Домой Кардиология Выращивание органов человека. Стволовые клетки из пуповинной крови

Выращивание органов человека. Стволовые клетки из пуповинной крови

Ученые впервые создали химеру человека и свиньи – статья, рассказывающая об этом эксперименте, была опубликована 26 января в научном журнале Cell. Международная команда ученых под руководством Хуана Карлоса Исписуа Бельмонте, профессора Института биологических исследований Солка (США), на протяжении 28 дней выращивала в организме свиньи эмбрионы, содержащие стволовые клетки человека. Из двух тысяч гибридных зародышей 186 развились в организмы, в которых человеческая часть составляла одну на десять тысяч клеток.

Химеры – организмы, прозванные в честь монстра из греческих мифов, соединяющего в себе козу, льва и змею, – получаются в результате соединения генетического материала двух животных, но без рекомбинации ДНК (то есть обмена генетической информацией, который происходит при зачатии ребенка). В результате у химер два набора генетически разнородных клеток, но функционируют они как целый организм. В ходе эксперимента, о котором пишет Cell, ученые вынули из беременной свиноматки эмбрионы и подсадили в них индуцированные человеческие стволовые клетки, после чего эмбрионы отправили обратно развиваться в теле свиньи. Появиться на свет химерам не позволили – от них избавились еще на ранней стадии беременности самки.

Зачем ученым нужны гибридные организмы?

Ниша для органов


Одна из ⁠главных ⁠целей эксперимента – выращивание человеческих органов ⁠в организме животных. Часть пациентов ⁠годами ждет очереди на трансплантацию, и создание биологического материала ⁠таким путем могло бы спасти тысячи жизней. «Мы еще далеки от этого, но первый и важный шаг сделан», – говорит Исписуа Бельмонте. Человеческий орган, выращенный в химере из собственных клеток больного, решил бы проблему отторжения трансплантата организмом больного, так как был бы выращен из его собственных клеток.
Развить человеческие органы в теле животного ученые собираются с помощью генного редактирования (а именно инновационным способом CRISPR-Cas9). Первоначально ДНК эмбриона животного будут изменять так, чтобы в нем не развился необходимый орган, например сердце или печень. Такую «нишу» будут заполнять человеческие стволовые клетки.

Эксперименты показывают, что в химере можно создать практически любой орган – даже тот, который у подопытного животного не предусмотрен. Другой эксперимент этой же группы ученых показал, что подсадка в организм мыши стволовых крысиных клеток позволяет вырастить желчный пузырь, хотя у мышей этого органа эволюционно нет.

Еще в 2010 году японские ученые таким же образом создали для крысы поджелудочную железу. Команда Исписуа Бельмонте смогла вырастить в организме мыши также крысиное сердце и глаза. Двадцать пятого января один из его коллег сообщил в статье в журнале Nature, что его группе удалось провести обратный эксперимент – вырастить в крысе поджелудочную железу для мыши и успешно ее пересадить. Орган исправно функционировал больше года.

Важное условие для успеха экспериментов с химерами – правильное соотношение размеров соединяемых организмов. Например, ранее ученые пытались создать химеры свиней и крыс, но эксперимент оказался безуспешным. Гораздо более совместимыми являются люди, коровы и свиньи. Команда Исписуа Бельмонте предпочла использовать для создания химеры с человеком свинью просто потому, что использовать последних дешевле, чем коров.

Гибриды среди нас


История знала случаи пересадки людям некоторых частей тела от животных, в том числе и свиней, и раньше. Еще в XIX веке американский доктор Ричард Киссам успешно пересадил юноше роговицу глаза, которую взял у шестимесячного поросенка. Но полноценное создание химер началось в 1960-е годы, когда американская ученая Беатрис Минц получила лабораторным путем первый гибридный организм, соединив клетки двух разных видов мышей – белой и черной. Чуть позже другая ученая – француженка Николь ле Дуарен соединила зародышевые слои куриного и перепелиного эмбриона и в 1973 году выпустила работу о развитии гибридного организма. В 1988 году Ирвинг Вейсман из Стэнфордского университета создал мышь с человеческой иммунной системой (для исследований СПИДа), а впоследствии вживлял человеческие стволовые клетки в мышиный мозг для исследований по нейробиологии. В 2012 году на свет появились первые химеры-приматы: в Национальном центре исследования приматов в Орегоне ученые создалимакак, содержащих шесть различных ДНК.

Более того, история уже знает и случаи людей-химер, хотя общество их таковыми не называет, да и сами они могут об этом не догадываться. В 2002 году жительница Бостона Карен Киган прошла генетический тест, чтобы определить, можно ли ей пересаживать почку одного из ее родственников. Анализы показали невозможное: ДНК пациентки не соответствовала ДНК ее биологических сыновей. Оказалось, что у Киган был врожденный химеризм, который развивается у эмбриона в результате сбоя в процессе оплодотворения: ее организм содержал два генетических набора, один у клеток крови, другой – у клеток в тканях ее тела.

Формально химерой можно назвать и человека, которому пересадили чужой костный мозг, – например, при лечении лейкемии. В некоторых случаях в крови такого пациента можно найти клетки и с его исходной ДНК, и с ДНК донора. Еще один пример – так называемый микрохимеризм. В теле беременной женщины может наблюдаться перемещение стволовых клеток плода, несущих его геном, в органы будущей матери – почки, печень, легкие, сердце и даже мозг. Ученые предполагают, что это может случаться чуть ли не при каждой беременности, а такие клетки могут оставаться на новом месте в течение всей жизни женщины.

