Домой Питание Нервная и эндокринная система организма. Взаимосвязь нервной и эндокринной систем

Нервная и эндокринная система организма. Взаимосвязь нервной и эндокринной систем

Нервная система, посылая свои эфферентные импульсы по нервным волокнам прямо к иннервируемому органу, вызывает направленные локальные реакции, которые быстро наступают и столь же быстро прекращаются.

Гормональным дистантным влияниям принадлежит преимущественная роль в регуляции таких общих функций организма, как обмен веществ, соматический рост, репродуктивные функции. Совместное участие нервной и эндокринной систем в обеспечении регуляции и координации функций организма определяется тем, что регуляторные влияния, оказываемые как нервной, так и эндокринной системами, реализуются принципиально одинаковыми механизмами.

Вместе с тем все нервные клетки проявляют способность синтезировать белковые вещества, о чем свидетельствуют сильное развитие гранулярной эндоплазматической сети и обилие рибонуклеопротеидов в их перикарионах. Аксоны таких нейронов, как правило, заканчиваются на капиллярах, и синтезированные продукты, аккумулировавшиеся в терминалях, выделяются в кровь, с током которой разносятся по организму и оказывают в отличие от медиаторов не локальное, а дистантное регулирующее действие подобно гормонам эндокринных желез. Такие нервные клетки получили наименование нейросекреторных, а вырабатываемые и выделяемые ими продукты – нейрогормонов. Нейросекреторные клетки, воспринимая, как всякий нейроцит, афферентные сигналы от других отделов нервной системы, посылают свои эфферентные импульсы через кровь, т. е. гуморально (как эндокринные клетки). Поэтому нейросекреторные клетки, занимая в физиологическом отношении промежуточное положение между нервными и эндокринными, объединяют нервную и эндокринную системы в единую нейроэндокринную систему и таким образом выступают в роли нейроэндокринных трансмиттеров (переключателей).

В последние годы было установлено, что в составе нервной системы имеются пептидергические нейроны, которые, помимо медиаторов, выделяют и ряд гормонов, способных модулировать секреторную деятельность эндокринных желез. Поэтому, как уже отмечалось выше, нервная и эндокринная системы выступают как единая регулирующая нейроэндокринная система.

Классификация эндокринных желез

В начале развития эндокринологии как науки железы внутренней секреции пытались группировать по их происхождению из того или иного эмбрионального зачатка зародышевых листков. Однако дальнейшее расширение знаний о роли эндокринных функций в организме показало, что общность или близость эмбриональных закладок совершенно не предрешает совместного участия желез, развивающихся из таких зачатков, в регуляции функций организма.

Согласно современным представлениям, в эндокринной системе выделяют следующие группы желез внутренней секреции: нейроэндокринные трансмиттеры (секреторные ядра гипоталамуса, эпифиз), которые с помощью своих гормонов переключают информацию, поступающую в центральную нервную систему, на центральное звено регуляции аденогипофиззависимых желез (аденогипофиз) и нейрогемальный орган (задняя доля гипофиза, или нейрогипофиз). Аденогипофиз благодаря гормонам гипоталамуса (либеринам и статинам) выделяет адекватное количество тропных гормонов, которые стимулируют функцию аденогипофиззависимых желез (коры надпочечников, щитовидной и половой желез). Взаимоотношения аденогипофиза и зависимых от него желез внутренней секреции осуществляются по принципу обратной связи (или плюс-минус). Нейрогемальный орган собственных гормонов не продуцирует, но накапливает гормоны крупноклеточных ядер гипоталамуса (окситоцин, АДГ-вазопрессин), затем выделяет их в кровяное русло и таким образом регулирует деятельность так называемых органов-мишеней (матки, почек). В функциональном отношении нейросекреторные ядра, эпифиз, аденогипофиз и нейрогемальный орган составляют центральное звено эндокринной системы, тогда как эндокринные клетки неэндокринных органов (пищеварительной системы, воздухоносных путей и легких, почек и мочеотводящих путей, вилочковой железы), аденогипофиззависимые железы (щитовидная железа, кора надпочечников, половые железы) и аденогипофизнезависимые железы (околощитовидные железы, мозговое вещество надпочечников) являются периферическими железами внутренней секреции (или железами-мишенями).



Суммируя все выше сказанное, можно сказать, что эндокринная система представлена следующими основными структурными компонентами.

1. Центральные регуляторные образования эндокринной системы:

1) гипоталамус (нейросекреторные ядра);

2) гипофиз;

3) эпифиз.

