Домой Паразитология О важности углеводов в питании спортсмена. Углеводы в питании: польза или вред

О важности углеводов в питании спортсмена. Углеводы в питании: польза или вред

Для нашего организма очевидна (об этом я говорила ранее). А углеводы? Поговорим о них, о значении и функциях углеводов для организма, какие продукты являются основными источниками углеводов и нужно ли соблюдать норму потребления углеводов.

Ведь часто именно углеводы обвиняют в избыточном весе, а порой мы слышим, что углеводы — это источник энергии. Думаю, есть повод в этом разобраться.

Функции углеводов в организме

Основных функций углеводов не так много — всего три, но они очень важны для человека, судите сами:

  1. основная функция углеводов — источник энергии, которая просто необходима для нормальной работы всех органов нашего организма, скелетным мышцам при нагрузке требуется сахар, энергия необходима для роста и деления клеток. Для переваривания углеродной пищи не требуется много времени, соответственно не появляется после приема пищи сонливость, вялость, а, наоборот высвобождается энергия. Кстати, при физической нагрузке в первую очередь организм использует именно углеводы, а уже при их недостатке, подключаются жиры. И именно во время углеродного расхода, организм менее страдает от физической нагрузки, т. е. не так устает и более экономно использует свою жизненную энергию.
  2. важнейшая функция углеводов — помощь нашей центральной нервной системе, которая страдает от недостатка углеводов. Наш мозг достаточно активно поглощает сахар. Ведь не зря перед экзаменами рекомендуют есть шоколад.
  3. еще одна функция углеводов, это их участие в обмене белков и жиров.

Как видим, углеводы оказывают большое значение для организма человека. Теперь разберём основные виды и группы углеводов.

Виды углеводов

  • Моносахариды — это глюкоза, фруктоза, галактоза;
  • Дисахариды – это лактоза, сахароза, мальтоза;
  • Полисахариды – это крахмал, гликоген, клетчатка.

Группы углеводов

  • Простые (легкоусвояемые)- это моносахариды и дисахариды, а если проще, то это сахар, мед, варенье, кондитерские изделия, сдоба.
  • Сложные (комплексные) – это полисахариды, а если проще, то это натуральные углеводы, которые содержатся в зерновых продуктах, корнеплодах, свежих овощах и фруктах, в горохе, бобах.

Основные источники углеводов

  • растительные продукты;
  • мучные изделия;
  • сладости;
  • молоко и некоторые молочные продукты


Крахмал и сахар – это «горючее» для мускульной работы и источник физической активности, то есть основной источник пищевой энергии.

Но их избыток, не используемый в качестве энергии, преобразуется организмом в жиры и запасается в наименее подвижных частях тела, что надо учитывать людям склонным к полноте, людям, у которых физическая нагрузка минимальна. Следует избегать злоупотребления сладостями, мучными изделиями и другими концентратами легкоусвояемых углеводов.

Еще одним плюсом продуктов, относящихся к группе сложных углеводов, является то, что в них содержится клетчатка. В пищеварительном тракте человека нет фермента, способного расщеплять клетчатку, она не переваривается и не усваивается, потому не имеет прямого питательного значения. Однако она играет важную роль в процессе пищеварения, способствуя передвижению пищи по пищеварительному тракту и его нормальному опорожнению. При отсутствии или недостатке ее в пищевом рационе развивается атония кишечника и как следствие – запоры.

Благодаря клетчатке даже сладкие фрукты не повышают резко сахар в крови, как, например, из тех же фруктов, приготовленные соки, так как в соке клетчатки уже нет. Именно поэтому больным сахарным диабетом разрешается, в умеренных, конечно, дозах употреблять свежие фрукты и овощи.

Так же в продуктах из группы сложных углеводов содержится пектин, благодаря которому выводится лишний холестерин из организма, улучшает перистальтику кишечника, и вообще пектин называют натуральным «чистильщиком организма».

Вот что пишет известный физиолог Шелтон:

«Фрукты представляют собой больше, чем просто удовольствие для глаз, носа и языка – они содержат смеси чистых, питательных, настоящих пищевых элементов. Вместе с орехами, зелеными овощами фрукты представляют собой идеальную пищу для человека».

