-, плюри-, мульти- и унипотентные СК. Тотипотентная СК (зигота) воспроизводит все органы эмбриона и структуры, необходимые для его развития (плаценту и пуповину). Плюрипотентная СК может быть источником клеток, производных любого из трех зародышевых листков. Мульти (поли) потентная СК способна образовывать специализированные клетки нескольких типов (например клетки крови, клетки печени). Унипотентная СК в обычных условиях дифференцируется в специализированные клетки определенного типа. Эмбриональные СК являются плюрипотентными, а региональные — полипотентными или унипотентными. Частота встречаемости ПСГК составляет в среднем 1:10 000 клеток в красном костном мозге и 1:100 000 клеток в периферической крови. Плюрипотентные СК могут быть получены в результате репрограммирования соматических клеток различного типа: фибробластов, кератиноцитов, меланоцитов, лейкоцитов, β-клеток поджелудочной железы и другие, с участием факторов транскрипции генов или микроРНК.

Все СК обладают рядом общих свойств. Во-первых, они недифференцированы и не располагают структурными компонентами для выполнения специализированных функций. Во- вторых, они способны к пролиферации с образованием большого числа (десятков и сотен тысяч) клеток. В-третьих, они способны к дифференцировке, т.е. процессу специализации и образованию зрелых клеток (например, эритроцитов, лейкоцитов и тромбоцитов). В-четвертых, они способны к асимметричному делению, когда из каждой СК образуются две дочерние, одна из которых идентична родительской и остается стволовой (свойство самообновления СК), а другая дифференцируется в специализированные клетки. Наконец, в-пятых, СК могут мигрировать в очаги повреждения и дифференцироваться в зрелые формы поврежденных клеток, способствуя регенерации тканей.

Различают два периода гемоцитопоэза: эмбриональный — у эмбриона и плода и постнатальный — с момента рождения и до конца жизни. Эмбриональное кроветворение начинается в желточном мешке, затем вне его в прекардиальной мезенхиме, с 6-недельного возраста оно перемещается в печень, а с 12 — 18-недельного возраста — в селезенку и красный костный мозг. С 10-недельного возраста начинается образование Т-лимфоцитов в тимусе. С момента рождения главным органом гемоцитопоэза постепенно становится красный костный мозг. Очаги кроветворения имеются у взрослого человека в 206 костях скелета (грудине, ребрах, позвонках, эпифизах трубчатых костей и др.). В красном костном мозге происходит самообновление ПСГК и образование из них миелоидной стволовой клетки, называемой также колониеобразующей единицей гранулоцитов, эритроцитов, моноцитов, мегакариоцитов (КОЕ-ГЭММ); лимфоидную стволовую клетку. Мислоидная полиолигопотентная стволовая клетка (КОЕ-ГЭММ) может дифференцироваться: в монопотентные коммитированные клетки — предшественницы эритроцитов, называемые также бурстобразующей единицей (БОЕ-Э), мегакариоцитов (КОЕ- Мгкц); в полиолигопотентные коммитированные клетки гранулоцитов-моноцитов (КОЕ-ГМ), дифференцирующиеся в монопотентные предшественницы гранулоцитов (базофилы, нейтрофилы, эозинофилы) (КОЕ-Г), и предшественницы моноцитов (КОЕ-М). Лимфоидная стволовая клетка является предшественницей Т- и В- лимфоцитов.

В красном костном мозге из перечисленных колониеобразующих клеток через ряд промежуточных стадий образуются регикулоциты (предшественники эритроцитов), мегакариоциты (от которых «отшнуровываются» тромбоцит!,i), гранулоциты (нейтрофилы, эозинофилы, базофилы), моноциты и В-лимфоциты. В тимусе, селезенке, лимфатических узлах и лимфоидной ткани, ассоциированной с кишечником (миндалины, аденоиды, пейеровы бляшки) происходит образование и дифференцирование Т-лимфоцитов и плазматических клеток из В-лимфоцитов. В селезенке также идут процессы захвата и разрушения клеток крови (прежде всего эритроцитов и тромбоцитов) и их фрагментов.

В красном костном мозге человека гемоцитопоэз может происходить только в условиях нормального гемоцитопоэзиндуцирующего микроокружения (ГИМ). В формировании ГИМ принимают участие различные клеточные элементы, входящие в состав стромы и паренхимы костного мозга. ГИМ формируют Т-лимфоциты, макрофаги, фибробласты, адипоциты, эндотелиоциты сосудов микроциркуляторного русла, компоненты экстрацеллюлярного матрикса и нервные волокна. Элементы ГИМ осуществляют контроль за процессами кроветворения как с помощью продуцируемых ими цитокинов, факторов роста, так и благодаря непосредственным контактам с гемопоэтическими клетками. Структуры ГИМ фиксируют стволовые клетки и другие клетки-предшественницы в определенных участках кроветворной ткани, передают им регуляторные сигналы, участвуют в их метаболическом обеспечении.

Гемоцитопоэз контролируется сложными механизмами, которые могут поддерживать его относительно постоянным, ускорять или тормозить, угнетая пролиферацию и дифферен- цировку клеток вплоть до инициирования апоптоза коммитированных клеток-предшественниц и даже отдельных ПСГК.

Регуляция гемопоэза — это изменение интенсивности гемопоэза в соответствии с меняющимися потребностями организма, осуществляемое посредством его ускорения или торможения.

Для полноценного гемоцитопоэза необходимо:

  • поступление сигнальной информации (цитокинов, гормонов, нейромедиаторов) о состоянии клеточного состава крови и ее функций;
  • обеспечение этого процесса достаточным количеством энергетических и пластических веществ, витаминов, минеральных макро- и микроэлементов, воды. Регуляция гемопоэза основана на том, что все типы взрослых клеток крови образуются из гемопоэтических стволовых клеток костного мозга, направление дифференцировки которых в различные типы клеток крови определяется действием на их рецепторы локальных и системных сигнальных молекул.

Роль внешней сигнальной информации для пролиферации и апоптоза СГК выполняют цитокины, гормоны, нейромедиаторы и факторы микроокружения. Среди них выделяют раннедействующие и позднедействующие, мультилинейные и монолинейные факторы. Одни из них стимулируют гемопоэз, другие — тормозят. Роль внутренних регуляторов плюрипотентности или дифференцировки СК играют транскрипционные факторы, действующие в ядрах клеток.

Специфичность влияния на стволовые кроветворные клетки обычно достигается действием на них не одного, а сразу нескольких факторов. Эффекты действия факторов достигаются посредством стимуляции ими специфических рецепторов кроветворных клеток, набор которых изменяется на каждом этапе дифференцировки этих клеток.

Раннедействующими ростовыми факторами, способствующими выживанию, росту, созреванию и превращению стволовых и других кроветворных клеток-предшественниц нескольких линий клеток крови, являются фактор стволовых клеток (ФСК), ИЛ-3, ИЛ-6, ГМ-КСФ, ИЛ-1, ИЛ-4, ИЛ-11, ЛИФ.

Развитие и дифференцировку клеток крови преимущественно одной линии предопределяют позднедействующие ростовые факторы — Г-КСФ, М-КСФ, ЭПО, ТПО, ИЛ-5.

Факторами, ингибирующими пролиферацию гемопоэтических клеток, являются трансформирующий ростовой фактор (TRFβ), макрофагальный воспалительный белок (МIР-1β), фактор некроза опухолей (ФНОа), интерфероны (ИФН(3, ИФНу), лактоферрин.

Действие цитокинов, факторов роста, гормонов (эритропоэтина, гормона роста и др.) на клетки гемоноэтических органов чаще реализуется всего через стимуляцию 1-TMS- и реже 7-ТМS-рецепторов плазматических мембран и реже — через стимуляцию внутриклеточных рецепторов (глюкокортикоиды, Т 3 иТ 4).

Для нормального функционирования кроветворная ткань нуждается в поступлении ряда витаминов и микроэлементов.