Но во всех этих случаях химеры образуются (естественно или нет) от двух человек. Другое дело – совмещение человека с животным. Трансплантация тканей от животных человеку может сделать его уязвимым для новых болезней, к чему наша иммунная система не готова. Многих также пугает возможность наделения зверей людскими качествами, вплоть до повышения уровня сознания. Ученые пытаются заверить общество и власти в том, что подобные эксперименты будут жестко контролироваться лабораториями и использоваться лишь во благо. Национальные институты здоровья США (NIH) никогда не финансировали такие разработки, ссылаясь на их неэтичность. Но в августе 2016 года представители NIH заявили, что могут пересмотреть мораторий (решение пока не принято).

В отличие от NIH американская армия щедро финансирует подобные эксперименты. По словам кардиолога из Миннесотского университета Дэниела Гэрри, его проект по созданию химер, в рамках которого была получена свинья с сердцем от другой особи, недавно получил от военных грант $1,4 млн на эксперименты по выращиванию в свинье человеческого сердца.

Биопринтер -- биологическая вариация технологии reprap, устройство, способное из клеток создавать любой орган, нанося клетки слой за слоем, уже создано. В декабре 2009 года американской кампанией Organovo и австралийской кампанией Invetech было разработан биопринтер, рассчитанный на мелкосерийный промышленный выпуск. Вместо того, чтобы вырастить нужный орган в пробирке, гораздо легче его напечатать -- так считают разработчики концепции.

Разработки технологии начались ещё несколько лет назад. До сих пор над данной технологией работают исследователи сразу в нескольких институтах и университетах. Но больше преуспели на этой ниве профессор Габор Форгач (Gabor Forgacs) и сотрудники его лаборатории Forgacslab в университете Миссури в рамках проекта Organ Printing, раскрывшие новые тонкости биопечати ещё в 2007 году. Для коммерциализации своих разработок профессор и сотрудники основали кампанию Organovo. Кампанией была создана технология NovoGen, которая включала в себя все необходимые детали биопечати как в биологической части, так и в части "железа".

Была разработана лазерная калибровочная система и роботизированная система позиционирования головок, точность которой составляет несколько микрометров. Это очень важно для размещения клеток в правильном положении. Первые экспериментальные принтеры для Organovo (и по её "эскизам") строила компания nScrypt (рисунок 2). Но те устройства были ещё не приспособлены для практического использования, и применялись для шлифовки технологии.

В мае 2009 года кампания Organovo выбрала в качестве промышленного партнёра медицинскую кампанию Invetech. Эта кампания обладает более чем 30-летним опытом производства лабораторного и медицинского оборудования, в том числе и компьютеризированного. В начале декабря первый экземпляр 3D-биопринтера, воплощающего в себе технологию NovoGen, был отправлен из Invetech в Organovo. Новинку отличают компактные размеры, интуитивно понятный компьютерный интерфейс, высокая степень интеграции узлов и высокая надёжность. В ближайшее время Invetech намерена поставить ещё несколько таких же аппаратов для Organovo, а она уже займётся распространением новинки в научном сообществе. Новый аппарат имеет настолько скромные габариты, что его можно будет поставить в биологический шкаф, который необходим для того, чтобы обеспечить стерильную среду в процессе печати

Надо сказать, что биопечать -- не единственный способ искусственно создавать органы. Однако, классический способ выращивания требует прежде всего изготовить каркас, задающий форму будущего органа. При этом сам каркас несёт опасность стать инициатором воспаления органа.

Преимущество биопринтера в том, что он не требует такого каркаса. Форму органа задаёт само печатающее устройство, располагая клетки в требуемом порядке. Сам биопринтер имеет две головки, наполняемые двумя типами чернил. В роли чернил в первой используются клетки различных типов, а во второй -- вспомогательные материалы (поддерживающий гидрогель, коллаген, факторы роста). «Цветов» у принтера может быть больше двух -- если требуется использовать разные клетки или вспомогательные материалы разного вида.

Особенностью технологии NovoGen является то, что печать ведётся не отдельными клетками. Принтер наносит сразу конгломерат из нескольких десятков тысяч клеток. Это есть основное отличие технологии NovoGen от других технологий биопечати.

Схема работы принтера представлена на рисунке 4.

Итак, сначала выращиваются требуемые ткани. Затем выращенная ткань нарезается цилиндрами в соотношении диаметра к длине 1:1 (пункт a). Далее -- пункт b -- эти цилиндрики на время помещаются в специальную питательную среду, где они приобретают форму маленьких шаров. Диаметр такого шара -- 500 микрометров (пол миллиметра). Оранжевый цвет ткани придаётся с помощью специального красителя. Далее, шарики загружаются в картридж (пункт c) -- который содержит пипетки, наполняемые шариками в порядке один-за-другим. Сам трёхмерный биопринтер (пункт d) должен наносить эти сфероиды с микрометровой точностью (то есть ошибка должна быть меньше тысячной доли миллиметра). Принтер также оборудуется камерами, которые способны наблюдать в реальном времени процесс печати.

Созданный образец принтера работает сразу с тремя «цветами» - два вида клеток (в последних опытах Форгача это были клетки сердечной мышцы и эпителиальные клетки) -- а третий -- это смесь, включающая в себя скрепляющий гель, содержащий коллаген, фактор роста и ряд других веществ. Эта смесь позволяет органу сохранять форму, прежде чем клетки срастутся между собой (пункт d).

По словам Габора, принтер не воспроизводит структуру органа в точности. Однако, этого и не требуется. Природная программа клеток сама корректирует структуру органа.

Схема собирания органа и срастания шаров в орган показана на рисунке 5.