Норма потребления углеводов в сутки

Хотя роль углеводов в организме человека очень важна, их потребление необходимо нормировать. Суточная норма потребления углеводов должна быть в 4 — 5 раз больше нормы белков и жиров. Нормальным употреблением считается 300 гр. в день. Можно увеличить до 500 гр. только при интенсивных физических и умственных нагрузках. При этом легкоусвояемых углеводов должно быть не более 20% от общего объёма.

Потребление углеводов сверх норм является одним из факторов, способствующих ожирению. Излишняя перегрузка желудочно-кишечного тракта углеводистой пищей, вызывает ощущение тяжести, затрудняет пропитывание пищи желудочным соком и ферментами, ухудшает усвояемость. Однако нельзя и допускать значительного снижения установленных норм углеводов во избежание гипогликемии, сопровождающейся общей слабостью, сонливостью, расстройством памяти, головной болью.

P.S. К сожалению, наши производители добавляют сахар практически во все продукты. Так как для увеличения срока хранения добавляются консерванты, которые не добавляют вкуса продуктам, для улучшения вкуса добавляется сахар. То же происходит и с обезжиренными продуктами.

Я не призываю вас отказываться от продуктов фабричного изготовления, просто помните об этом, когда думаете, что вы мало употребляете легкоусвояемых углеводов, так не пьете сладкий чай, кофе и т. п.

Я рассказала вам о функциях углеводов для организма, какова роль углеводов в организме, какие продукты являются основными источниками углеводов и нужно ли соблюдать норму потребления углеводов.

Дополнительно посмотрите видео.

Думаю, это полезно знать!

Елена Касатова. До встречи у камина.

Углеводы играют исключительно важную роль в питании человека. Мозг и нервная система для нормального функционирования требуют только сахар. Другие ткани (например, печень) при отсутствии сахара могут перерабатывать жиры, мозг такой адаптивностью не обладает. Отсутствие достаточного количества сахара в организме может отрицательно сказаться на работе печени и сердца. Белок и жиры так же не будут выполнять своих функций (восстановление тканей и производство энергии) если в организме не будет достаточного количества продуктов расщепления сахара.

Функции углеводов можно разделить на три группы

Энергетическая функция.

При окислении 1 г. углеводов выделяется 4 ккал энергии, которая используется в различных процессах метаболизма.

Атомы углерода углеводов используются организмом не только для биосинтеза самих углеводов, но и белков, нуклеиновых кислот, липидов.

Структурная функция. Углеводы являются важными компонентами стенок бактериальных и растительных клеток, а также оболочек животных клеток.

Защитная функция. С помощью углеводов организм освобождается от вредных веществ. Углеводные остатки входят в состав соединений, ответственных за иммунитет.

Другие (специальные) функции:

предохраняют кровь от свертывания (гепарин), а у некоторых рыб от замерзания;

являются антибиотиками и различными биологически активными веществами. Например, витамин С относится к углеводам. Гликозиды являются стимуляторами сердечной деятельности.

Основным источником углеводов в питании являются растительные продукты. Углеводы по усвояемости делятся на две группы: усвояемые организмом человека (глюкоза, фруктоза, галактоза, сахароза, декстрины, крахмал) и неусвояемые – пищевые волокна или баластные вещества (клетчатка, гемицеллюлоза, пектиновые вещества). Усвояемые углеводы дают организму 50 – 60 % от общего числа калорий. Суточная потребность взрослого человека в усвояемых углеводах составляет 365 – 400 г, в том числе 50–100 г простых сахаров. Оптимальное содержание пищевых волокон в суточном рационе 20 – 25 г, в т. ч. клетчатки и пектина 10 – 15 г.

Рассмотрим физиологическое значение отдельных углеводов.

Глюкоза. В процессе пищеварения углеводы пищи в конечном итоге превращаются в глюкозу, которая поступает в кровь и служит источником энергии для всех органов и тканей. С помощью гормона поджелудочной железы – инсулина – глюкоза превращается в гликоген. Нормальный уровень глюкозы в крови составляет 80-100 мг на 100мл. Систематическое избыточное потребление легкоусвояемых углеводов может способствовать возникновению сахарного диабета, ожирения и атеросклероза.