Витамины

Витамин B12 и фолиевая кислота нужны для синтеза нуклеопротеинов, созревания и деления клеток. Для защиты от разрушения в желудке и всасывания в тонком кишечнике витамину В 12 нужен гликопротеин (внутренний фактор Кастла), который вырабатывается париетальными клетками желудка. При дефиците этих витаминов в пище или отсутствии внутреннего фактора Кастла (например, после хирургического удаления желудка) у человека развивается гиперхромная макроцитарная анемия, гиперсегментация нейтрофилов и снижение их продукции, а также тромбоцитопения. Витамин В 6 нужен для синтеза тема. Витамин С способствует метаболизму (родиевой кислоты и участвует в обмене железа. Витамины Е и РР защищают мембрану эритроцита и гем от окисления. Витамин В2 нужен для стимуляции окислительно-восстановительных процессов в клетках костного мозга.

Микроэлементы

Железо, медь, кобальт нужны для синтеза гема и гемоглобина, созревания эритробластов и их дифференцирования, стимуляции синтеза эритропоэтина в почках и печени, выполнения газотранспортной функции эритроцитов. В условиях их дефицита в организме развивается гипохромная, микроцитарная анемия. Селен усиливает антиоксидантное действие витаминов Е и РР, а цинк необходим для нормального функционирования фермента карбоангидразы.

«Утверждаю»

зав. кафедрой педиатрии,

д.м.н., профессор

А.И.Кусельман

/_____________________/

«_____»__________2007г.

Для преподавателей 3 курса педиатрического факультета по теме:

АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ

ОРГАНОВ КРОВЕТВОРЕНИЯ У ДЕТЕЙ И ПОДРОСТКОВ.

ПРОДОЛЖИТЕЛЬНОСТЬ ЗАНЯТИЯ – 2 ЧАСА.

ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ:

    Этапы эмбрионального гемопоэза и их роль в понимании возникновения очагов экстрамедуллярного кроветворения при патологии кроветворных органов у детей и подростков.

    Полипотентная стволовая клетка и этапы ее дифференцировки.

    Закономерности изменения лейкоцитарной формулы с возрастом детей.

    Эритроцитарный росток и его изменения в постнатальном периоде.

    Гранулоцираная система кроветворения.

    Лимфоидная система кроветворения.

    Система гемостаза у детей и подростков

ЦЕЛЬ ЗАНЯТИЯ:

Изучить анатомо-физиологические особенности системы кроветворения у детей.

Студент должен знать.

    Особенности кроветворения у плода.

    Современную схему кроветворения.

    Изменения эритроцитарного ростка кроветворения после рождения.

    Изменения лейкоцитарной формулы с возрастом ребенка.

    Возрастные особенности гемостаза у детей и подростков.

Студент должен уметь.

    Овладеть методикой исследования органов кроветворения у детей и подростков.

    Произвести оценку анализа крови у детей и подростков.

Вопросы для самостоятельного изучения студентами.

    Современная схема кроветворения.

    Осмотр больного, оценка данных исследования периферической крови у больного с нормой.

ОСНАЩЕНИЕ ЗАНЯТИЯ: таблицы, схемы, истории болезни.

РАСПРЕДЕЛЕНИЕ ВРЕМЕНИ:

5 мин – организационный момент

30 мин – опрос

10 мин – перерыв

15 мин – демонстрация больного преподавателем

25 мин – самостоятельная работа студентов.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ.

Кровь – одна из наиболее лабильных жидкостных систем организма, постоянно вступающая в контакт с органами и тканями, обеспечивающая их кислородом и питательными веществами, отводящая к органам выделения отработанные продукты обмена, участвующая в регуляторных процессах поддержания гомеостаза.

В систему крови включаются органы кроветворения и кроверазрушения (красный костный мозг, печень, селезенка, лимфатические узлы, другие лимфоидные образования) и периферическая кровь, нейрогуморальные и физико-химические регуляторные факторы.

Составными частями крови являются форменные элементы (эритроциты, лейкоциты, тромбоциты) и жидкая часть – плазма.

Общее количество крови в организме взрослого человека составляет 7% массы тела и равно 5 л, или 70 мл на 1 кг массы тела. Количество крови у новорожденного составляет 14% массы тела или 93-147 мл на 1 кг массы тела, у детей первых трех лет жизни – 8%, 4-7 лет – 7-8%, 12-14 лет 7-9% массы тела.

Эмбриональное кроветворение.

Кроветворение во внутриутробном периоде развития начинается рано. По мере роста эмбриона и плода последовательно меняется локализация гемопоэза в различных органах.

Табл. 1. Развитие гемопоэтической системы человека (по Н.С. Кисляк, Р.В. Ленской, 1978).

Локализация кроветворения

Период эмбриогенеза (недели)

Желточный мешок

Начало кроветворения в печени

Появление больших лимфоцитов в тимусе

Начало гемопоэза в селезенке

Конец 12-й

Появление гемопоэтических очагов в костном мозге

Лимфопоэз в лимфоузлах

Появление циркулирующих малых лимфоцитов

Начало лимфопоэза в селезенке

Начинается кроветворение в желточном мешке на 3-й неделе развития человеческого эмбриона. В начале оно сводится в основном к эритропоэзу. Образование первичных эритробластов (мегалобласты) происходит внутри сосудов желточного мешка.

На 4-й неделе кроветворение появляется в органах эмбриона. Из желточного мешка гемопоэз перемещается в печень, которая к 5-й недели гестации становится центром кроветворения. С этого времени наряду с эритроидными клетками начинают образовываться первые гранулоциты и мегакариоциты, при этом мегалобластический тип кроветворения сменяется на нормобластический. К 18-20-й неделе развития человеческого плода кроветворная активность в печени резко снижена, а к концу внутриутробной жизни, как правило, совсем прекращается.

В селезенке кроветворение начинается с 12-й недели, образуются эритроциты, гранулоциты, мегакариоциты. С 20-й недели миелопоэз в селезенке сменяется интенсивным лимфопоэзом.

Первые лимфоидные элементы появляются на 9-10 неделе в строме тимуса, в процессе их дифференцировки образуются иммунокомпетентные клетки – Т-лимфоциты. К 20-й неделе тимус по соотношению малых и средних лимфоцитов сходен с тимусом доношенного ребенка, к этому времени в сыворотке крови плода начинают обнаруживаться иммуноглобулины М и G.

Костный мозг закладывается в конце 3-го месяца эмбрионального развития за счет мезенхимальных периваскулярных элементов, проникающих вместе с кровеносными сосудами из периоста в костномозговую полость. Гемопоэтические очаги в костном мозге появляются с 13-14 недели внутриутробного развития в диафизах бедренных и плечевых костей. К 15-й неделе в этих локусах отмечается обилие юных форм грануло-, эритро- и мегакариоцитов. Костномозговое кроветворение становится основным к концу внутриутробного развития и на протяжении всего постнатального периода. Костный мозг в пренатальном периоде красный. Его объем с возрастом плода увеличивается в 2,5 раза и к рождению составляет порядка 40 мл. и он присутствует во всех костях. К концу гестации начинают появляться в костном мозге конечностей жировые клетки. После рождения в процессе роста ребенка масса костного мозга увеличивается и к 20 годам составляет в среднем 3000 г, но на долю красного костного мозга будет приходиться порядка 1200 г, и он будет локализоваться в основном в плоских костях и телах позвонков, остальная часть будет замещена желтым костным мозгом.

Основным отличие состава форменных элементов крови плода является постоянное нарастание числа эритроцитов, содержания гемоглобина, количества лейкоцитов. Если в первой половине внутриутробного развития (до 6 месяцев) в крови обнаруживаются много незрелых элементов (эритробластов, миелобластов, промиелоцитов и миелоцитов), то в последующие месяцы в периферической крови плода содержатся преимущественно зрелые элементы.

Изменяется и состав гемоглобина. Вначале (9-12 нед) в мегалобластах находится примитивный гемоглобин (HbP), который заменятся фетальным (HbF). Он становится основной формой в пренатальном периоде. Хотя с 10-й недели начинают появляться эритроциты с гемоглобином взрослого типа (HbA), доля его до 30 недели составляет лишь 10%. К рождению ребенка фетальный гемоглобин составляет приблизительно 60%, а взрослый – 40% всего гемоглобина эритроцитов периферической крови. Важным физиологическим свойством примитивного и фетального гемоглобинов является их более высокое сродство к кислороду, что имеет важное значение во внутриутробном периоде для обеспечения организма плода кислородом, когда оксигенация крови плода в плаценте относительно ограничена по сравнению с оксигенацией крови после рождения в связи с установлением легочного дыхания.