В ходе экспериментов биопринтер из клеток эндотелия и клеток сердечной мышцы цыпленка напечатал «сердце» (рисунок 6). Через 70 часов шарики срослись в единую систему, а через 90 часов - «сердце» начало сокращаться. Причём клетки эндотелия сформировали структуры, подобные капиллярам. Также мышечные клетки, первоначально сокращавшиеся хаотично, с течением времени самостоятельно синхронизировались и стали сокращаться одновременно. Впрочем, к практическому использованию этот прототип сердца пока что не пригодно -- даже если вместо куриных клеток использовать человеческие -- технология биопечати должна быть ещё улучшена.

Гораздо лучше принтер справляется с созданием более простых органов -- например, кусков человеческой кожи или кровеносных сосудов. При печати кровеносных сосудов коллагеновый клей наносится не только на края сосуда, но и в середину. А затем, когда клетки сростутся, клей с лёгкостью удаляется. Стенки сосуда состоят из трех слоёв клеток -- эндотелий, гладкие мышцы и фибробласты. Но исследования показали, что в печати можно воспроизводить только один слой, состоящий из смеси этих клеток -- клетки сами мигрируют и выстраиваются в три однородных слоя. Этот факт может облегчить процесс печати многих органов. Таким образом команда Форгача уже может создавать очень тонкие и ветвящиеся сосуды любой формы. Сейчас исследователи работают над наращиванием слоя мышц на сосудах, что сделает сосуды применимыми для имплантации. Особый интерес представляют сосуды толщиной менее 6 миллиметров -- так как для больших существуют подходящие синтетические материалы.

Иллюстрация с другими экспериментами биопечати -- на рисунке 7.

Пункт a -- кольцо из двух видов биочернил. Они специально окрашены разными флуоресцирующими веществами. Ниже -- это же кольцо через 60 часов. Клетки самостоятельно срастаются. Пункт b - развитие трубки, набранной из колец, показанных на картинке. Пункт c сверху - 12-слойная трубка, составленная из клеток гладких мышечных волокон пуповины; пункт c, внизу - разветвлённая трубка прообраз сосудов для трансплантации. Пункт d - построение сокращающейся сердечной ткани. Слева показана решётка (6 на 6) из сфероидов с клетками сердечной мышцы (без эндотелия), распечатанных на коллагеновой "биобумаге". Если в те же "чернила" добавляются клетки эндотелия (второй рисунок -- красный цвет, кардиомиоциты же тут показаны зелёным), они заполняют сначала пространство между сфероидами, а через 70 часов (пункт d, справа) вся ткань становится единым целым. Внизу: график сокращения клеток полученной ткани. Как видно, амплитуда (отмерена по вертикали) сокращений составляет примерно 2 микрона, а период -- около двух секунд (время отмечено по горизонтали) (фото и иллюстрации Forgacs et al).

На рисунке 8 также приведены структура распечатанных тканей сердца (фотографии Forgacs etal).

Первые образцы 3D-биопринтера от Organovo и Invetech будут доступны для исследовательских и медицинских организаций в 2011 году.

Следует отметить, что Organovo не является единственным игроком на данном рынке. Некоторое время назад западная биотехнологическая компания Tengion представила свою технологию воссоздания органов. Между подходами Tengion и Organovo есть некоторые различия. К примеру две технологии по-разному подходят к организации живых клеток в группы для создания тканей, кроме того принтеры компаний по-разному подходят к проблеме получения образцов и генного анализа. В обеих компания отмечают, что сталкиваются с одними и теми же трудностями - довольно сложно воспроизводить сложные ткани, оба принтера очень долго настраиваются на один тип трехмерной печати. Также разработка самого принтера -- это лишь часть задачи. Также требуется создать специальное программное обеспечение, которое поможет моделировать ткань перед печатью и быстро перенастроить принтер. Сам принтер должен справится с созданием сложнейшего органа за несколько часов. По тонким капиллярам следует как можно скорее подавать питательные вещества, иначе орган погибнет. Тем не менее, обе компании имеют одинаковую конечную цель - «печать» органов человека.

Поначалу оборудование будет использоваться в исследовательских целях. Например, напечатанные фрагменты печени можно будет использовать в токсикологических экспериментах. Позже искусственные фрагменты кожи и мышц, капилляры, кости можно будет использовать для лечения тяжёлых травм и для пластических операций. Как Organovo, так и Tengion сходятся в том, что оборудование, способное быстро и качественно печатать органы целиком появится примерно в 2025-2030 году. Внедрение биопечати позволит сильно удешевить создание новых органов. Новые органы можно будет использовать для замены устаревших частей тела человека и как результат - радикального продления жизни (иммортализма). В перспективе биопечать позволит изобретать новые биологические органы для усовершенствования человека и животных и изобретения искусственых живых существ.

Технологии биопечати.

Этот пост о биопринтерах - изобретении, которое поможет человеку выращивать новые органы взамен износившихся от старости и таким образом значительно продлить ему жизнь.


О технологии биопечати, разработанной Габором Форгачем в кампании Organovo, я уже рассказывал в одном из своих прошлых постов. Однако, это не единственная технология создания искусственного создания органов из клеток. Справедливости ради стоит рассмотреть другие. Пока что до массового применения они все далеки, но то, что такие работы ведутся, радует и вселяет надежду, что по крайней мере одна линия искусственных органов достигнет успеха.

Первое -- это разработки американских учёных Владимира Миронова (Vladimir Mironov) из медицинского университета Южной Каролины (Medical University of South Carolina) и Томаса Боланда (Thomas Boland) из университета Клемсона (Clemson University). Первым исследования начал доктор Боланд, который придумал идею и начал исследования в своей лаборатории, и увлёк ею своего коллегу.