2. Периферические эндокринные железы:

1) щитовидная железа;

2) околощитовидные железы;

3) надпочечники:

а) корковое вещество;

б) мозговое вещество надпочечников.

3. Органы, объединяющие эндокринные и неэндокринные функции:

1) гонады:

а) семенник;

б) яичник;

2) плацента;

3) поджелудочная железа.

4. Одиночные гормонопродуцирующие клетки:

1) нейроэндокринные клетки группы ПОДПА (APUD) (нервного происхождения);

2) одиночные гормонопродуцирующие клетки (не нервного происхождения).

Что нужно знать о том, как устроена и работает эндокринная система наших малышей? Нервная и эндокринная система организма - очень важные элементы.

1 97176

Фотогалерея: Нервная и эндокринная система организма

Наш организм можно сравнить с мегаполисом. Клетки, его населяющие, иногда живут «семьями», образуя органы, а иногда, затерявшись среди других, отшельничают (как, например, клетки иммунной системы). Одни - домоседы и никогда не покидают своего пристанища, другие - путешественники и не сидят на одном месте. Все они разные, каждая со своими потребностями, характером и режимом. Между клетками проходят мелкие и крупные транспортные магистрали - кровеносные и лимфатические сосуды. Ежесекундно в нашем организме происходят миллионы событий: кто-то или что-то нарушает мирную жизнь клеток или некоторые из них забывают о своих обязанностях или, напротив, слишком усердствуют. И, как в любом мегаполисе, для поддержания порядка здесь требуется грамотная администрация. Мы знаем, что наш главный управляющий - нервная система. А ее правой рукой является эндокринная система (ЭС).

По порядку

ЭС - одна из самых сложных и загадочных систем организма. Сложных потому, что она состоит из множества желез, каждая из которых может вырабатывать от одного до десятков разных гормонов, и регулирует работу огромного числа органов, в том числе самих эндокринных желез. Внутри системы существует особая иерархия, позволяющая строго контролировать ее работу. Загадочность ЭС связана со сложностью механизмов регуляции и состава гормонов. Чтобы исследовать ее работу, требуются сверхсовременные технологии. Роль многих гормонов до сих пор неясна. А о существовании некоторых мы только догадываемся, притом, что определить их состав и клетки, их выделяющие, пока невозможно. Именно поэтому эндокринологию - науку, изучающую гормоны и органы, которые их вырабатывают, - считают одной из самых сложных среди медицинских специальностей и самой перспективной. Поняв точное предназначение и механизмы работы тех или иных веществ, мы сможем воздействовать на процессы, протекающие в нашем организме. Ведь благодаря гормонам мы появляемся на свет, именно они создают чувство притяжения между будущими родителями, определяют время образования половых клеток и момент оплодотворения. Они меняют нашу жизнь, влияя на настроение и характер. Сегодня мы знаем, что процессы старения тоже находятся в ведении ЭС.

Действующие лица...

Органы, которые составляют ЭС (щитовидная железа, надпочечники и др.), - это группы клеток, расположенные в других органах или тканях, и отдельные клетки, разбросанные по разным местам. Отличие эндокринных желез от других (их называют экзокринными) заключается в том, что первые выделяют свои продукты - гормоны - прямо в кровь или лимфу. За это их называют железами внутренней секреции. А экзокринные - в просвет того или иного органа (так, самая крупная экзокринная железа - печень - выделяет свой секрет - желчь - в просвет желчного пузыря и дальше в кишечник) или наружу (пример - слезные железы). Экзокринные железы называют железами внешней секреции. Гормоны - это вещества, способные воздействовать на чувствительные к ним клетки (их называют клетками-мишенями), меняя скорость обменных процессов. Выделение гормонов непосредственно в кровь дает ЭС огромное преимущество. Для достижения эффекта ей требуются считанные секунды. Гормоны попадают прямо в кровоток, который служит транспортом и позволяет очень быстро доставить нужное вещество ко всем тканям, в отличие от нервного сигнала, который распространяется по нервным волокнам и из-за их разрыва или повреждения может не достичь своей цели. В случае с гормонами такого не случится: жидкая кровь легко находит обходные пути, если один или несколько сосудов заблокированы. Чтобы органы и клетки, которым предназначено послание ЭС, его получили, на них расположены рецепторы, воспринимающие конкретный гормон. Особенностью работы эндокринной системы является ее способность «чувствовать» концентрацию разных гормонов и корректировать ее. А их количество зависит от возраста, пола, времени суток и года, возраста, психического и физического состояния человека и даже наших привычек. Так ЭС задает ритм и скорость нашим обменным процессам.