Современная концепция кроветворения.

В основу современного понимания кроветворения положена молекулярно-генетическая теория, согласно которой молекулярную основу системы кроветворения составляет геном единой стволовой кроветворной клетки и его взаимоотношение с элементами цитоплазмы, обеспечивающей передачу информации, поступающей из микроокружения генома. Нейрогуморальная регуляция кроветворения на разных стадиях развития организма неодинакова, однако в принципе сущность ее состоит в репрессии или депрессии соответствующих участков ДНК генома кроветворных клеток.

В схеме кроветворения стволовые клетки составляют 1 класс полипотентных клеток-предшественников. Далее2 класс представляют клетки предшественники миелопоэза и лимфопоэза. Это так называемые лимфоидные, морфологически недифференцируемые клетки, дающие начало миелоидному и лимфоидному рядам. Следующий3 класс – поэтинчувствительные клетки, среди которых доля пролиферирующих составляет 60-100%, морфологически они также не отличаются от лимфоцитов. Эти клетки отвечают на гуморальную регуляцию кроветворения в соответствии с конкретными потребностями организма. Эритропоэтинчувствительные клетки формируют эритроидный росток, лейкопоэтинчувствительные – ряд гранулоцитов и моноцитов, тромбопоэтинчувствительные клетки – ряд, образующий тромбоциты.

Следующий этап дифференцировки – 4 класс морфологически распознаваемых клеток. Подавляющее большинство их находится в стадии пролиферации. Это клетки-бласты: плазмобласт, лимфобласт, монобласт, миелобласт, эритробласт, мегакариобласт.

Дальнейшая дифференцировка клеток связана с конкретными рядами кроветворения. Элементы, называемые созревающими, составляют 5 класс : проплазмоцит, пролимфоцит Т, пролимфоцит В, промоноцит; далее базофильные, нейтрофильные и эозинофильные промиелоциты, миелоциты, метамиелоциты, палочкоядерные. Следующий ряд: пронормоцит, нормоцит (базофильный, полихроматофильный и оксифильный), ретикулоцит. И последний ряд – промегакариоцит, мегакариоцит.

Завершает систему кроветворения 6 класс зрелых клеток крови: плазмоциты, лимфоциты (Т и В), моноциты, сегментоядерные базофилы, нейтрофилы и эозинофилы, эритроциты, тромбоциты. Из моноцита образуется класс клеток макрофагов (гистиоцит соединительной ткани, купферовы клетки печени, альвеолярный макрофаг, макрофаг селезенки, макрофаг костного мозга, макрофаг лимфатического узла, перитонеальный макрофаг, плевральный макрофаг, остеокласт, клетки микроглии нервной системы).

Состав периферической крови после рождения.

Сразу после рождения красная кровь новорожденного характеризуется повышенным содержанием гемоглобина и большим количеством эритроцитов. В среднем сразу после рождения содержание гемоглобина равно 210 г/л (колебания 180- 240 г/л) и эритроцитов – 6*10 12 /л (колебания 7,2*10 12 /л – 5,38*10 12 /л). С конца первых, начала вторых суток жизни происходит снижение содержания гемоглобина (наибольшее – к 10-му дню жизни), эритроцитов (наибольшее к 5-7-му дню).

Красная кровь новорожденных отличается от крови детей более старших возрастов не только в количественном, но и в качественном отношении, для крови новорожденного, прежде всего, характерен отчетливый анизоцитоз, отмечаемый в течение 5-7 дней, и макроцитоз, то есть несколько больший в первые дни жизни диаметр эритроцитов, чем в более позднем возрасте.

В течение первых часов жизни количество ретикулоцитов – предшественников эритроцитов – колеблется от 8-13 0 / 00 до 42 0 / 00 . Но кривая ретикулоцитоза, давая максимальный подъем в первые 24-48 часов жизни, в дальнейшем начинает быстро понижаться и между 5 и 7-м днями жизни доходят до минимальных цифр.

Наличие большого числа эритроцитов, повышенное количество гемоглобина, присутствие большого количества молодых незрелых форм эритроцитов в периферической крови в первые дни жизни свидетельствуют об интенсивном эритропоэзе как реакции на недостаточность снабжения плода кислородом в период внутриутробного развития, и в родах. После рождения в связи с установлением внешнего дыхания гипоксия сменяется гипероксией. Это вызывает снижение выработки эритропоэтинов, в значительной степени подавляется эритропоэз и начинается падение количества эритроцитов и гемоглобина.

Имеются и отличия в количестве лейкоцитов. В периферической крови в первые дни жизни после рождения число лейкоцитов до 5-го дня жизни превышает 18-20*10 9 /л, причем нейтрофилы составляют 60-70% всех клеток белой крови. Лейкоцитарная формула сдвинута влево за счет большого содержания палочкоядерных и в меньшей степени метамиелоцитов (юных). Могут обнаруживаться и единичные миелоциты.

Значительные изменения претерпевает лейкоцитарная формула, что выражается в падении числа нейтрофилов и увеличении количества лимфоцитов. На 5-й день жизни их число сравнивается (так называемый первый перекрест), составляя около 40-44% в формуле белой крови. Затем происходит дальнейшее возрастание числа лимфоцитов (к 10-му дню до 55-60%) на фоне снижения количества нейтрофилов (приблизительно 30%). Постепенно исчезает сдвиг формулы крови влево. При этом из крови полностью исчезают миелоциты, снижается число метамиелоцитов, до 1% и палочкоядерных до 3%.

В процессе роста ребенка лейкоцитарная формула продолжает претерпевать свои изменения, причем среди форменных элементов особенно значительны изменения числа нейтрофилов и лимфоцитов. После года вновь увеличивается число нейтрофилов, а количество лимфоцитов постепенно снижается. В возрасте 4-5 лет вновь происходит перекрест в лейкоцитарной формуле, когда число нейтрофилов и лимфоцитов вновь сравнивается. В дальнейшем наблюдается нарастание числа нейтрофилов при снижении числа лимфоцитов. С 12 лет лейкоцитарная формула уже мало чем отличается от таковой взрослого человека.

Наряду с относительным содержанием клеток, входящих в понятие «лейкоцитарная формула», интерес представляет абсолютное их содержание в крови.

Как видно из таблицы № 1, абсолютное число нейтрофилов наибольшее у новорожденных, на первом году жизни их число становится наименьшим, а затем вновь возрастает, превышая 4*10 9 /л в периферической крови. Абсолютное же число лимфоцитов на протяжении первых 5 лет жизни высокое (5*10 9 /л и более), после 5 лет их число постепенно снижается и к 12 годам не превышает 3*10 9 /л. Аналогично лимфоцитам происходят изменения моноцитов. Вероятно, такой параллелизм изменений лимфоцитов и моноцитов объясняется общностью их функциональных свойств, играющих роль в иммунитете. Абсолютное число эозинофилов и базофилов практически не претерпевает существенных изменений в процессе развития ребенка.

Таблица № 1. Абсолютное число (n*10 9 /л) форменных элементов белой крови у детей.

Эозинофилы

Базофилы

Нейтрофилы

Лимфоциты

Моноциты

При рождении

На первом году

С 1 до 3-х лет

С 3 до 7 лет

Старше 12 лет

Эритроцитарная система.

Зрелый эритроцит (нормоцит) представляет собой двояковыпуклый диск с утолщенной периферической частью. Благодаря своей эластичности эритроциты проходят через капилляры, меньшие по диаметру. Диаметр большинства из них – 7,8 мкм, в норме возможны колебания от 5,5 до 9,5 мкм. У детей первых 2-х недель отмечается сдвиг в сторону макроцитов (более 7,7 мкм), к 4 месяцам жизни количество макроцитов в периферической крови уменьшается. Эритроцитометрические показатели у здорых детей различного возраста представлены в таблице № 2.