Фруктоза. Превращение фруктозы в организме протекает несколько иначе, чем глюкозы. Поэтому фруктоза не вызывает увеличение сахара в крови, что важно для больных сахарным диабетом.

Лактоза способствует развитию в желудочно-кишечном тракте молочнокислых бактерий, антагонистов гнилостной микрофлоры. Некоторые люди страдают непереносимостью молока из-за отсутствия фермента лактазы, расщепляющего лактозу.

Крахмал. Занимает в рационе 80% от общего количества потребляемых углеводов. Подвергается перевариванию только после термической обработки. Крахмал усваивается медленнее других углеводов, поэтому потребление не приводит к быстрому увеличению содержания глюкозы в крови.

Пищевые волокна не усваиваются организмом человека, но выполняют положительную роль.

Клетчатка - основной компонент “ грубых” пищевых волокон является обязательным фактором процесса пищеварения: нормализует деятельность полезной микрофлоры кишечника, препятствует всасыванию вредных веществ, способствует выведению из организма холестерина. Клетчатка способствует нормальному продвижению пищи по желудочно-кишечному тракту. Вместе с тем избыток клетчатки провоцирует диарею, снижает усвояемость некоторых витаминов и минеральных веществ.

Пектин выводит из организма многие токсичные вещества: тяжёлые металлы, радионуклеиды, продукты метаболизма гнилостных бактерий.

        Превращение углеводов при переработке.

Во время хранения пищевого сырья и его переработке углеводы подвергаются различным и сложным превращениям. Направленность этих процессов зависит от состава углеводного комплекса, условий (влажность, температура, Н среды), наличия ферментов и присутствия других компонентов.

Наиболее распространёнными и важными в пищевой технологии являются процессы:

Меланоидинообразования и карамелизации;

Кислотного и ферментативного гидролиза полисахаридов;

Брожения моносахаридов

Меланоидинообразование – окислительно-восстановительный процесс, который представляет собой совокупность последовательно и параллельно идущих реакций. Этот процесс одновременно получил название реакции Майара, по имени учёного, который в 1912г впервые его описал.

При реакции меланоидинообразования происходит взаимодействие восстанавливающих сахаров с аминокислотами, пептидами и белками, приводящее к образованию тёмно-окрашенных продуктов-меланоидинов. Механизм этой реакции сложен, в результате её образуется большое число промежуточных продуктов, которые на следующих этапах взаимодействуют между собой и с исходными веществами.

В результатате этой реакции в продуктах снижается содержание редуцирующих сахаров и азота аминных групп. Наиболее реакционно способными являются аминокислоты: лизин, глицин, метионин, аланин, валин; наиболее активно из сахаров реагируют ксилоза, арабиноза, глюкоза, галактоза и фруктоза.

Более интенсивно меланоидинообразование протекает в нейтральной и щелочной средах, легче проходит в концентрированных растворах .В результате реакции Майара может связываться до 25% белков, витаминов, аминокислот и многих биологически активных соединений, тем самым снижается пищевая ценность продуктов

Положительным моментом реакции меланообразования является появление привлекательной окраски (золотисто-коричневой, тёмно-коричневой и др.) и своеобразного аромата пищевых продуктов.

Карамелизация сахаров. Нагревание моно- и дисахаров при температуре 100 ° С и выше приводит к изменению химического состава и цвета продуктов. Глубина этих процессов зависит от состава сахаров, их концентрации, степени и продолжительности теплового воздействия Н среды, присутствия примесей.

В общем упрощенном виде схему превращений сахаров при нагревании можно представить следующим образом:

Дисахара Монозы Ангидриды моноз

Оксиметил фурфурол

Окрашенные и гуминовые муравьиная и левулиновая

вещества кислоты

Гидролиз полисахаридов и олигосахаров.

Во многих пищевых производствах имеет место гидролиз олиго- и полисахаридов. Он важен не только для процессов получения пищевых продуктов, но также и для процессов их хранения.