...и исполнители

Гипофиз - главный эндокринный орган. Он выделяет гормоны, стимулирующие или тормозящие работу остальных. Но гипофиз не является вершиной ЭС, он лишь исполняет роль управляющего. Гипоталамус - вышестоящая инстанция. Это отдел мозга, состоящий из скоплений клеток, объединяющих свойства нервных и эндокринных. Они выделяют вещества, регулирующие работу гипофиза и эндокринных желез. Под руководством гипоталамуса гипофиз вырабатывает гормоны, влияющие на чувствительные к ним ткани. Так, тиреотропный гормон регулирует работу щитовидной железы, кортикотропный - работу коры надпочечников. Соматотропный гормон (или гормон роста) не влияет на какой-то конкретный орган. Его действие распространяется на множество тканей и органов. Такая разница в действии гормонов вызвана разницей в их значимости для организма и количеством задач, которые они обеспечивают. Особенностью работы этой сложной системы является принцип обратной связи. ЭС можно без преувеличения назвать самой демократичной. И, хотя в ней есть «руководящие» органы (гипоталамус и гипофиз), подчиненные тоже влияют на работу вышестоящих желез. В гипоталамусе, гипофизе имеются рецепторы, реагирующие на концентрацию разных гормонов в крови. Если она высока, сигналы от рецепторов заблокируют их выработку" на всех уровнях. Это и есть принцип обратной связи в действии. Щитовидная железа свое название получила за форму. Она закрывает шею, окружая трахею. В состав ее гормонов входит йод, и его нехватка может приводить к нарушениям в работе органа. Гормоны железы обеспечивают баланс между образованием жировой ткани и использованием запасенных в ней жиров. Они нужны для развития скелета и благополучия костной ткани, а еще усиливают действие других гормонов (например, инсулина, ускоряя обмен углеводов). Эти вещества играют критическую роль в развитии нервной системы. Нехватка гормонов железы у малышей приводит к недоразвитию мозга, а позже - к снижению интеллекта. Поэтому у всех новорожденных обследуют на уровень содержания этих веществ (такой тест включен в программу скрининга новорожденных). Вместе с адреналином гормоны щитовидной железы влияют на работу сердца и регулируют артериальное давление.

Паращитовидные железы

Паращитовидные железы - это 4 железы, расположенные в толще жировой клетчатки позади щитовидной, за что и получили свое название. Железы вырабатывают 2 гормона: паратиреоидный и кальцитонин. Оба обеспечивают обмен кальция и фосфора в организме. В отличие от большинства эндокринных желез работу паращитовидных регулируют колебания минерального состава крови и витамина D. Поджелудочная железа контролирует обмен углеводов в организме, а еще участвует в пищеварении и вырабатывает ферменты, обеспечивающие расщепление белков, жиров и углеводов. Поэтому она располагается в области перехода желудка в тонкий кишечник. Железа выделяет 2 гормона: инсулин и глюкагон. Первый снижает уровень сахара в крови, заставляя клетки активнее поглощать его и использовать. Второй, напротив, увеличивает количество сахара, заставляя клетки печени и мышечной ткани отдавать его. Самая распространенная болезнь, связанная с нарушениями в работе поджелудочной железы, - сахарный диабет 1 -го типа (или инсулинозависимый). Она развивается из-за разрушения клеток, вырабатывающих инсулин, клетками иммунной системы. У большинства малышей, больных сахарным диабетом, имеются особенности генома, которые, вероятно, предопределяют развитие болезни. Но запускает ее чаще всего инфекция или перенесенный стресс. Надпочечники получили свое название за расположение. Человек не может жить без надпочечников и производимых ими гормонов, и эти органы относят к жизненно важным. В программу обследования всех новорожденных включен тест на нарушение их работы - настолько опасными будут последствия таких проблем. Надпочечники вырабатывают рекордное число гормонов. Самый известный из них - адреналин. Он помогает организму подготовиться и справиться с возможными опасностями. Этот гормон заставляет сердце биться быстрее и перекачивать больше крови к органам движения (если нужно спасаться бегством), увеличивает частоту дыхания, чтобы обеспечить организм кислородом, снижает чувствительность к боли. Он повышает давление, обеспечивая максимальный приток крови к мозгу и другим важным органам. Схожим действием обладает и норадреналин. Второй по важности гормон надпочечников - кортизол. Сложно назвать какой-нибудь процесс в организме, на который он не оказывал бы влияния. Он заставляет ткани выделять запасенные вещества в кровь, чтобы все клетки были обеспечены питательными веществами. Роль кортизола возрастает при воспалении. Он стимулирует выработку защитных веществ и работу клеток иммунной системы, необходимых для борьбы с воспалением, а если последние слишком активны (в т.ч. против собственных клеток), кортизол подавляет их усердие. При стрессах он блокирует деление клеток, чтобы организм не тратил силы на эту работу, а занятая наведением порядка иммунная система не пропустила бы «бракованные» образцы. Гормон альдостерон регулирует концентрацию в организме основных минеральных солей - натрия и калия. Половые железы - яички у мальчиков и яичники у девочек. Гормоны, которые они вырабатывают, способны менять обменные процессы. Так, тестостерон (главный мужской гормон) помогает росту мышечной ткани, костной системы. Он усиливает аппетит и делает мальчиков более агрессивными. И, хотя тестостерон считают мужским гормоном, он выделяется и у женщин, но в меньшей концентрации.