Вместе они с помощью принтера смогли реализовать технологию нанесения клеток слой за слоем. Для опыта были взяты старые принтеры Hewlett-Packard - старые модели использовались потому что у их картриджей достаточно крупные отверстия, чтобы не повредить клетки. Картриджи были тщательно очищены от чернил, и вместо чернил в них была залита клеточная масса. Также пришлось несколько переделать конструкцию принтера, создать программное обеспечение для контроля над температурой, электрическим сопротивлением и вязкостью "живых чернил".

Наносить клетки на плоскость слой-за-слоем ранее пытались и другие учёные, но эти впервые смогли это сделать с помощью струйного принтера.

На нанесении клеток на плоскость учёные останавливаться не собираются.

Чтоб напечатать трёхмерный орган, в качестве клея для соединения клеток предполагается использовать экзотический термообратимый (или "термореверсируемый") гель, созданный недавно Анной Гатовска (Anna Gutowska) из тихоокеанской северо-западной национальной лаборатории (Pacific Northwest National Laboratory) .

Этот гель является жидким при 20 градусах по Цельсию и затвердевает при температуре выше, чем 32 градуса. И, к счастью, он не вреден для биологических тканей.

При печати на стеклянную подложку наносятся через один слои клеток и слои геля (см. рисунок 1). Если слои достаточно тонкие, то клетки потом сростаются. Гель не мешает сростанию клеток, и в то же самое время придаёт конструкции прочность до того момента, когда клетки сростутся. После чего гель может быть легко удалён с помощью воды.

Команда уже провела несколько экспериментов, используя легко доступные клеточные культуры, типа клеток яичника хомяка.

По мнению авторов, трёхмерная печать может решить проблему создания новых органов для медицины взамен повреждённых или выращивание органов для биологических опытов. Скорее всего, первой будет пущено в массовое использование технология выращивания больших участков кожи для лечения людей, поражённых ожогами. Поскольку исходные клетки для культивирования "живых чернил" будут взяты от самого пациента, так что проблемы с отторжением быть не должно.

Заметим также, что традиционное выращивание органов может занять несколько недель -- так что пациент может не дождаться нужного органа. При пересадке органа от другого человека обычно только каждому десятому удаётся дождаться своей очереди на орган, остальные погибают. Но технология биопечати при наличии достаточно количества клеток может потребовать всего несколько часов для построения органа.

Во время печати потребуется решать такие проблемы, как питание искусственного органа. Очевидно, принтер должен печатать орган со всеми сосудами и капиллярами, через которые уже в процессе печати следует подавать питательные вещества (впрочем, как показали опыты Габора Форгача, по крайней мере некоторые органы способны формировать капилляры самостоятельно). Также орган должен быть напечатан не более чем за несколько часов -- поэтому для повышения прочности креплений клеток предполагается добавлять в скрепляющий раствор белок коллаген.

По прогнозу учёных, уже через несколько лет биопринтеры появятся в клиниках. Перспективы, которые при этом открываются, огромны.

Для печати по этой технологии сложного органа, состоящего из большого количества клеток, требуются картриджи с большим разнообразием чернил. Однако, доктор Фил Кэмпбелл (Phil Campbell) и его коллеги из американского университета Карнеги-Меллона (Carnegie Mellon University), в частности, профессор роботехники Ли Вейсс (Lee Weiss) -- которые тоже проводят эксперименты с биопечатью -- придумали способ, как уменьшить количество видов чернил без вреда для результирующего органа.

Для этого в качестве одного из биоцветов он предложил использовать раствор, содержащий фактор роста BMP-2. В качестве другого биоцвета стволовые использовались клетки, полученные из мышц ног мышей.

Далее, принтером были нанесены на стекло четыре квадрата со сторонами по 750 микрометров -- в каждом из них концентрация гормона роста была различна. Стволовые клетки, оказавшиеся на участках с фактором роста, начали превращаться в клетки костной ткани. И чем большей была концентрация BMP-2, тем выше "урожай" дифференцированных клеток. Стволовые же клетки, которые оказались на чистых участках, превратились в мышечные клетки, так как этот путь развития стволовая клетка выбирает по умолчанию.

Ранее клетки различных видов выращивались отдельно. Но, по словам учёного, совместное выращивание клеток делает эту технику более близкой к природной. "Вы можете создать такую структуру подложки, в которой один конец будет развивать кость, ещё один край -- сухожилие, а третий -- мускулы. Это обеспечивает вам больший контроль над регенерацией ткани", -- говорит автор работы. И при этом будет использоваться только два вида чернил -- что упрощает конструкцию биопринтера.

Проблемой управляемого изменения клеточных структур заинтересовались и учёные из России. «На сегодняшний день ведется очень много разработок, связанных с выращиванием тканей из стволовых клеток, -- комментирует учёный Николай Адреанов. -- Наилучших результатов ученые достигли при выращивании эпителиальной ткани, так как ее клетки очень быстро делятся. А теперь исследователи пытаются с помощью стволовых клеток создать нервные волокна, клетки которых в естественных условиях очень медленно восстанавливаются».