Реакции гидролиза могут приводить к нежелательным изменениям цвета и к неспособности полисахаридов образовывать гели.

Ферментативный гидролиз крахмала присутствует во многих пищевых технологиях и обеспечивает качество готового продукта – в хлебопечении (процесс тестоприготовления и выпечки хлеба), в производстве пива (получение пивного сусла), спирта(подготовка сырья для брожения), в производстве различных сахаристых продуктов (глюкозы, патоки, сахарных сиропов).

В общем виде, схема гидролиза крахмала может быть представлена следующим образом:

(С 6 Н 10 О 5)n (С 6 Н 10 О 5)х С 12 Н 22 О 11

крахмал катализатор декстрины мальтоза

Гидролиз пектинов имеет место при созревании плодов. Под действием пектолитических ферментов нерастворимые протопектины превращаются в растворимые пектины. При этом резко снижается вязкость растительных тканей и уменьшается молекулярная масса пектинов. Таким образом, мякоть плодов размягчается.

Гидролиз сахарозы получил название инверсии, а смесь, образующихся в равных количествах глюкозы и фруктозы, – инвертным сахаром.

С 12 Н 22 О 11 + Н 2 О C 6 Н 12 О 6 + С 6 Н 12 О 6

Сахароза глюкоза фруктоза

Инвертные сиропы используются при приготовлении безалкогольных напитков. Инверсия сахарозы имеет место при производстве виноградных вин. Процессы инверсии предупреждают очерствение конфет и улучшают аромат хлеба.

При гидролизе лактозы образуются глюкоза и галактоза

С 12 Н 22 О 11 C 6 Н 12 О 6 + C 6 Н 12 О 6

Лактоза глюкоза галактоза

Под действием фермента - галактозидазы с этого процесса начинаются все виды брожения молочного сахара.

Брожение моносахаридов

В пищевых технологиях наибольшее значение имеют два основных типа брожения: спиртовое и молочнокислое.

Спиртовое брожение происходит под действием ферментов дрожжей. Суммарное уравнение имеет следующий вид:

C 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

Элементарный состав углеводов: углерод, водород и кислород, но взаимоотношения между этими элементами в жирах и углеводах значительно разнятся: жир содержит углерода 6,5%, водорода 12%, кислорода 11,5%, углеводы - соответственно 44,5%, 6,2%, 49,3%.

Углеводы разделяются на три категории: моносахариды, дисахариды и полисахариды.

Биологическая роль углеводов
1. Углеводы являются хорошим энергетическим материалом.
2. Они входят в состав некоторых тканей и жидкостей организма.
3. Они противодействуют накоплению кетоновых тел при окислении жиров.
4. Придают пище ощущение сладкого вкуса, тонизируют центральную .
5. Обладают биологической активностью (гепарин предотвращают свертывание крови в сосудах, шалуроновая кислота препятствует проникновению бактерий через клеточную оболочку).
6. Играют роль в защитных реакциях (особенно в печени) - глюкуроновая кислота соединяется с токсическими веществами, образуя сложные нетоксичные эфиры, растворимые в воде, которые затем удаляются из с мочой.

К простым углеводам относятся моносахариды (глюкоза, фруктоза) и дисахариды (сахароза, лактоза, мальтоза).

К сложным углеводам относятся полисахариды (крахмал, гликоген, пектиновые вещества, клетчатка).

Биологическая роль моносахаридов
Глюкоза - структурная важнейшая единица. Она участвует в образовании гликогена, питании тканей мозга, работающих мышц и особенно сердечной. Глюкоза легко превращается в жиры в организме, особенно при ее избыточном поступлении с пищей.

Источники глюкозы - фрукты, ягоды и некоторые овощи. Пчелиный мед содержит 37%.

Фруктоза обладает теми же свойствами, что и глюкоза, но она медленнее усваивается в кишечнике и, поступая в кровь, быстро ее покидает.

Биологическая роль дисахаридов
Сахароза в желудочно-кишечном тракте распадается на глюкозу и фруктозу. Сахароза - наиболее распространенный сахар. Источники сахарозы - сахарная свекла (14-18%), сахарный тростник (10-15%).