К врачу!

Чаще всего на прием к детскому эндокринологу приходят дети, имеющие лишний вес, и те малыши, что серьезно отстают от сверстников в росте. Родители скорее обращают внимание на то, что ребенок выделяется среди ровесников, и начинают выяснять причину. Большинство других эндокринных болезней не имеет характерных признаков, и о проблеме родители и доктора часто узнают, когда нарушение уже серьезно изменило работу какого-то органа или всего организма. Приглядитесь к малышу: телосложение. У маленьких детей голова и туловище относительно общей длины тела будут больше. С 9-10 лет ребенок начинает вытягиваться, и пропорции его тела приближаются к взрослым.

Нервная система управляет быстроменяющимися процессами в организме путем непосредственной активации мышц и желез. Эндокринная система действует медленнее и косвенно влияет на работу групп клеток всего организма посредством веществ, называемых гормонами. Гормоны выделяются в кровоток различными эндокринными железами и переносятся в другие части тела, где они оказывают специфические эффекты на клетки, распознающие их послания (рис. 2.18). Затем они проходят по всему телу, по-разному воздействуя на различные типы клеток. Каждая принимающая клетка имеет рецепторы, распознающие молекулы только тех гормонов, которым положено воздействовать на данную клетку; рецепторы захватывают из кровотока нужные молекулы гормонов и переносят их в клетку. Некоторые эндокринные железы активируются нервной системой, а некоторые - изменениями химического состояния внутри организма.

Рис. 2.18.

Гормоны, выделяемые эндокринными железами, не менее важны для согласованной работы организма, чем нервная система. Однако эндокринная система отличается от нервной по скорости действия. Нервные импульсы проходят по организму за несколько сотых долей секунды. Эндокринной железе требуются секунды и даже минуты, чтобы оказать эффект; после того как гормон выделен, он должен по кровотоку достичь нужного места, - а это намного более медленный процесс.

Одна из основных эндокринных желез - гипофиз - частично является отростком мозга и расположена как раз под гипоталамусом (см. рис. 2.11). Гипофиз называют «главной железой», потому что он производит больше всего различных гормонов и управляет секрецией других эндокринных желез. Одному из гормонов гипофиза принадлежит решающая роль в контроле за ростом организма. Если этого гормона слишком мало, может сформироваться карлик, если его секреция слишком высока - гигант. Некоторые продуцируемые гипофизом гормоны запускают в действие другие эндокринные железы, такие как щитовидная железа, половые железы и кора надпочечника. Ухаживание, спаривание и репродуктивное поведение многих животных основывается на сложном взаимодействии между деятельностью нервной системы и влиянием гипофиза на половые железы.

Нижеследующий пример взаимосвязи гипофиза и гипоталамуса показывает, насколько сложным является взаимодействие эндокринной и нервной систем. При возникновении стресса (страх, беспокойство, боль, эмоциональные переживания и т. д.) некоторые нейроны гипоталамуса начинают выделять вещество, называемое рилизинг-фактором кортикотропина (РФК). Гипофиз находится как раз под гипоталамусом, и РФК доставляется туда через структуру, напоминающую канал. РФК заставляет гипофиз выделять адренокортикотропный гормон (АКТГ), являющийся в организме основным стрессовым гормоном. В свою очередь АКТГ вместе с кровью попадает в надпочечные железы и другие органы тела, приводя к выделению около 30 различных гормонов, каждый из которых играет свою роль в приспособлении организма к стрессовой ситуации. Из этой последовательности событий видно, что на эндокринную систему влияет гипоталамус, а через гипоталамус на нее воздействуют другие мозговые центры.