Благодаря содержанию в эритроцитах гемоглобина они переносят кислород от легких к тканям и двуокись углерода от тканей к легким. В 1-й месяц жизни в крови новорожденного еще много «фетального гемоглобина», обладающего большим сродством к кислороду. К 3-4 месяцам в норме «фетальный гемоглобин» в крови ребенка отсутствует, который к этому времени полностью замещен гемоглобином «А» – «взрослого типа».

Кровь грудного ребенка по сравнению с кровью новорожденных, а также детей более старших возрастов характеризуется более низкими показателями гемоглобина и эритроцитов. Количество гемоглобина резко уменьшается в течение первых месяцев жизни, снижаясь в большинстве случаев к 2-3 мес до 116 – 130 г/л, а иногда и до 108 г/л. Затем в связи с повышением выработки эритропоэтинов содержание числа эритроцитов и гемоглобина несколько повышается. Число эритроцитов превышает 4 – 4.5* 10 12 /л, а содержание гемоглобина начинает превышать 110-120 г/л, и уже количественно на протяжении всех периодов детства мало отличаются от его уровня у взрослого человека.

Таблица №2. Гематокритная величина и эритроцитометрические показатели у здоровых детей различного возраста. (по А.Ф.Туру, Н.П.Шабалову, 1970).

Гематокрит (л/л)

Средний диаметр эритроцита (мкм)

Средний объем эритроцита (фл)

Средняя толщина эритроцита (мкм)

Новорожденный

12-й месяц

Соотношение диаметра и толщины эритроцита (Д/Т) в норме составляет 3,4 – 3,9, соотношение Д/Т ниже 3,4 означает тенденцию к сфероцитозу, выше 3,9 – тенденцию к планоцитозу. Сфероцитоз с микроцитозом свойственны врожденной гемолитической анемии, наоборот, макропланоцитоз часто наблюдается при заболеваниях печени и при некоторых формах приобретенных гемолитических анемиях.

Кроме переноса кислорода и двуокиси углерода эритроциты осуществляют транспорт аминокислот, липидов, ферментов, гормонов, иммунных тел, продуктов метаболизма и других веществ. Поверхность их может адсорбировать и гетерогенные субстанции (антигены, токсины, лекарственные и другие вещества).

Эритроциты обладают антигенными свойствами, обусловливающими групповую принадлежность крови. В них существует два рода антигенов (агглютиногенов) «А» и «В». Соответственно в сыворотке крови содержаться два вида агглютининов «альфа» и «бета». В зависимости от содержания в эритроцитах антигенов различают 4 группы крови: первая – 0(1), вторая – А(11), третья – В(111), четвертая – АВ (1У). В случаях попадания эритроцитов группы «А» в сыворотку крови с агглютинином «альфа» или эритроцитов с антигеном «В» в сыворотку крови с агглютинином «бета» происходит реакция агглютинации (склеивание эритроцитов). Эритроциты группы 0(1) в организме любого реципиента не подвергаются «склеиванию» и гемолизу, а продолжают выполнять свою функцию. Введение в организм ребенка с группой крови 0(1) эритроцитов, содержащих антиген А или В, ведет к гемолизу их, так как в плазме содержатся агглютинины «альфа» и «бета». В эритроцитах могут быть и другие антигены. Для педиатрической практики большое значение омет определение резус принадлежности крови. Знание ее антигенного состава по системам АВ0 и резус-фактору важно для решения вопросов совместимости и переливания крови, понимания патогенеза, проведения профилактики и лечения гемолитической болезни новорожденных.

Резистентность эритроцитов определяется их осмотической стойкостью к гипотоническим растворам хлорида натрия различной концентрации. При минимальной резистентности наблюдаются первые признаки гемолиза. В норме она составляет 0.44 – 0.48% раствора хлорида натрия. При максимальной резистентности наблюдается полный гемолиз. В норме он составляет 0.32 – 0.36% раствора хлорида натрия. В крови новорожденных имеются эритроциты, как с пониженной, так и повышенной осмотической стойкостью. Этот показатель повышается при кровопотерях.

Скорость оседания эритроцитов (СОЭ) зависит от многих химических и физических свойств крови. У новорожденных при определении в аппарате Панченкова она составляет 2 мм/час, у грудных детей – 4-8, у более старших детей – 4-10, у взрослых – 5-8 мм/час. Более медленное оседание эритроцитов у новорожденных объясняется низким содержанием в крови фибриногена и холестерина, а также сгущением крови, особенно ярко выраженным в первые часы после рождения.

Длительность жизни эритроцитов, установленная радиологической методикой, равна у детей старше года и у взрослых 80 – 120 дней.

Гранулоцитарная система.

Общее число гранулоцитов в организме взрослого человека составляет 2*10 10 клеток. Из этого количества только 1% гранулоцитов приходится на периферическую кровь, 1% - на мелкие сосуды, остальные 98% -на костный мозг и ткани.

Время жизни гранулоцитов – от 4 до 16 дней, в среднем 14 дней, из которых 5-6 дней приходится на созревание, 1 день – циркуляция в периферической крови и 6-7 дней – пребывание в тканях.

Следовательно, в основном выделяется три периода жизнедеятельности гранулоцитов: костномозговой, нахождения в периферической крови, пребывания в тканях.

Гранулоциты костномозгового резерва делятся на две группы. Первая – митотический, делящийся пул. К нему относятся миелобласты, промиелоциты, миелоциты. Вторая группа – созревающий, неделящийся пул. В него входят метамиелоциты, палочкоядерные и сегментоядерные нейтрофилы. После6дняя группа клеток постоянно обновляется за счет поступления клеток из митотического пула. Неделящийся пул составляет так называемый гранулоцитарный резерв костного мозга. В норме гранулоцитарный резерв мозга полностью заменяется каждые 6 дней. Число гранулоцитов костномозгового резерва превышает число гранулоцитов, циркулирующих в крови в 20-70 раз. В норме, несмотря на постоянную миграцию нейтрофилов в ткани, их количество в кровяном русле остается постоянным за счет вымывания лейкоцитов гранулоцитарного резерва костного мозга. Неделящийся пул является также основным резервом гранулоцитов, мобилизуемых по первому требованию (инфекция, асептическое воспаление, действие пирогенов и т.д.).

В сосудистом русле часть нейтрофилов циркулирует во взвешенном состоянии, часть располагается пристеночно. Циркулирующие и располагающиеся пристеночно кровяные клетки постоянно взаимодействуют. Нахождение нейтрофилов в периферической крови кратковременно и составляет от 2 до 30 часов. Затем нейтрофилы депонируются в капиллярной сети различных органов: в легких, печени, селезенке.

В зависимости от потребностей организма депонированные нейтрофилы легко переходят в периферическое русло или перераспределяются в капиллярной сети других органов и тканей. Из капиллярной сети нейтрофилы мигрируют в ткани, где проявляются их основные функции (фагоцитоз, трофика, иммунологические и аллергические процессы). Возможность рециркуляции гранулоцитов не доказана.

Лимфоидная система.

Лимфоидная система состоит из вилочкой железы, селезенки, лимфатических узлов, циркулирующих лимфоцитов. Кроме того, в различных областях организма имеются скопления лимфоидных клеток, особенно значительные в миндалинах, гранулах глотки и групповых лимфатических фолликулах (пейеровы бляшки) подвздошной кишки.

Вилочковая железа относится к первичным лимфоидным органам. Здесь из стволовых лимфоидных клеток размножаются и созревают Т-клетки.

Вилочковая железа закладывается на 6-й неделе внутриутробного развития. Тимоциты начинают образовываться с 7-8-й недели и к 14-й неделе располагаются преимущественно в корковом слое вилочковой железы. В последующем масса вилочкой железы быстро увеличивается, причем ее рост продолжается в постнатальном периоде.

Таблица № 3. Масса вилочкой железы в разные периоды жизни.

Лекция

Кроветворение.

Организация стволового отдела кроветворной системы

Строение и функции клеток крови.

Кроветворение (гемопоэз) – многостадийный процесс клеточных дифференцировок, в результате которого в кровь выходят зрелые лейкоциты, эритроциты и тромбоциты.

Кроветворение в период внутриутробного развития.