Также по словам Ли Вейсса, занимавшегося разработкой принтера, их технология ещё далека от промышленного внедрения. Кроме того, не помешало бы расширение знания о биологии. "Я могу напечатать довольно сложные вещи. Но, вероятно, один из самых серьёзных ограничивающих факторов (для данной технологии) - это понимание биологии. Нужно точно знать, что именно печатать". На другую проблему указывает кандидат биологических наук, старший научный сотрудник Института биологии развития РАН Александр Ревищин. «В принципе печать тканей “клеточными чернилами” возможна, однако технология пока еще несовершенна, -- отметил он -- Например, если пересадить стволовые клетки в непривычные условия, эти клетки потеряют нить естественного развития и связь с окружающими клетками, что может привести к их перерождению в опухоль». стволовой клеточный биопринтер орган

Но, будем надеется, что в ближайшие годы технология будет отработана.

Пообщалась с профессором Паоло Маккиарини , который вот уже 6 лет успешно занимается трансплантацией человеческих органов, выращенных из стволовых клеток пациента в лаборатории.

Что предсказывали фантасты и пророки

Последние 5 лет исследовательские лаборатории по всему миру активно занимаются выращиванием новых человеческих органов из стволовых клеток пациентов. СМИ пестрят сообщениями о созданных в лабораторных условиях ушах, хрящах, сосудах, коже и даже половых органах. Похоже, совсем скоро производство человеческих «запчастей» приобретет промышленные масштабы, и наступит предсказанная фантастами «эра постчеловека». Эра, которая поставит каждого перед дилеммой: продлить себе жизнь или умереть и остаться бессмертным в генах потомков.

Футурологи предрекали до появления «постчеловека» создание «трансчеловека». Совсем незаметно миллионы землян уже стали «транслюдьми»: это «дети из пробирок», люди с имплантами зубов и донорскими органами. Когда всё это вошло в нашу жизнь, последней цитаделью, которую должны были однажды покорить ученые, стало, пожалуй, выращивание человеческих «запчастей» в лаборатории.

Человечество всегда грезило этим. Классик научной фантастики Артур Кларк не сомневался, что ученые овладеют регенерацией в 21 веке, а его коллега Роберт Хайнлайн писал, что «тело будет чинить само себя - не заращивать раны шрамами, а воспроизводить утерянные органы ». Болгарская провидица Ванга предсказала возможность создания любых органов в 2046, назвав это достижение лучшим методом лечения. Знаменитый француз-прорицатель Нострадамус предсказал до 2015 революционные изменения в науке, в результате которых будут проводить операции с выращенными органами.

Если вы не доверяете пророкам, то вот прогноз от политиков. В 2010 британская The Daily Telegraph опубликовала доклад правительства Великобритании, посвященный профессиям, которые станут самыми востребованными в ближайшее десятилетие и к которым следует готовиться будущим участникам рынка труда. Возглавили список «производители искусственно выращенных органов», а на втором месте оказались «наномедики», которые будут заниматься научными разработками в этой сфере. В той же статье британский министр науки и инноваций Пол Дрейсон заявил, что эти профессии более не относятся к области научной фантастики.

Паоло Маккиарини в лаборатории.

Что сбылось

Мы беседуем в модном нью-йоркском ресторане Lavo. Публика, окружающая нас, и не подозревает, что мой собеседник - историческая личность, чьи научные достижения разглядел в далеком 16 веке королевский астролог Мишель де Нострадамус. Его зовут Паоло Маккиарини. Он первым в мире вырастил человеческий орган из стволовых клеток пациента в лаборатории, а затем успешно имплантировал его.

Профессор Маккиарини родился в Швейцарии в 1958, образование получал в Италии, США и Франции. Владеет пятью языками. Один из пионеров регенеративной медицины в мире. Специалист в области тканевой инженерии и стволовых клеток, он одновременно является ученым-биологом и действующим хирургом-трансплантологом. Возглавляет Центр регенеративной хирургии в шведском Каролинском институте (Комитет этого института определяет лауреатов Нобелевской премии в области физиологии и медицины).

Паоло Маккиарини - обладатель почетных научных наград, автор сотни публикаций в ведущих научных журналах мира, кавалер ордена Итальянской Республики «За заслуги в области науки», новатор и пионер в области выращивания и имплантации трахеи, созданной из стволовых клеток пациента. Этот список регалий рисует портрет недоступного и важного ученого мирового масштаба. Личное общение меняет это представление. Харизматичный и невероятно обаятельный, душа компании, красивый и элегантный, открытый и добрый. Неудивительно, что большинство отчаявшихся когда-то пациентов, которых он после прооперировал, без особых усилий нашли его через Google, введя в поисковик запросы «регенеративная медицина» или «стволовые клетки». У Маккиарини нет ассистентов и помощников - он лично отвечает на письма и ведет переговоры.

В 2008 все мировые СМИ облетела сенсационная новость. Международная группа ученых во главе с профессором Маккиарини провела первую в истории операцию по пересадке пациентке трахеи, выращенной из ее клеток на каркасе в биореакторе.

Трахея - жизненно важный орган. Эта, говоря простым языком, трубка длиной 10-13 см соединяет нос и легкие, а следовательно, обеспечивает дыхание и поступление кислорода в организм. Прежде пересадка трахеи (например, донорской) была невозможна. Так, благодаря Маккиарини, впервые пациенты с травмами, опухолями и другими нарушениями трахеи получили шанс на выздоровление.

На сегодняшний день профессор сделал около 20 операций по пересадке «выращенной» трахеи.

Маккиарини в фокусе США и России


Профессор Маккиарини с каркасом трахеи.

Достижения европейского ученого не остались не замеченными в США. Летом 2014 американская телекорпорация NBC сняла о Маккиарини 2-часовой документальный фильм «A Leap of Faith» («Прыжок веры»), в котором подробно показаны все этапы «выращивания» человеческого органа, снабженные интервью и историями всех пациентов. Создателям картины удалось передать зрителям и бешеный график профессора, который спит в самолетах, накануне трансплантации ночует возле «выращенного» органа, дает мастер-классы и делает сложнейшие операции по всему миру, а также дружит с семьями пациентов, которым, увы, его операция лишь продлила жизнь, но не смогла избавить от первоначальной необратимой болезни.