Надпочечные железы в значительной степени определяют настроение человека, его энергию и способность справляться со стрессом. Внутренняя кора надпочечной железы выделяет эпинефрин и норэпинефрин (известные также как адреналин и норадреналин). Эпинефрин, часто совместно с симпатическим отделом автономной нервной системы, оказывает ряд воздействий, необходимых для подготовки организма к экстренной ситуации. Например, на гладкую мускулатуру и потовые железы он оказывает действие, сходное с действием симпатической системы. Эпинефрин вызывает сужение кровеносных сосудов желудка и кишечника и учащает биения сердца (это хорошо знают те, кому хотя бы раз делали укол адреналина).

Норэпинефрин тоже готовит организм к экстренным действиям. Когда, путешествуя вместе с кровотоком, он достигает гипофиза, последний начинает выделять гормон, воздействующий на кору надпочечника; этот второй гормон в свою очередь стимулирует печень, чтобы повысить уровень сахара в крови и создать у организма запас энергии для быстрых действий.

Функции гормонов, вырабатываемых эндокринной системой, сходны с функциями медиаторов, выделяемых нейронами: и те и другие переносят сообщения между клетками организма. Действие медиатора сильно локализовано, поскольку он передает сообщения между соседними нейронами. Гормоны, наоборот, проходят по организму большой путь и по-разному воздействуют на различные типы клеток. Между этими «химическими посыльными» есть важное сходство в том, что некоторые из них выполняют обе функции. Например, когда эпинефрин и норэпинефрин выделяются нейронами, они действуют как медиаторы, а когда их вырабатывает надпочечная железа - как гормоны.

Последнее обновление: 30/09/2013

Описание строения и функций нервной и эндокринной системы,принцип работы, их значение и роль в организме.

Тогда как - это строительные блоки для человеческой «системы сообщений», существуют целые сети нейронов, которые передают сигналы между мозгом и телом. Эти организованные сети, включающие в себя более триллиона нейронов, создают так называемую нервную систему. Она состоит из двух частей: центральной нервной системы (головной и спинной мозг) и периферической (нервы и нервные сети по всему телу)

Эндокринная система тоже неотъемлемая часть системы передачи информации по телу. Эта система использует расположенные по всему телу железы, которые регулируют множество процессов, таких как обмен веществ, пищеварение, кровяное давление и рост. Хотя эндокринная система не связана напрямую с нервной, они часто работают совместно.

Центральная нервная система

Центральная нервная система (ЦНС) состоит из головного мозга и спинного. Первичная форма связи в ЦНС - это нейрон. Мозг и спинной мозг жизненно необходимы для функционирования организма, поэтому вокруг них есть ряд защитных барьеров: кости (череп и позвоночник), и мембранные ткани (мозговые оболочки). Кроме того, обе структуры находятся в защищающей их спинномозговой жидкости.

Почему головной мозг и спинной мозг так важны? Стоит думать, что эти структуры - фактический центр нашей «системы сообщений». ЦНС способна обработать все ваши ощущения и обдумать опыт от этих ощущений. Информация о боли, прикосновении, холоде и т. д. собирается рецепторами по всему телу, а затем передается в нервную систему. ЦНС также посылает сигналы в тело для того, чтобы контролировать движения, действия и реакции на внешний мир.

Периферическая нервная система

Периферическая нервная система (ПНС) состоит из нервов, распространяющихся дальше центральной нервной системы. Нервы и нервные сети ПНС на самом деле являются просто пучками аксонов, выходящих из нервных клеток. Размер нервов колеблется от относительно малых, до достаточно больших, которые легко разглядеть даже без увеличительного стекла.

ПНС может быть дополнительно разделена на две разные нервные системы: соматическую и вегетативную .

Соматическая нервная система: передает физические ощущения и команды к движениям и действиям. Эта система состоит из афферентных (чувствительных) нейронов, доставляющих информацию от нервов к головному и спинному мозгу, и эфферентных (иногда часть из них называют двигательными) нейронов, передающих информацию от ЦНС к мышечным тканям.