Сахароза обладает способностью превращаться в жир. Избыточное поступление этого углевода в рационе вызывает нарушение жирового и холестеринового обменов, оказывает отрицательно влияние на состояние и функцию кишечной микрофлоры, повышая удельный вес гнилостной микрофлоры, усиливая интенсивности гнилостных процессов в кишечнике, ведет к развитию метеоризма.

Лактоза - углевод животного происхождения. При гидролизе расщепляется на глюкозу и галактозу. Поступление лактозы в организм способствует развитию молочно-кислых бактерий, подавляющих развитие гнилостных микроорганизмов. Источник лактозы - молоко и молочные продукты.

Биологическая роль полисахаридов
Крахмал - на его долю в рационе приходится около 80%. Крахмал в организме человека является основным источником глюкозы.

Гликоген является резервным углеводом животных тканей, образуя депо углеводов в печени. Общее содержание гликогена около 500г. Если углеводы с пищей не поступают, то запасы его исчеркиваются через 12-18 часов. Обеднение печени гликогеном ведет к возникновению жировой инфильтрации, а далее к жировой дистрофии печени.

Источники гликогена - печень, мясо, рыба.

Клетчатка (целлюлоза) - образует оболочки клеток и является опорным веществом. Она стимулирует перистальтику кишечника, играет роль адсорбента стеринов, в том числе холестерина. Она препятствует обратному их всасыванию и способствует выведению их из организма. Клетчатка играет роль в нормализации состава микрофлоры кишечника, в уменьшении гнилостных процессов, препятствует всасыванию ядовитых веществ.

Потребность углеводов в среднем 400-500 г в сутки, что составляет по отношению к белкам и жирам 1:1:4 (для детей) и 1:1.25:25,5 (для взрослых).

Неумеренное потребление сахара способствует развитию кариеса, нарушению возбудительных и тормозных процессов ЦНС, поддерживает воспалительные процессы, способствует аллергизации организма.

Ограничение углеводов при заболеваниях:
- сахарном диабете;
- ожирении;
- аллергиях, заболеваниях кожи;
- воспалительных процессах.

Введение

углеводы гликолипиды биологический

Углеводы - обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. Углеводы выполняют не только питательную функцию в живых организмах, они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ.

Актуальность

В настоящее время данная тема актуальна, потому что углеводы необходимы организму, так как входят в состав его тканей и выполняют важные функции: - являются главным поставщиком энергии для всех процессов в организме (они могут расщепляться и давать энергию даже в отсутствии кислорода); - необходимы для рационального использования белков (белки при дефиците Углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций); - тесно связаны с обменом жиров (если вы употребляете слишком много Углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается); - особенно необходимы мозгу для нормальной жизнедеятельности (если мышечные ткани могут накапливать энергию в виде жировых отложений, то мозг не может так делать, он всецело зависит от регулярного поступления в организм углеводов); - являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот и т.д.

Понятие и классификация углеводов

Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

·моносахариды или простые сахара;

·олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).

·полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются, прежде всего, альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками в-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами в-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию, как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO2 и Н2O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит фермент птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.

Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки углеводов

Гликопротеины - это белки, содержащие олигосахаридные (гликановые) цепи, ковалентно присоединенные к полипептидной основе. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара (глюкоза-мин или галактозамин в сульфированном или несульфированном виде) и уроновую кислоту (глюкуро-новую или идуроновую). Раньше гликозаминогликаны называли мукополисахаридами. Они обычно ковалентно связаны с белком; комплекс одного или более гликозаминогликанов с белком носит название протеогликана. Гликоконъюгаты и сложные углеводы-эквивалентные термины, обозначающие молекулы, которые содержат углеводные цепи (одну или более), ковалентно связанные с белком или липидом. К этому классу соединений относятся гликопротеины, протеогликаны и гликолипиды.