В фильме объективно затронута и обратная сторона успеха профессора, который пережил волну международной критики за экспериментальные операции на людях. Неоднократно в обществе поднимались вопросы биоэтики. В интервью авторам фильма ученый признался, что такое давление не раз приводило его к мысли бросить всё, но успешные операции возвращали веру. К тому же идею от первой имплантации разделяло почти 25 лет исследований, за которые он выработал свой девиз: «Никогда не сдаваться».

Пристально следила за «выращиванием органов» и Россия. Чтобы не упустить ученого такого калибра, российское правительство выделило в 2011 беспрецендентный грант в размере 150 млн рублей . Осваивать эти деньги Маккиарини предложили на базе Кубанского медицинского университета в Краснодаре.

16 российских специалистов профессор направил на учебу в свой родной Каролинский институт и планирует сделать из них ученых мирового класса. Самому Маккиарини грант позволил не думать о поиске спонсоров и сосредоточиться на спасении жизни пациентов, которых он уже оперирует бесплатно в Краснодаре за счет гранта. Можно сказать, что благодаря профессору Россия создает ведущую в мире лабораторию по созданию человеческих органов.

Все тот же российский грант позволил Маккиарини применить свое ноу-хау для создания уже других органов. Так, полным ходом идут успешные эксперименты по выращиванию сердца крысы, совместно с Техасским институтом сердца планируется вырастить сердце для примата. В процессе - проект по выращиванию пищевода и диафрагмы. И это - только начало новой эры в биоинженерии. В скором будущем технологии должны достичь совершенства, пройти клинические испытания и встать на поток. Тогда больные перестанут умирать, не дождавшись донора, а тем, кому пересадят выращенный из собственных клеток орган, не нужно будет принимать всю жизнь иммуноподавляющие препараты во избежание отторжения.


Фото из архива Паоло Маккиарини

Каркас трахеи “обрастает” стволовыми клетками пациента в биореакторе.

Трахею можно вырастить за 48 часов, сердце - за 3-6 недель

F : Профессор Маккиарини, то, что вы делаете, для простого обывателя звучит фантастически. Например, как вы выращиваете орган отдельно от тела человека?

Если вы думаете, что в лаборатории вырастает целая трахея, - это глубокое заблуждение. На самом деле мы берем каркас определенного органа, изготовленного по размерам пациента из нанокомпозитного материала. Затем засеиваем каркас стволовыми клетками пациента, взятыми из его же костного мозга (клетки-монуклеары) и помещаем в биореактор. В нем клетки «приживаются» (прикрепляются) к каркасу. Полученную основу мы имплантируем на место поврежденной трахеи, и именно там, в теле пациента, в течение нескольких недель формируется необходимый орган.

F : Что такое биореактор? И сколько времени занимает выращивание органа?

Биореактор - это устройство, в котором созданы оптимальные условия для роста и размножения клеток. Он обеспечивает им питание, дыхание, отводит продукты обмена веществ. В течение 48-72 часов каркас обрастает этими клетками, и «выращенная трахея» готова для пересадки больному. А вот для выращивания сердца потребуется 3-6 недель.

F : А как клетки из костного мозга вдруг «превращаются» в клетки именно трахеи после пересадки? Это и есть загадочная «самоорганизация клеток в сложные ткани»?

Основной механизм «превращения» точно еще не изучен, но есть основания полагать, что клетки костного мозга сами изменяют свой фенотип, чтобы стать, например, клетками трахеи. Это преобразование происходит благодаря местным и системным сигналам организма.

F : Бывали ли случаи, когда орган, созданный из клеток самого пациента, все равно отторгался или плохо приживался?

Так как используются собственные клетки пациента, мы ни разу не наблюдали каких-либо отторжений органа после пересадки. Тем не менее, мы зафиксировали развитие реагирующих тканей, которые связаны больше с биомеханикой нового органа, но не клетки.

F : Какие еще органы вы собираетесь выращивать в лаборатории?

В области тканевой инженерии (tissue engineering) мы сейчас работаем над выращиванием диафрагмы, пищевода, легких и сердца для мелких животных и для нечеловекообразных приматов.

F : Какие органы вырастить сложнее всего?

Самое сложное для биоинженеров - вырастить 3D-органы: сердце, печень и почки. Вернее, вырастить их можно, но трудно заставить их выполнять свои функции, вырабатывать необходимые вещества, потому что у этих органов самые сложные функции. Но уже достигнут определенный прогресс, так что рано или поздно этот тип трансплантации, как ожидается, станет реальностью.

F : Но в последнее время стволовые клетки ассоциируются со стимулированием развития рака...

Уже доказано, что местные стволовые клетки могут ускорить процесс развития опухоли, но, главное, они не вызывают рак. Если эта взаимосвязь подтвердится и в других типах опухолей, это поможет ученым разработать лекарства или факторы роста, которые, наоборот, будут атаковать или блокировать рост опухоли. В конечном счете, это может на самом деле открыть дверь к новым средствам лечения рака, которые пока не доступны.

F : Манипуляции со стволовыми клетками пациента в лаборатории до пересадки влияют на качество этих клеток?

В нашей клинической практике такого никогда не было.

F : Читала, что даже выращивание мозга входит в ваши планы. Разве это возможно со всеми нейронами?