Вегетативная нервная система: контролирует непроизвольные функции, например сердцебиение, дыхание, пищеварение и кровяное давление. Это система также связана с эмоциональными реакциями, такими как потоотделение и плач. Вегетативная нервная система может быть разделена далее на симпатическую и парасимпатическую системы.

Симпатическая нервная система: Симпатическая нервная система контролирует реакции тела на стресс. Когда эта система работает, дыхание и сердцебиение учащаются, пищеварение замедляется или останавливается, зрачки расширяются и усиливается потоотделение. Эта система отвечает за подготовку тела к опасной ситуации.

Парасимпатическая нервная система : Парасимпатическая нервная система действует в противовес к симпатической системе. Э система помогает «успокоить» тело после критической ситуации. Сердцебиение и дыхание замедляются, пищеварение возобновляется, зрачки сужаются и потоотделение прекращается.

Эндокринная система

Как было замечено ранее, эндокринная система не является частью нервной системы, но все же необходима для передачи информации через тело. Эта система состоит из желез, которые выделяют химические передатчики - гормоны. Они через кровь поступают в особые участки тела, включая органы и ткани организма. Среди самых важных эндокринных желез можно отметить шишковидную железу, гипоталамус, гипофиз, щитовидную железу, яичники и тестикулы. Каждая из этих желез выполняет определенные функции в разных областях тела.

Эндокринную систему образует совокупность (эндокринные железы) и группы эндокринных клеток, рассеянных по разным органам и тканям, которые синтезируют и выделяют в кровь высокоактивные биологические вещества — гормоны (от греч. hormon — привожу в движение), оказывающие стимулирующее или подавляющее влияние на функции организма: обмен веществ и энергии, рост и развитие, репродуктивные функции и адаптацию к условиям существования. Функция эндокринных желез находится под контролем нервной системы.

Эндокринная система человека

— совокупность эндокринных желез, различных органов и тканей, которые в тесном взаимодействии с нервной и иммунной системами осуществляют регуляцию и координацию функций организма посредством секреции физиологически активных веществ, переносимых кровью.

Эндокринные железы () — железы, не имеющие выводных протоков и выделяющие секрет за счет диффузии и экзоцитоза во внутреннюю среду организма (кровь, лимфа).

Железы внутренней секреции не имеют выводных протоков, оплетены многочисленными нервными волокнами и обильной сетью кровеносных и лимфатических капилляров, в которые поступают . Эта особенность принципиально отличает их от желез внешней секреции, которые выделяют свои секреты через выводные протоки на поверхность тела или в полость органа. Имеются железы смешанной секреции, например поджелудочная железа и половые железы.

Эндокринная система включает в себя:

Эндокринные железы :

  • (аденогипофиз и нейрогипофиз);
  • (паращитовидные) железы;

Органы с эндокринной тканью :

  • поджелудочная железа (островки Лангерганса);
  • половые железы (семенники и яичники)

Органы с эндокринными клетками :

  • ЦНС (в особенности — );
  • сердце;
  • легкие;
  • желудочно-кишечный тракт (APUD-система);
  • почка;
  • плацента;
  • тимус
  • предстательная железа

Рис. Эндокринная система

Отличительные свойства гормонов — их высокая биологическая активность, специфичность и дистантность действия. Гормоны циркулируют в чрезвычайно малых концентрациях (нанограммы, пикограммы в 1 мл крови). Так, 1 г адреналина достаточно, чтобы усилить работу 100 млн изолированных сердец лягушек, а 1 г инсулина способен понизить уровень сахара в крови 125 тыс. кроликов. Дефицит одного гормона не может быть полностью заменен другим, а его отсутствие, как правило, приводит к развитию патологии. Поступая в кровяное русло, гормоны могут оказывать влияние на весь организм и на органы и ткани, расположенные вдали от той железы, где они образуются, т.е. гормоны облачают дистантным действием.

Гормоны сравнительно быстро разрушаются в тканях, в частности в печени. По этой причине для поддержания достаточного количества гормонов в крови и обеспечения более длительного и непрерывного действия необходимо постоянное их выделение соответствующей железой.

Гормоны как носители информации, циркулируя в крови, взаимодействуют только с теми органами и тканями, в клетках которых на мембранах, в или ядре есть особые хеморецепторы, способные образовывать комплекс гормон — рецептор. Органы, имеющие рецепторы к определенному гормону, называются органами-мишенями. Например, для гормонов околощитовидной железы органы-мишени — кость, почки и тонкий кишечник; для женских половых гормонов органами-мишенями являются женские половые органы.