Развитие гемопоэтической системы у человека начинается рано, проходит с разной интенсивностью, со сменой преимущественной локализации кроветворения в различные гестационные сроки. В период внутриутробного развития топографически можно выделить 4 этапа гемопоэза: мезобластический, печеночный, селезеночный и костномозговой.

Мезобластический этап кроветворения возникает в желточном мешке к концу 2-ой началу 3-ей недели гестации. Из периферических клеток желточного мешка образуются сосуды, а из центральных - гемопоэтические клетки. Последние имеют овальную форму, крупные размеры, базофильную цитоплазму, ядро нежно-сетчатой структуры, содержащее ядрышки. В этих клетках постепенно накапливается гемоглобин. По внешнему виду они сходны с мегалобластами, их называют примитивными эритробластами. Хотя в этот период отмечается преимущественно эритропоэз, на этом этапе можно обнаружить клетки-предшественницы всех гемопоэтических ростков, включая полипотентные стволовые клетки.

Начиная с 8-ой недели гестации кроветворные островки в желточном мешке начинают регрессировать, и к 12-15-ой неделе из крови исчезают мегалобласты.

Печеночный этап гемопоэза возникает с 5-ой недели гестации, и в последующие 3-6 месяцев печень является главным гемопоэтическим органом. Печень также является местом образования эритропоэтина. Первоначально в печени происходит интенсивный эритропоэз. К 22-27-ой недели количество эритроидных элементов снижается, а мегалобластические клетки составляют 1,3 %. В период 6-7 недели гестации в печени обнаруживаются клетки нейтрофильного ряда, представленные в основном промиелоцитами и миелоцитами, эозинофилы, базофилы, моноциты, макрофаги, мегакариоциты. Содержание этих клеток (за исключением макрофагов и мегакариоцитов) нарастает по мере увеличения сроков гестации. Начиная с 8-9 недельного срока обнаруживаются лимфоциты, содержание которых к 22-27 неделям составляет 10 %.

В период печеночного гемопоэза (6-27 неделя) определяется 3-5 % недеффиринцированных бластов.

Начиная с 18-20-ой недели гемопоэтическая активность печени постепенно уменьшается и к моменту рождения ребенка она прекращается, хотя в течение 1-ой недели постнатальной жизни могут обнаруживаться единичные гемопоэтические элементы.



Гемопоэз в селезенке возникает с 12-ой недели гестации. Первоначально в селезенке определяется грануло-, эритро-, мегакарицитопоэз. С 15-ой недели появляются В-лимфоциты. К 18-24 неделям 80 % составляют моноцитомакрофагальные колонии. Гемопоэз в селезенке достигает максимума к 4-му месяцу гестации, а затем идет на убыль и прекращается в возрасте 6,5 месяцев внутриутробного развития.

Сокращение плацдарма экстрамедуллярного гемопоэза совпадает с появлением первых признаков костномозгового кроветворения. Оно возникает приблизительно с 4-го месяца гестации, достигая максимума к 30-ой неделе. Первоначально КМ возникает в телах позвонков, затем в подвздошной кости, диафизах плечевой и бедренной кости. Среди костномозговых элементов определяются клетки миелоидного и мегакариоцитарного рядов. В 12-20 недель у плода среди лимфоидных элементов преобладают пре-В-клетки. Через 30 недель КМ представлен всеми гемопоэтическими клетками, он становится главным источником образования кровяных клеток. С 32-недельного возраста все промежутки костной ткани заполнены гемопоэтической тканью, т.к. объем КМ равен объему гемопоэтических клеток. К моменту рождения ребенка кроветворение практически полностью ограничено костным мозгом.

Развитие лимфоидной ткани и вилочковой железы происходит относительно рано (6-7-ая недели гестации). К 11-12 неделям у тимоцитов появляются Т-антигены. Первые лимфоузлы появляются на 10-ой недели гестации, а лимфоидный аппарат кишечника - на 14-16-ой недели. Первоначально в лимфатических узлах отмечается миелопоэз, который вскоре сменяется лимфацитопоэзом.

Таким образом, в разные сроки гестации гемопоэз имеет различную органную локализацию, и в некоторые периоды кроветворение происходит одновременно в разных органах.

В моменту рождения ребенка весь КМ является красным, т.е. гемопоэтическим.

У плода происходит постоянное нарастание числа эритроцитов, содержания гемоглобина, количества лейкоцитов. Если в первой половине внутриутробного развития (до 6 месяцев) в крови преобладает количество незрелых элементов (эритробластов, миелобластов, про– и миелоцитов), в дальнейшем в периферической крови определяются преимущественно зрелые элементы. К рождению фетальный гемоглобин составляет 60 %, взрослого – 40 %. Примитивный и фетальный гемоглобин обладает более высоким сродством с кислородом, что важно в условиях сниженной оксигенации крови плода в плаценте. У взрослых половинное насыщение гемоглобина кислородом наступает при его парциальном давлении ниже 27 торр, у ребенка достаточное парциальное давление кислорода – менее 16 торр.

Длительность жизни эритроцитов у новорожденных в первые дни составляет 12 дней, что в 5–6 раз меньше средненормальной длительности жизни эритроцитов у детей старше 1 года и взрослых. Количество гемоглобина резко уменьшается в течение первых месяцев жизни, снижаясь к 2–3 месяцам до 116–130 г/л, что расценивается как критический период жизни. Своеобразие этой анемии, называемой физиологической, заключается в ее связи с ростом и развитием ребенка. Тканевая гипоксия при этой анемии стимулирует формирование механизмов регуляции эритропоэза, последовательно повышается число ретикулоцитов, затем эритроцитов и гемоглобина.

К середине первого года эритроцитов 4 х 109/л, а содержание гемоглобина достигает 110–120 г/л. Число ретикулоцитов после первого года снижается до 1 %. В процессе роста наибольшие изменения происходят в лейкоцитарной формуле. После первого года вновь увеличивается число нейтрофилов, лимфоциты снижаются.

В возрасте 4–5 лет происходит перекрест в лейкоцитарной формуле, когда число нейтрофилов и лимфоцитов вновь сравнивается. В дальнейшем нарастает число нейтрофилов при снижении числа лимфоцитов. С 12 лет лейкоцитарная формула не отличается от таковой взрослых. На первом году жизни число нейтрофилов, наибольшее у новорожденных, становится наименьшим, затем вновь возрастает, превышая 4 х 109/л в периферической крови. С 5 до 12 лет содержание нейтрофилов крови ежегодно растет на 2 %. Абсолютное число лимфоцитов на протяжении первых 5 лет жизни высокое (5 х 109/л), после 5 лет их число постепенно снижается, также снижается и количество моноцитов.

2. Особенности кроветворения у детей

Особенногсти эмбрионального кроветворения:

1) раннее начало;

2) последовательность изменений тканей и органов, являющихся основой формирования элементов крови, таких как желточный мешок, печень, селезенка, тимус, лимфатические узлы, костный мозг;

3) изменение типа кроветворения и продуцируемых клеток – от мегалобластического к нормобластическому.

Общепринята клоновая теория кроветворения. Дифференцировка клеток крови осуществляется последовательно. Существует единая полипотентная стволовая клетка, способная дифференцироваться в направлении и миелопоэза, и лимфопоэза.

В процессе позднего фетогенеза происходит накопление стволовых клеток в костном мозге, их общее количество увеличивается очень значительно. Стволовые клетки плода имеют более высокий пролиферативный потенциал. Действует закон последовательной смены клонов стволовых кроветворных клеток в течение жизни человека. При преждевременных родах, родах с осложненным течением в условиях повышенной выработки цитокинов происходят увеличение концентрации и омоложение состава стволовых клеток пуповинной крови. Регуляция стволовых клеток осуществляется случайным сигналом. Кроветворение осуществляется путем смены клонов, образованных внутриутробно. Отдельные клетки стромы продуцируют ростковые факторы. Интенсивность формирования клеток зависит от действия гуморальных регуляторов: поэтинов, или ингибиторов. Лейкопоэтины – колониестимулирующие факторы. Ингибирование гранулоцитопоэза находится под влиянием лактоферина и простагландинов.