Биомедицинское значение

Почти все белки плазмы человека, кроме альбумина, представляют собой гликопротеины. Многие белки клеточных мембран содержат значительные количества углеводов. Вещества групп крови в ряде случаев оказываются гликопротеинами, иногда в этой роли выступают гликосфинголипиды. Некоторые гормоны (например, хорионический гонадотропин) имеют гликопротеиновую природу. В последнее время рак все чаще характеризуется как результат аномальной генной регуляции. Главная проблема онкологических заболеваний, метастазы, - феномен, при котором раковые клетки покидают место своего происхождения (например, молочную железу), переносятся с кровотоком в отдаленные части тела (например, в мозг) и неограниченно растут с катастрофическими последствиями для больного. Многие онкологи полагают, что метастазирование, по крайней мере частично, обусловлено изменениями в структуре гликоконъюгатов на поверности раковых клеток. В основе целого ряда заболевений (мукополисахаридозы) лежит недостаточная активность различных лизосомных ферментов, разрушающих отдельные гликоза-миногликаны; в результате один или несколько из них накапливаются в тканях, вызывая различные патологические признаки и симптомы. Одним из примеров таких состояний является синдром Хурлера.

Распространение и функции

Гликопротеины имеются у большинства организмов - от бактерий до человека. Многие вирусы животных также содержат гликопротеины, некоторые из этих вирусов интенсивно изучались, отчасти в силу удобства их использования для исследований.

Гликопротеины-это многочисленная группа белков с разнообразными функциями содержание в них углеводов варьирует от 1 до 85% и более (в единицах массы). Роль олигосахаридных цепей в функции гликопротеинов до сих пор точно не определена, несмотря на интенсивное изучение этого вопроса

Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды в отличие от фосфолипидов не содержат остатков ортофосфорной кислоты. В их молекулах к диацилглицерину гликозидной связью присоединяются остатки галактозы или сульфоглюкозы

Наследственные нарушения обмена моносахаридов и дисахаридов

Галактоземия - наследственная патология обмена веществ, обусловленная недостаточностью активности ферментов, принимающих участие в метаболизме галактозы. Неспособность организма утилизировать галактозу приводит к тяжелым поражениям пищеварительной, зрительной и нервной системы детей в самом раннем возрасте. В педиатрии и генетике галактоземия относится к редким генетическим заболеваниям, встречающимся с частотой один случай на 10 000 - 50 000 новорожденных. Впервые клиника галактоземии была описана в 1908 году уребенка, страдавшего сильным истощением, гепато- и спленомегалией, галактозурией; при этом заболевание исчезло сразу после отмены молочного питания. Позднее, в 1956 г. ученый Герман Келкер определил, что в основе заболевания лежит нарушение метаболизма галактозы. Причины болезни Галактоземия является врожденной патологией, наследуемой по аутосомно-рецессивному типу, т. е. заболевание проявляется только в том случае, если ребенок наследует две копии дефектного гена от каждого из родителей. Лица, гетерозиготные по мутантному гену, являются носителями заболевания, однако у них тоже могут развиваться отдельные признаки галактоземии в легкой степени. Превращение галактозы в глюкозу (метаболический путь Лелуара) происходит при участии 3-х ферментов: галактоза-1-фосфатуридилтрансферазы (GALT), галактокиназы (GALK) и уридиндифосфат-галактозо-4-эпимеразы (GALE). В соответствии с дефицитом этих ферментов различают 1 (классический вариант), 2 и 3 тип галактоземии.Выделение трех типов галактоземии не совпадает с порядком действия ферментов в процессе метаболического пути Лелуара. Галактоза поступает в организм с пищей, а также образуется в кишечнике в процессе гидролиза дисахарида лактозы. Путь метаболизма галактозы начинается с ее превращения под действием фермента GALK в галактозо-1-фосфат. Затем при участии фермента GALT галактозо-1-фосфат преобразуется в УДФ-галактозу (уридилдифосфогалактозу). После этого с помощью GALE метаболит превращается в УДФ - глюкозу (уридилдифосфоглюкозу).При недостаточности одного из названных ферментов (GALK, GALT или GALE) концентрация галактозы в крови значительно повышается, в организме накапливаются промежуточные метаболиты галактозы, которые вызывают токсическое поражение различных органов: ЦНС, печени, почек, селезенки, кишечника, глаз и др. Нарушение метаболизма галактозы и составляет суть галактоземии. Наиболее часто в клинической практике встречается классический (1 тип) галактоземии, обусловленный дефектом фермента GALT и нарушением его активности. Ген, кодирующий синтез галактоза-1-фосфатуридилтрансферазы, находится воколоцентромерном участке 2-ой хромосомы. По тяжести клинического течения выделяют тяжелую, среднюю и легкую степени галактоземии. Первые клинические признаки галактоземии тяжелой степени развиваются очень рано, в первые дни жизни ребенка. Вскоре после кормления новорожденного грудным молоком или молочной смесью возникает рвота и расстройство стула (водянистый понос), нарастает интоксикация. Ребенок становится вялым, отказывается от груди или бутылочки; у него быстро прогрессируют гипотрофия и кахексия. Ребенка могут беспокоить метеоризм, кишечные колики, обильное отхождение газов.В процессе обследования ребенка с галактоземией неонатологом выявляется угасание рефлексов периода новорожденности. При галактоземии рано появляется стойкая желтуха различной степени выраженности и гепатомегалия, прогрессирует печеночная недостаточность. К 2-3 месяцу жизни возникают спленомегалия, цирроз печени, асцит. Нарушения процессов свертывания крови приводит к появлению кровоизлияний на коже и слизистых оболочках. Дети рано начинают отставать в психомоторном развитии, однако степень интеллектуальных нарушений при галактоземии не достигает такой тяжести, как при фенилкетонурии. К 1-2 месяцам у детей с галактоземией выявляется двусторонняя катаракта. Поражение почек при галактоземии сопровождается глюкозурией, протеинурией, гипераминоацидурией. В терминальной фазе галактоземии ребенок погибает от глубокого истощения, тяжелой печеночной недостаточности и наслоения вторичных инфекций. При галактоземии средней тяжести также отмечается рвота, желтуха, анемия, отставание в психомоторном развитии, гепатомегалия, катаракта, гипотрофия. Галактоземия легкой степени характеризуется отказом от груди, рвотой после приема молока, задержкой речевого развития, отставанием ребенка в массе и росте. Однако даже при легком течении галактоземии продукты обмена галактозы токсическим образом воздействуют на печень, приводя к ее хроническим заболеваниям.