Комплекс гормон — рецептор в органах-мишенях запускает серию внутриклеточных процессов, вплоть до активации определенных генов, вследствие чего увеличивается синтез ферментов, повышается или снижается их активность, повышается проницаемость клеток для некоторых веществ.

Классификация гормонов по химическому строению

С химической точки зрения гормоны представляют собой довольно разнообразную группу веществ:

белковые гормоны — состоят из 20 и более аминокислотных остатков. К ним относятся гормоны гипофиза (СТГ, ТТГ, АКТГ, ЛТГ), поджелудочной железы (инсулин и глюкагон) и околощитовидных желез (паратгормон). Некоторые белковые гормоны являются гликопротеинами, например гормоны гипофиза (ФСГ и ЛГ);

пептидные гормоны - содержат в своей основе от 5 до 20 аминокислотных остатков. К ним относятся гормоны гипофиза ( и ), (мелатонин), (тиреокальцитонин). Белковые и пептидные гормоны относятся к полярным веществам, которые не могут проникать через биологические мембраны. Поэтому для их секреции используется механизм экзоцитоза. По этой причине рецепторы белковых и пептидных гормонов встроены в плазматическую мембрану клетки-мишени, а передачу сигнала к внутриклеточным структурам осуществляют вторичные посредники - мессенджеры (рис. 1);

гормоны, производные аминокислот , — катехоламины (адреналин и норадреналин),тиреоидные гормоны (тироксин и трийодтиронин) — производные тирозина; серотонин — производное триптофана; гистамин — производное гистидина;

стероидные гормоны - имеют липидную основу. К ним относятся половые гормоны, кортикостероиды (кортизол, гидрокортизон, альдостерон) и активные метаболиты витамина D. Стероидные гормоны относятся к неполярным веществам, поэтому они свободно проникают через биологические мембраны. Рецепторы к ним расположены внутри клетки-мишени — в цитоплазме или ядре. В этой связи указанные гормоны обладают длительным действием, вызывая изменение процессов транскрипции и трансляции при синтезе белков. Таким же действием обладают гормоны щитовидной железы — тироксин и трийодтиронин (рис. 2).

Рис. 1. Механизм действия гормонов (производные аминокислот, белково-пептидной природы)

а, 6 — два варианта действия гормона на мембранные рецепторы; ФДЭ — фосфодизетераза, ПК-А — протеинкиназа А, ПК-С протеинкиназа С; ДАГ — диацелглицерол; ТФИ — три-фосфоинозитол; Ин — 1,4, 5-Ф-инозитол 1,4, 5-фосфат

Рис. 2. Механизм действия гормонов (стероидной природы и тиреоидных)

И — ингибитор; ГР — гормон-рецептор; Гра — гормон-рецепторный комплекс активированный

Белково-пептидные гормоны обладают видовой специфичностью, а стероидные гормоны и производные аминокислот не имеют видовой специфичности и обычно оказывают однотипное действие на представителей разных видов.

Общие свойства пептидов-регуляторов:

  • Синтезируются повсеместно, в том числе в ЦНС (нейропептиды), ЖКТ (гастроинтестинальные пептиды), легких, сердце (атриопептиды), эндотелии (эндотелины и др.), половой системе (ингибин, релаксин и др.)
  • Имеют короткий период полураспада и после внутривенного введения сохраняются в крови недолго
  • Оказывают преимущественно местное действие
  • Часто оказывают эффект не самостоятельно, а в тесном взаимодействии с медиаторами, гормонами и другими биологически активными веществами (модулирующий эффект пептидов)