Этапы кроветворения в течение внутриутробного периода:

1) кроветворение в желточном мешке: к 19-му дню, по локализации – внеэмбрионально в структурах желточного мешка; к 6-й неделе диаметр желточного мешка составляет 5 мм. Развивающийся мезодермальный слой включает свободнолежащие мезенхимальные клетки, клетки крови и клетки сосудов. В плазме сосредоточены самые примитивные клетки крови, которые с этого момента начинают мигрировать.

Основной клеткой крови, происходящей на стадии желточного мешка, считается только эритроцит, но возможно возникновение на этой стадии и примитивных мегакариоцитов и клеток, похожих на гранулированные лейкоциты. К 10-й неделе беременности в желточном мешке очагов кроветворения нет;

2) кроветворение в печени и селезенке начинается с 6-й недели, максимально к 10-12-й неделе. Очаги кроветворения в печени находятся вне сосудов и в энтодерме и состоят из недифференцированных бластов. На 2-м месяце беременности в крови параллельно с мегалобластами и мегалоцитами обнаруживаются мегакариоциты, макрофаги, гранулоциты;

3) кроветворение в селезенке максимально к 3-му месяцу, к 5-му месяцу внутриутробного развития интенсивность его снижается. Лимфопоэз возникает на 2-м месяце. На 50-60-е сутки лимфоциты появляются в крови, вилочковой железе, селезенке, лимфатических узлах, миндалинах, пейеровых бляшках. Кровяные клетки моноцитарного ряда появляются на 18-20-й день гестации.

Костный мозг закладывается к концу 3-го месяца эмбрионального развития за счет мезенхимных периваскулярных элементов, проникающих из периоста в костномозговую полость. С 4-го месяца начинается костномозговое кроветворение. Костный мозг в пренатальном периоде – красный. У новорожденного масса костного мозга составляет 1,4 % от массы тела (40 г), у взрослого человека – 3000 г. В сроки 9-12 недель мегалобласты содержат примитивный гемоглобин, который заменяется фетальным. Последний становится основной формой в пренатальном периоде.

С 3-й недели гестации начинается синтез гемоглобина взрослого. Эритропоэз на ранних этапах характеризуется высоким пролиферативным потенциалом и независимостью от регулирующих влияний эритропоэтина. Насыщение организма плода железом происходит трансплацентарно. Дифференцировка гранулоцитов и макрофагов становится интенсивной только при становлении костномозгового кроветворения. В составе костного мозга над предшественниками эритропоэза постоянно и значительно преобладают миелоидные элементы. Абсолютное количество лейкоцитарного пула пуповинной крови составляет до 109/л, мононуклеарная фракция лейкоцитов в пуповинной крови составляет у доношеных приблизительно 44 %, а у недоношенных – 63 %, фракция гранулоцитов составляет у доношенных детей 44 %, у недоношенных – 37 %. Следующей ступенью дифференцировки в направлении миелопоэза является возникновение клетки – предшественницы миелоидного кроветворения, затем следуют бипотентные клетки, далее унипотентные. Завершают этапы морфологически различимые промежуточные и зрелые клетки всех рядов костномозгового кроветворения. После рождения в связи с установлением внешнего дыхания гипоксия сменяется гипероксией, выработка эритропоэтинов снижается, подавляется эритропоэз, более того, развивается гемодилюция благодаря быстрому увеличению массы тела. Количество гемоглобина и эритроцитов снижается.

3. Семиотика поражения системы крови и органов кроветворения

Синдром анемии. Под анемией понимают снижение количества гемоглобина (менее 110 г/л) или числа эритроцитов (менее 4 х 1012 г/л). В зависимости от степени снижения гемоглобина различают легкие (гемоглобин 90-110 г/л), среднетяжелые (гемоглобин 60–80 г/л), тяжелые (гемоглобин ниже 60 г/л) формы анемии. Клинически анемия проявляется различной степенью бледности кожи, слизистых оболочек. При постгеморрагических анемиях отмечаются:

1) жалобы больных на головокружение, шум в ушах;

2) систолический шум в проекции сердца;

3) шум «волчка» над сосудами.

У детей первого года жизни чаще отмечаются железодефицитные анемии, у детей школьного возраста – постгеморрагические, развивающиеся после выраженных или скрытых кровотечений – желудочно-кишечных, почечных, маточных.

Для определения регенераторной способности костного мозга определяют число ретикулоцитов. Их отсутствие в периферической крови указывает на гипопластическую анемию. Характерно и обнаружение пойкилоцитов – эритроцитов неправильной форм, анизоцитов – эритроцитов разной величины. Гемолитические анемии, врожденные или приобретенные, клинически сопровождаются повышением температуры тела, бледностью, желтухой, увеличением печени и селезенки. При приобретенных формах размеры эритроцитов не изменены, при гемолитической анемии Минковского-Шофара выявляется микросфероцитоз.

Синдром гемолиза наблюдается при эритроцитопатиях, в основе которых лежит снижение активности ферментов в эритроцитах. Гемолитическая болезнь новорожденных обусловлена антигенной несовместимостью эритроцитов плода и матери либо по резус-фактору, либо по системе АВО, причем первая форма протекает более тяжело. Эритроциты проникают в кровоток матери и вызывают выработку гемолизинов, которые по мере увеличения гестационного возраста трансплацентарно переходят к плоду и вызывают гемолиз эритроцитов, что при рождении проявляется анемией, тяжелой желтухой (вплоть до ядерной), увеличением печени и селезенки.

При особо тяжелых формах может произойти гибель плода.

Синдромы лейкоцитоза и лейкопении выражаются как в увеличении лейкоцитов (> 10 х 109/л – лейкоцитоз), так и в их снижении (< 5 х 109/л – лейкопения). Изменение числа лейкоцитов может происходить за счет нейтрофилов или лимфоцитов, реже за счет эозинофилов и моноцитов. Нейтрофильный лейкоцитоз наблюдается при сепсисе, гнойно-воспалительных заболеваниях, причем характерен и сдвиг лейкоцитарной формулы влево до палочкоядерных и юных форм, реже – миелоцитов. При лейкозах может наблюдаться особо высокий лейкоцитоз, характерной особенностью которого является наличие в периферической крови незрелых форменных элементов (лимфо– и миелобластов). При хроническом лейкозе лейкоцитоз особенно высок (несколько сотен тысяч), в формуле белой крови определяются все переходные формы лейкоцитов. Для острого лейкоза характерен в формуле крови hiatus leicemicus, когда в периферической крови присутствуют как особенно незрелые клетки, так и в небольшом числе зрелые (сегментоядерные нейтрофилы) без переходных форм.

Лимфоцитарный лейкоцитоз отмечается при бессимптомном инфекционном лимфоцитозе (иногда выше 100 х 109/л), коклюше (20 х 109/л), инфекционном мононуклеозе. Лимфоцитоз за счет незрелых клеток (лимфобластов) выявляется при лимфоидном лейкозе, относительный лимфоцитоз – при вирусных инфекциях (гриппе, ОРВИ, краснухе). Эозинофильные лейкемоидные реакции (нарастание эозинофилов в периферической крови) обнаруживаются при аллергических заболеваниях (бронхиальной астме, сывороточной болезни), глистной инвазии (аскаридозе), протозойных инфекциях (лямблиозе). При коревой краснухе, малярии, лейшманиозе, дифтерии, эпидемическом паротите выявляется относительный моноцитоз. Лейкопении развиваются чаще за счет снижения нейтрофилов – нейтропении, которая определяется у детей как снижение абсолютного количества лейкоцитов (нейтрофилов) на 30 % ниже возрастной нормы, они бывают врожденными и приобретенными, могут возникать после приема лекарственных средств, особенно цитостатиков – 6-меркаптопурина, циклофосфана, а также сульфаниламидов, в период выздоровления от брюшного тифа, при бруцеллезе, в период сыпи при коре и краснухе, при малярии. Лейкопении характеризуют и вирусные инфекции. Нейтропения в сочетании с тяжелой анемией отмечается при гипопластической анемии, относительная и абсолютная лимфопения – при иммунодефицитных состояниях.

Геморрагический синдром предполагает повышенную кровоточивость: кровотечения из слизистых оболочек носа, кровоизлияния в кожу и суставы, желудочно-кишечные кровотечения.