Фруктоземия

Фруктоземия - это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех фруктах, ягодах и некоторых овощах, а также в мёде). При фруктоземии в организме человека мало или практически нет ферментов(энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в ращеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть заболевание). Мальчики и девочки болеют одинаково часто.

Причины болезни

В печени имеется недостаточное количество специального фермента (фруктозо-1-фосфат-альдолазы), который преобразовывает фруктозу. В результате продукты обмена (фруктозо-1-фосфат) накапливаются в организме (печени, почках, слизистых оболочках кишечника) и оказывают повреждающее действие. При этом установлено, что фруктозо-1-фосфат никогда не откладывается в клетках мозга и хрусталике глаза. Симптомы заболевания проявляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также мёда. Тяжесть проявления зависит от количества употребления продуктов.

Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) - развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: Дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); Потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека).

Заключение


Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.


Литература


1. Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2009. - 768 с.

2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

3. П.А. Верболович «Практикум по органической, физической, коллоидной и биологической химии».

4. Ленинджер А. Основы биохимии // М.: Мир, 1985

5. Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

6. Детские болезни (том 2) - Шабалов Н.П. - учебник, Питер, 2011

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Наибольшим по массе компонентом питания являются углеводы. Углеводы в питании человека играют очень важную роль, так как они несут организму энергию для обслуживания всех процессов жизнедеятельности. Однако углеводы полезны только при нормированном поступлении в организм. Переизбыток углеводов ведет к ожирению и возникновению заболеваний.

Виды углеводов.
Углеводы бывают простыми (моно- и дисахариды) и сложными (полисахариды).

1. Моносахариды. Простейшие моносахариды — это фруктоза и глюкоза, которые отличаются друг от друга расположением атомов в молекуле. При соединении эти вещества образуют сахар. Сладкие на вкус простые углеводы легко растворяются в воде. Сахар — это основной поставщик энергии, поэтому его употребление нельзя ставить под запрет. Однако злоупотребление сахаром может отрицательно сказаться на здоровье. Норма потребления сахара составляет в сутки 50-100 г в зависимости от веса человека.