Используя достижения в области тканевой инженерии, мы пытаемся разработать мозговое вещество, которое может быть использовано для нейрогенной регенерации в случае утраты мозгового вещества. Вырастить весь мозг, увы, невозможно.

F : Уверена, что многих интересует финансовый вопрос. Сколько стоит, например, вырастить и имплантировать трахею?

Как для меня, так и для моих пациентов спасение жизни и возможность выздоровления важнее всех денег на Земле. Однако мы имеем дело с экспериментальной хирургией, а это дорогостоящий метод лечения. Но наша команда всегда старается смягчить расходы по трансплантации для пациентов. Стоимость сильно варьируется в зависимости от страны. В Краснодаре, благодаря гранту, операция по пересадке трахеи составляет всего $15 тыс . В Италии подобные операции обходились в $80 тыс. , а первые операции в Стокгольме стоили около $ 400 тыс.

F : С внутренними органами все понятно. А есть ли возможность выращивать конечности? Возможна ли пересадка рук, ног?

Пока, к сожалению, нет. Но такие пациенты получили, помимо протезирования, новый метод успешной замены конечностей - с помощью 3D-биопринтера.

Эликсир молодости - внутри каждого из нас


Фото из архива Паоло Маккиарини.

Человеческое сердце и легкое в биореакторе (в процессе “выращивания”).

F : В одном из интервью вы сказали что ваша мечта - навсегда забыть о выращивании и трансплантации органов, заменив ее на инъекции стволовых клеток пациента из его костного мозга для регенерации поврежденных тканей организма. Через сколько лет такой метод станет доступным?

Да, это моя мечта, и мы ежедневно напряженно работаем, чтобы однажды она осуществилась. И, кстати, мы не так уж далеко от цели!

F : Может ли метод использования стволовых клеток помочь обездвиженным людям с травмами позвоночника?

На этот вопрос очень сложно ответить. Многое зависит от пациента, от степени повреждения, от размеров пораженного участка, от времени... Однако лично я считаю, что терапия стволовыми клетками имеет огромный потенциал в этой области.

F : Получается, панацея от всех болезней и эликсир молодости найдены: это - стволовые клетки костного мозга. Рано или поздно метод регенерации любых тканей этими клетками станет доступным и массовым. Что дальше? Люди получат возможность выращивать новые органы, омолаживать дряхлеющие ткани и неоднократно продлять жизнь? Есть ли предел у организма при таких манипуляциях или можно достичь бессмертия?

Думаю, мы не сможем кардинально изменить прекрасные творения природы. На этот вопрос сложно дать прямой ответ, так как в науке еще столько неизвестного. Плюс это будет вызов социальным и этическим вопросам. В будущем возможно всё, но в данный момент наша задача - спасать жизни пациентов, чей единственный шанс - регенеративная медицина.

F : Насколько велика сейчас международная конкуренция в области выращивания органов? Какие страны лидируют в этой сфере?

Если ответить коротко, лидерами станут те страны, которые уже сейчас инвестируют в регенеративную медицину.

F : Планируете ли вы сами лет через 20, например, воспользоваться новыми технологиями для омоложения своего организма?

Скорее всего, нет. Для тех, кто ищет эликсир молодости, предлагаю отбросить все медицинские и научные достижения в сторону. Лучший метод омоложения - это любовь. Любите и будьте любимыми!

Возможность вырастить человеческий орган в пробирке и пересадить его человеку, нуждающемуся в пересадке — мечта трансплантологов. Ученые по всему миру работают над этим и уже научились делать ткани, небольшие работающие копии органов, и до полноценных запасных глаз, легких и почек нам на самом деле осталось совсем немного. Пока что органеллы используются в основном в научных целях, их выращивают, чтобы понять, как работают органы, как развиваются болезни. Но от этого до трансплантации всего несколько шагов. МедНовости собрали сведения о самых перспективных проектах.

Легкие . Ученые из Техасского университета вырастили легкие человека в биореакторе. Правда, без кровеносных сосудов такие легкие не функциональны. Однако команда ученых из Медицинского центра Колумбийского университета (Columbia University Medical Center, New York) недавно впервые в мире получили функциональное легкое с перфузируемой и здоровой сосудистой системой у грызунов ex vivo.

Ткани сердечной мышцы . Биоинженерам из университета Мичигана удалось вырастить в пробирке кусок мышечной ткани. Правда, полноценно сердце из такой ткани пока работать не сможет, она вдвое слабее оригинала. Тем не менее пока это самый сильный образец сердечной ткани.

Кости . Израильская биотехнологическая компания Bonus BioGroup использовалат трехмерные сканы для создания гелеобразного каркаса кости перед посевом стволовыми клетками, взятыми из жира. Кости, получившиеся в результате, они успешно пересадили грызунам. Уже планируются эксперименты по выращиванию человеческих костей по этой же технологии.

Ткани желудка . Ученым под руководством Джеймса Уэллса из Детского медицинского клинического центра в Цинциннати (Огайо) удалось вырастить «в пробирке» трехмерные структуры человеческого желудка при помощи эмбриональных стволовых клеток и из плюрипотентных клеток взрослого человека, перепрограммированных в стволовые. Эти структуры оказались способны вырабатывать все необходимые человеку кислоты и пищеварительные ферменты.

Японские ученые вырастили глаз в чашке Петри . Искусственно выращенный глаз содержал основные слои сетчатки: пигментный эпителий, фоторецепторы, ганглионарные клетки и другие. Трансплантировать его целиком пока возможности нет, а вот пересадка тканей — весьма перспективное направление . В качестве исходного материала были использованы эмбриональные стволовые клетки.