Типы кровоточивости

1. Гематомный тип характерный для гемофилии А, В (дефицит VIII, IX факторов). Клинически выявляются обширные кровоизлияния в подкожную клетчатку, под апоневрозы, в серозные оболочки, мышцы, суставы с развитием деформирующих артрозов, контрактур, патологических переломов, профузные посттравматические и спонтанные кровотечения. Развиваются через несколько часов после травмы (поздние кровотечения).

2. Петехиально-пятнистый, или микроциркуляторный, тип наблюдается при тромбоцитопениях, тромбоцитопатиях, при гипо– и дисфибриногенемии, дефиците X, V, II факторов. Клинически характеризуется петехиями, экхимозами на коже и слизистых оболочках, спонтанными или возникающими при малейшей травме кровотечениями: носовыми, десневыми, маточными, почечными. Гематомы образуются редко, нет изменений в опорно-двигательном аппарате, не наблюдается послеоперационных кровотечений, кроме после тонзиллэктомии. Опасны частые кровоизлияния в мозг, которым предшествуют петехиальные кровоизлияния.

3. Смешанный (микроциркуляторно-гематомный тип) отмечается при болезни Виллебранда и синдроме Виллибранда-Юргенса, так как дефицит коагуляционной активности плазменных факторов (VIII, IX, VIII + V, XIII) может сочетаться с дисфункцией тромбоцитов. Из приобретенных форм может быть вызван синдромом внутрисосудистого свертывания крови, передозировкой антикоагулянтов. Клинически характеризуется сочетанием двух обозначенных выше с преобладанием микроциркуляторного типа. Кровоизлияния в суставы происходят редко.

4. Васкулитно-пурпурный тип является результатом экссудативно-воспалительных изменений в микрососудах на фоне иммуноаллергических и инфекционно-токсических нарушений. Наиболее часто среди этой группы заболеваний встречается геморрагический васкулит (синдром Шенлейна-Геноха), при котором геморрагический синдром представлен симметрично расположенными (преимущественно на конечностях в области крупных суставов) элементами, четко отграниченными от здоровой кожи, выступающими над ее поверхностью, представленными папулами, волдырями, пузырьками, которые могут сопровождаться некрозом и образованием корочек. Возможно волнообразное течение, «цветение» элементов от багряного до желтого цвета с последующим мелким шелушением кожи. При васкулитно-пурпурном типе возможны абдоминальные кризы с обильным кровотечением, рвотой, макро– и микрогематурией.

5. Ангиоматозный тип характерен для различных форм телеангиоэктазий, наиболее часто – болезни Рандю-Ослера. Клинически нет спонтанных и посттравматических кровоизлияний, но имеются повторные кровотечения из участков ангиоматозно измененных сосудов – носовое, кишечное кровотечения, реже гематурия и легочное кровотечение.

Синдром увеличения лимфатических узлов

Лимфатические узлы могут увеличиваться при различных процессах.

1. Острое регионарное увеличение лимфатических узлов в виде местной реакции кожи над ними (гиперемия, отек), болезненности характерно для стафило– и стрептококковой инфекции (пиодермии, фурункула, ангины, отита, инфицированной раны, экземы, гингивита, стоматита). Если лимфатические узлы нагнаиваются, то температура повышается. Диффузное увеличение затылочных, заднешейных, тонзиллярных узлов отмечается при краснухе, скарлатине, инфекционном мононуклеозе, острых респираторно-вирусных заболеваниях.

У детей старшего возраста подчелюстные и лимфатические узлы особенно увеличены при лакунарной ангине, дифтерии зева.

2. При острых воспалениях лимфаденит имеет тенденцию к быстрому исчезновению, длительное время держится при хронических инфекциях (туберкулез чаще ограничивается шейной группой). Вовлеченные в туберкулезный процесс периферические лимфатические узлы плотные, безболезненные, имеют тенденцию к казеозному распаду и образованию свищей, после которых остаются неправильной формы рубцы. Узлы спаяны между собой, с кожей и подкожной клетчаткой. При диссеминированном туберкулезе и хронической туберкулезной интоксикации может наблюдаться генерализованное увеличение лимфатических узлов с развитием фиброзной ткани в пораженных лимфатических узлах. Диффузное увеличение малоболезненных лимфатических узлов до размера лесного ореха отмечается при бруцеллезе. Одновременно у этих больных отмечается увеличение селезенки. Из протозойных заболеваний лимфаденопатия наблюдается при токсоплазмозе (увеличении шейных лимфатических узлов). Генерализованное увеличение лимфатических узлов можно наблюдать при грибковых заболеваниях.

3. Лимфатические узлы увеличиваются также при некоторых вирусных инфекциях. Затылочные и заушные лимфатические узлы увеличиваются в продроме краснухи, позднее отмечается диффузное увеличение лимфатических узлов, при их пальпации отмечается эластическая консистенция, болезненность. Периферические лимфатические узлы могут быть умеренно увеличены при кори, гриппе, аденовирусной инфекции, они имеют плотную консистенцию и болезненны при пальпации. При инфекционном мононуклеозе (болезни Филатова) увеличение лимфатических узлов значительно в области шеи с обеих сторон, могут образовываться пакеты лимфатических узлов в других областях. Увеличение регионарных лимфатических узлов с явлениями периаденита (спаянность с кожей) обнаруживается при болезни «кошачьей царапины»), что сопровождается ознобом, умеренным лейкоцитозом, нагноение происходит редкое.

4. Лимфатические узлы могут увеличиваться при инфекционно-аллергических заболеваниях. Аллергический субсепсис Висслера-Фанкони проявляется диффузной микрополиаденией.

В месте введения сывороточного чужеродного белка может возникнуть регионарное увеличение лимфатических узлов, возможна и диффузная лимфаденопатия.

5. Значительное увеличение лимфатических узлов наблюдается при заболеваниях крови. Как правило, при острых лейкозах отмечается диффузное увеличение лимфатических узлов. Оно проявляется рано и больше всего выражено в области шеи. Его размеры не превышают размеры лесного ореха, но при опухолевых формах могут быть значительными (увеличиваются лимфатические узлы шеи, средостенья, других областей, они образуют большие пакеты). Хронический лейкоз – миелоз – у детей встречается редко, увеличение лимфатических узлов выражено нерезко.

6. При опухолевом процессе лимфатические узлы увеличиваются часто, они могут становиться центром первичных опухолей или метастазов в них. При лимфосаркоме увеличенные лимфатические узлы прощупываются в виде больших или малых опухолевых масс, которые затем прорастают в окружающие ткани, теряют подвижность, могут сдавливать окружающие ткани (происходят отек, тромбоз, паралич). Увеличение периферических лимфатических узлов является основным симптомом при лимфогранулематозе: увеличиваются шейные и подключичные лимфатические узлы, которые представляют собой конгломерат, пакет с нечетко определяемыми узлами. Они вначале подвижны, не спаяны между собой и окружающими тканями. Позднее они могут быть связанными между собой и подлежащими тканями, становятся плотными, иногда умеренно болезненными. В пунктате обнаруживаются клетки Березовского-Штернберга. Увеличенные лимфатические узлы могут быть обнаружены при множественной миеломе, ретикулосаркоме.

7. Ретикулогистиоцитоз «Х» сопровождается увеличением периферических лимфатических узлов. Детский «лимфатизм» – проявление особенности конституции – сугубо физиологическое, абсолютно симметричное увеличение лимфатических узлов, сопутствующее росту ребенка. В возрасте 6-10 лет общая лимфоидная масса детского организма может вдвое превышать лимфоидную массу взрослого человека, в дальнейшем происходит ее инволюция. К числу проявлений пограничного состояния здоровья можно отнести гиперплазию вилочковой железы или периферических лимфатических желез. Значительная гиперплазия вилочковой железы требует исключения опухолевого процесса, иммунодефицитных состояний. Значительная гиперплазия вилочковой железы может развиться у детей с заметно ускоренным физическим развитием, перекормом белком. Такой «акселерационный» лимфатизм отмечается у детей конца первого, второго года, редко в 3–5 лет.