Глюкоза с помощью инсулина быстро усваивается и поступает в кровь. Для усвоения фруктозы инсулин не требуется, поэтому она легче переносится больными диабетом. Всасывается она медленно.

2. Дисахариды. Являются наиболее ценными углеводами. Усваиваются дольше моносахаридов. Их виды:
сахароза состоит из глюкозы и фруктозы. Типичный образец сахарозы — тростниковый или свекловичный сахар;
мальтоза состоит из двух фрагментов глюкозы, находится в крахмале и гликогене;
лактоза, или молочный сахар, состоит из галактозы и глюкозы. Присутствует в молоке.

3. Полисахариды , или сложные углеводы. Виды полисахаридов:
Усваиваемые полисахариды. К ним относится гликоген и крахмал Гликоген построен из остатков глюкозы. Часть глюкозы в процессе пищеварения откладывается в печени в качестве запаса и для питания мышц и нервной системы. Крахмал — это цепочки, состоящие из сотен молекул глюкозы. Крахмалы не могут растворяться в воде.
Сложные углеводы усваиваются дольше простых.

Неусваиваемые полисахариды. К неусваиваемым углеводам относится , пектиновые вещества, гемицеллюлоза, слизи, камеди и лигнин. Эти вещества необходимы для очищения кишечника, выведения токсинов и бактериальных колоний, уменьшения количества холестерина, улучшения работы пищеварительного тракта.

Хотя эти пищевые волокна очень важны для организма, их переизбыток приводит к неполному перевариванию пищи, повышенному газообразованию, болям в животе, нарушению усвоения кальция, других минеральных веществ и жирорастворимых витаминов в кишечнике.

Углеводы в продуктах питания.

Больше всего углеводов содержится в продуктах растительного происхождения. Из животных продуктов углеводы содержатся только в молоке. В нем находится лактоза, содержащая галактозу.
глюкозу и фруктозу можно получить из меда, фруктов, ягод, зеленых частей растения;
крахмал содержится в картофеле, крупах и бобовых;
гемицеллюлоза имеется в скорлупе семечек, оболочках зерен;
пищевые волокна есть во всех злаковых, фруктах и овощах.

Углеводы в питании человека: норма.

Точное количество углеводов зависит от веса человека и его физической активности. Суточная норма углеводов находится в пределах 350-500 г. Повышенные нагрузки физического или умственного плана требуют увеличенных энергозатрат. В таком случае норма углеводов может увеличиваться до 700 г.

Недостаток глюкозы. Недополучение организмом глюкозы приводит к появлению вялости, головной боли, сонливости, головокружению, чувству голода, потливости, дрожанию рук. Минимальное количество углеводов в сутки — 50-60 г. При меньшей дозе начинают развиваться нарушения обменных процессов.

Избыток глюкозы. При потреблении большого количества углеводов, которые не распадаются на глюкозу или гликоген, начинается процесс образования жира. Если это продолжается на протяжении длительного времени, то процесс может привести к ожирению, нарушению обменных процессов и другим заболеваниям.

Рациональное питание – это питание, при котором лишь чуть больше трети углеводов превращаются в жиры. При преобладании в питании легкоусвояемых углеводов в жиры переходит большее количество углеводов. Если же при этом не хватает пищевых волокон, то поджелудочная железа будет перегружена, а затем и истощена. Ведь именно она производит инсулин для усвоения глюкозы. Все это может стать причиной появления сахарного диабета.

Избыток углеводов приводит к нарушению жирового обмена, атеросклерозу, ухудшению состояния клеток кровеносных сосудов, склеиванию тромбоцитов и тромбозам.

Советует обратить внимание на количество углеводов в рационе. Лучше отдавать предпочтение сложным углеводам, которые находятся в крупах, бобовых и овощах. Кроме этого фрукты и овощи желательно употреблять в необработанном свежем виде.



Новое на сайте

>

Самое популярное