Ученые из корпорации Genentech вырастили простату из одной клетки . Молекулярным биологам из Калифорнии удалось вырастить целый орган из единственной клетки.
Ученым удалось найти единственную мощную стволовую клетку в простатической ткани, которая способна вырасти в целый орган. Таких клеток оказалось чуть меньше 1% от общего числа. В исследовании 97 мышам трансплантировали такую клетку под почку и у 14 из них выросла полноценная простата, способная нормально функционировать. Точно такую же популяцию клеток биологи нашли и в простате человека, правда, в концентрации всего 0,2%.

Сердечные клапаны . Швейцарские ученые доктор Саймон Хоерстрап (Simon Hoerstrup) и Дорта Шмидт (Dorthe Schmidt) из университета Цюриха (University of Zurich) смогли вырастить человеческие сердечные клапаны , воспользовавшись стволовыми клетками, взятыми из околоплодной жидкости. Теперь медики смогут выращивать клапаны сердца специально для неродившегося еще ребенка, если у него еще в зародышевом состоянии обнаружатся дефекты сердца.

Ушная раковина . Используя стволовые клетки, ученые вырастили . Эксперимент был проведен исследователями из Университета Токио (University of Tokyo) И Университета Киото (Kyoto University) под руководством Томаса Сервантеса (Thomas Cervantes).

Кожа. Ученые из Цюрихского университета (Швейцария) и университетской детской больницы этого города впервые сумели вырастить в лаборатории человеческую кожу, пронизанную кровеносными и лимфатическими сосудами . Полученный кожный лоскут способен почти полностью выполнять функцию здоровой кожи при ожогах, хирургических дефектах или кожных болезнях.

Поджелудочная железа . Ученые впервые создали , способные вырабатывать инсулин. Еще одна попытка вылечить диабет I типа.

Почки . Ученые из австралийского университета Квинсленда научились выращивать искусственные почки из стволовых клеток кожи. Пока это лишь маленькие органоиды размером 1 см, но по устройству и функционированию они практически идентичны почкам взрослого человека.

Первая операция по трансплантации органов из клеток самого пациента пройдет в Краснодаре, сейчас заканчиваются последние приготовления к ней. Всего в мире было проведено две таких трансплантации, для российских же хирургов это первый опыт. Раньше в стране пересаживали только донорские органы.

"Это искусственно выращенная трахея, на которую также будут нанесены собственные клетки пациента", - объясняет главный врач Краснодарской краевой клинической больницы № 1 Владимир Порханов.

Каркас для будущего органа сконструировали в американской и шведской лабораториях из нанокомпозитного материала.

Это точная копия трахеи пациента, которому требуется операция. Внешне выглядит как трубка из упругого пористого пластика, на которую врачи высаживают собственные клетки пациента, выделенные из костного мозга. За 2-3 дня формируется основа трахеи. Организм пациента ее не только не отторгает, а наоборот, пересаженный орган сам начинает подстраиваться под новые условия.

"Потом клетки будут дифференцироваться, создавать собственное микроокружение, продуцировать ткань. Ведь клетка, когда живая, в ней много процессов происходит. Это будет иметь место в своем организме", - рассказывает врач-трансфузиолог, сотрудник лаборатории культивирования Краснодарской краевой клинической больницы № 1 Ирина Гилевич.

Паоло Маккиарини по пунктам изучает с хирургами краснодарской больницы ход будущей операции. Он автор методики по пересадке искусственно выращенной трахеи. Первую операцию провел в прошлом году в Швеции. Длилась она 12 часов. Сколько времени займет эта трансплантация, врачи не говорят. Ведь впервые в мире будет пересажена не только искусственная трахея, но и часть гортани.

"Во время операции будет выполнено иссечение и удалена вся рубцовая ткань, то есть надо будет удалить часть гортани, потом высвободится полость и на это место поставить трахею. Это очень сложно, потому что рядом голосовые связки", - объясняет профессор регенеративной хирургии Каролинского института (Швеция) Паоло Маккиарини.

Искусственные органы будут пересажены двум пациентам. Это люди, получившие травмы трахеи несколько лет назад. За это время им было сделано множество операций, улучшение после которых так и не последовало. Трансплантация для таких больных - единственный шанс на выздоровление и полноценную жизнь.

Пока жизнь больных расписана по графику и в основном состоит из запретов: нельзя купаться, нельзя разговаривать и даже смеяться. Дыхательные пути открыты, в горле трахеостома - специальная трубка, через которую пациенты сейчас дышат.

"После этой операции пациентка сможет самостоятельно спокойно говорить, дышать", - говорит Паоло Маккиарини.

В будущем, каркасы для искусственных органов планируют создавать и в России. Профессор Маккиарини вместе с Кубанским медицинским университетом выиграли правительственный мегагрант на проведение исследовательских работ по регенерации тканей дыхательных путей и легкого. Сейчас на территории вуза строят лабораторию, в которой ученые займутся изучением механизмов регенерации.

"Здесь будут отрабатывать методики и технологии выделения клеток, засевание на эти каркасы клеток, выращивание клеток и отрабатывать научные моменты", - рассказывает ректор Кубанского государственного медицинского университета Сергей Алексеенко.

Результаты исследований ученых облегчат жизнь тяжело больным людям, больше им не придется ждать подходящего донора. В будущем ученые планируют использовать подобную методику при пересадке кожи, искусственных артерий, сердечных клапанов и более сложных органов.

В День медицинского работника, который отмечается сегодня, в 17:20 Первый канал покажет церемонию вручения национальной премии "Призвание". Она присуждается лучшим врачам за выдающиеся достижения.



Новое на сайте

>

Самое популярное