Аномалией конституции следует считать лимфатико-гипопластический диатез, при котором увеличение вилочковой железы и в небольшой степени гиперплазия периферических лимфатических узлов сочетаются с небольшими показателями длины и массы тела при рождении и последующим отставанием скорости роста и прибавок веса тела. Такое состояние является последствием внутриутробной инфекции или гипотрофии, нейрогормональной дисфункции. В случаях, когда такая дисфункция приводит к снижению резервов или глюкокортикоидной функции надпочечников, ребенок может иметь гиперплазию вилочковой железы.

Оба вида лимфатизма – и макросоматический, и гипопластический – имеют повышенный риск злокачественного течения интеркуррентных, чаще респираторных инфекций. На фоне гиперплазии вилочковой железы имеется риск скоропостижной смерти.

Синдром лимфатизма, напоминающий по клинике детский лимфатизм, но с большей степенью гиперплазии лимфатических образований и с нарушениями общего состояния (такими как плач, беспокойство, неустойчивость температуры тела, насморк), развивается при респираторной или пищевой сенсибилизации.

В последнем случае за счет увеличения мезентериальных узлов возникает картина регулярной колики со вздутием живота, затем увеличиваются миндалины и аденоиды.

Диагноз конституционального лимфатизма требует обязательного исключения других причин лимфоидной гиперплазии.

Синдром недостаточности костномозгового кроветворения, или миелофтиз, может развиться остро при поражении проникающей радиацией, индивидуальной высокой чувствительности к антибиотикам, сульфаниламидам, цитостатикам, противовоспалительным или обезболивающим средствам. Возможно поражение всех ростков костномозгового кроветворения. Клинические проявления: высокая лихорадка, интоксикация, геморрагические сыпи или кровотечения, некротическое воспаление и язвенные процессы на слизистых оболочках, локальные или генерализованные проявления инфекции или грибковых заболеваний. В периферической крови наблюдается панцитопения при отсутствии признаков регенерации крови, в пунктате костного мозга – обеднение клеточными формами всех ростков, картина клеточного распада. Чаще недостаточность кроветворения у детей протекает как медленно прогрессирующее заболевание.

Конституциональная апластическая анемия (или анемия Фанкони) чаще выявляется после 2–3 лет, дебютирует моноцитопенией, анемией или лейкопенией, тромбоцитопенией. Клинически проявляется общей слабостью, бледностью, одышкой, болями в сердце, упорными по течению инфекциями, поражениями слизистой оболочки полости рта, повышенной кровоточивостью. Костномозговой недостаточности сопутствуют множественные скелетные аномалии, особенно типично аплазия радиуса на одном из предплечий. Размеры циркулирующих эритроцитов увеличены. Приобретенная недостаточность кроветворения наблюдается при недостаточности питания, при большой скорости потерь клеток крови или их разрушении. Низкая эффективность эритропоэза может возникать при недостаточности стимуляторов эритропоэза (гипоплазии почек, хронической почечной недостаточности, недостаточности щитовидной железы.

Алиментарно-дефицитные, или нутритивные, анемии развиваются при белково-энергетической недостаточности, при несбалансированности обеспечения детей раннего возраста комплексом необходимых нутриенов, особенно железом. При преждевременных родах у детей отсутствуют необходимые новорожденному депо жировых энергетических веществ, в частности Fe, Cu, витамина В12. Гемоглобинопатии у детей в Африке, Азии, Среднего Востока обусловлены носительством и генетической наследуемостью аномальных структур гемоглобина (серповидно-клеточной анемией, талассемией). Общие проявления гемоглобинопатий – хроническая анемия, сплено– и гепатомегалия, гемолитические кризы, полиорганные повреждения в результате гемосидероза. Острые лейкозы – самая частая форма злокачественных новообразований у детей, они возникают в основном из лимфоидной ткани, чаще в возрасте 2–4 лет.

Клинически выявляются признаки вытеснения нормального гемопоэза с анемией, тромбоцитопенией, геморрагическими проявлениями, увеличение печени, селезенки, лимфатических узлов.

Ключевым моментом в диагностике является констатация разрастания анаплазированных гемопоэтических клеток в миелограмме или костных биоптатах.

Принято различать эмбриональное и постэмбриональное кроветворение. В эмбриональном периоде кровь формируется как ткань, в постэмбриональном периоде гемопоэз необходим как процесс физиологической и репаративной регенерации.

В эмбриональном периоде различают несколько стадий, которые получают название от того органа, который на данном этапе является центральным органом кроветворения.

Таким образом, различают желточный период, который длится со 2 по 4 недели эмбриогенеза и главным органом является желточный мешок. Его еще называют мегалобластическим или мезобластическим, как у вас в учебнике.

Печеночный период длится с 4 недели по 4-5 мес. На этом этапе центром кроветворения становится печень, но параллельно кроветворение начинается в селезенке, поэтому этот период называют гепатолиенальным. А кроветворение в желточном мешке постепенно затухает.

Костно-мозговой период кроветворения начинается с 4-5 месяца и продолжается до конца жизни. Параллельно с костным мозгом в это время начинается кроветворение в тимусе и лимфоузлах.

Итак, в конце 2 недели внутриутробного развития в стенке желточного мешка из мезенхимы формируются первые кроветворные островки, так называемые островки Максимова-Вольфа. В этих островках часть клеток дифференцируется в эндотелиоциты и образует стенку кровеносного сосуда, а другие клетки оказываются в просвете и дифференцируются в стволовые кроветворные клетки. В этот период из СКК образуются только клетки эритроидного ряда, а кроветворение происходит внутри сосудов, т.е. интраваскулярно. СКК делятся и дифференцируются в мегалобласты 1 генерации – это крупные клетки диаметром 20-25 мкм с базофильной цитоплазмой и крупным светлым ядром, в котором могут быть заметны несколько ядрышек. Далее мегалобласт 1 генерации дифференцируется в мегалобласт 2 генерации. Диаметр клетки уменьшается до 20 мкм, цитоплазма становится оксифильной в связи с накоплением гемоглобина, ядро уменьшается в объеме, уплотняется и сморщивается. Далее может происходить выталкивание ядра из клетки и такая безъядерная клетка будет называться мегалоцит. Мегалоциты – это первичные эритроциты, но в отличие от обычных эритроцитов взрослого мегалоциты имеют большие размеры 13 до 20 мкм, шарообразную форму и содержат другой тип гемоглобина не Hb A, a Hb F, который отличается по своим свойствам от гемоглобина взрослых. Если на данном этапе для эмбриона мегалоциты являются нормой, то появление таких клеток после рождения уже патология и признак серьезного заболевания. Есть такая болезнь Аддисона-Бирмера или злокачественная анемия. При этом заболевании нарушается образование клеток эритроидного ряда и образуются мегалоциты, которые не могут проникнуть через мелкие капилляры. Раньше не знали причину болезни и она часто приводила к смерти. Теперь известно, что в организме таких людей не хватает витамина В 12 и фолиевой кислоты, поэтому лечат таких больных именно этими препаратами.

Подведем итог, особенностями желточного периода кроветворения являются:

· Короткая продолжительность (всего 2 недели)

· Процесс кроветворения протекает интраваскулярно

· Образуются элементы эритроидного ряда

· Первичные эритроциты отличаются большими размерами, шаровидной формой и другим гемоглобином

Печеночный период кроветворения. С током крови СКК попадают из желточного мешка в печень, где находят для себя хорошие условия для существования. Сначала кроветворение идет и здесь интраваскулярно, но очень скоро процесс переходит за пределы сосудов и осуществляется экстраваскулярно. Здесь образуются эритроциты – уже вторичные или обычные (как у взрослого), гранулоциты, тромбоциты, несколько позже и лимфоциты. В этот период кроветворения устанавливается схема образования клеток крови, характерная и для красного костного мозга.

Костно-мозговой период начинается с 4 месяца эмбриогенеза и продолжается вплоть до смерти организма. Параллельно с образованием клеток крови в костном мозге уменьшается интенсивность гемопоэза в печени, в норме он заканчивается к концу эмбриогенеза, а в селезенке сохраняются только очаги лимфоцитопоэза.



Новое на сайте

>

Самое популярное