Характеристика основных пептидов-регуляторов

  • Пептиды-анальгетики, антиноцицептивная система мозга: эндорфины, энксфалины, дерморфины, киоторфин, казоморфин
  • Пептиды памяти и обучения: вазопрессин, окситоцин, фрагменты кортикотропина и меланотропина
  • Пептиды сна: пептид дельта-сна, фактор Учизоно, фактор Паппенгеймера, фактор Нагасаки
  • Стимуляторы иммунитета: фрагменты интерферона, тафцин, пептиды вилочковой железы, мурамил-дипептиды
  • Стимуляторы пищевого и питьевого поведения, в том числе вещества, подавляющие аппетит (анорексигенные): нейрогензин, динорфин, мозговые аналоги холецистокинина, гастрина, инсулина
  • Модуляторы настроения и чувства комфорта: эндорфины, вазопрессин, меланостатин, тиреолиберин
  • Стимуляторы сексуального поведения: люлиберин, окситоцип, фрагменты кортикотропина
  • Регуляторы температуры тела: бомбезин, эндорфины, вазопрессин, тиреолиберин
  • Регуляторы тонуса поперечно-полосатой мускулатуры: соматостатин, эндорфины
  • Регуляторы тонуса гладкой мускулатуры: церуслин, ксенопсин, физалемин, кассинин
  • Нейромедиаторы и их антагонисты: нейротензин, карнозин, проктолин, субстанция П, ингибитор нейропередачи
  • Противоаллергические пептиды: аналоги кортикотропина, антагонисты брадикинина
  • Стимуляторы роста и выживаемости: глутатион, стимулятор роста клеток

Регуляция функций эндокринных желез осуществляется несколькими способами. Один из них — прямое влияние на клетки железы концентрации в крови того или иного вещества, уровень которого регулирует этот гормон. Например, повышенное содержание глюкозы в крови, протекающей через поджелудочную железу, вызывает повышение секреции инсулина, снижающего уровень сахара в крови. Другим примером может служить угнетение выработки паратгормона (повышающего уровень кальция в крови) при действии на клетки околощитовидных желез повышенных концентраций Са 2+ и стимуляция секреции этого гормона при падении уровня Са 2+ в крови.

Нервная регуляция деятельности желез внутренней секреции в основном осуществляется через гипоталамус и выделяемые им нейрогормоны. Прямых нервных влияний на секреторные клетки эндокринных желез, как правило, не наблюдается (за исключением мозгового вещества надпочечников и эпифиза). Нервные волокна, иннервирующие железу, регулируют в основном тонус кровеносных сосудов и кровоснабжение железы.

Нарушения функции желез внутренней секреции могут быть направлены как в сторону повышения активности (гиперфункция ), так и в сторону понижения активности (гипофункция).

Общая физиология эндокринной системы

— это система передачи информации между различными клетками и тканями организма и регуляции их функций с помощью гормонов. Эндокринная система организма человека представлена эндокринными железами ( , и , ), органами с эндокринной тканью (поджелудочная железа, половые железы) и органами с эндокринной функцией клеток (плацента, слюнные железы, печень, почки, сердце и др.). Особое место в эндокринной системе отводится гипоталамусу, который, с одной стороны, является местом образования гормонов, с другой — обеспечивает взаимодействие между нервным и эндокринным механизмами системной регуляции функций организма.

Железами внутренней секреции, или эндокринными железами, называются такие структуры или образования, которые выделяют секрет непосредственно в межклеточную жидкость, кровь, лимфу и церебральную жидкость. Совокупность эндокринных желез образует эндокринную систему, в которой можно выделить несколько составляющих.

1. Локальная эндокринная система, которая включает в себя классические железы внутренней секреции: гипофиз, надпочечники, эпифиз, щитовидную и паращитовидные железы, островковую часть поджелудочной железы, половые железы, гипоталамус (его секреторные ядра), плаценту (временная железа), вилочковую железу (тимус). Продуктами их деятельности являются гормоны.

2. Диффузная эндокринная система, в состав которой входят железистые клетки, локализующиеся в различных органах и тканях и секретирующие вещества, сходные с гормонами, образующимися в классических эндокринных железах.

3. Система захвата предшественников аминов и их декарбоксилирования, представленная железистыми клетками, вырабатывающими пептиды и биогенные амины (серотонин, гистамин, дофамин и др.). Существует точка зрения, что эта система включает в себя и диффузную эндокринную систему.

Эндокринные железы подразделяются следующим образом:

  • по выраженности их морфологической связи с ЦНС — на центральные (гипоталамус, гипофиз, эпифиз) и периферические (щитовидная, половые железы и др.);
  • по функциональной зависимости от гипофиза, которая реализуется через его тропные гормоны, — на гипофизозависимые и гипофизонезависимые.

Методы оценки состояния функций эндокринной системы у человека

Основными функциями эндокринной системы, отражающими ее роль в организме, принято считать:

  • контроль роста и развития организма, контроль репродуктивной функции и участие в формировании полового поведения;
  • совместно с нервной системой — регуляция обмена веществ, регуляция использования и депонирования энергосубстратов, поддержание гомеостаза организма, формирование адаптивных реакций организма, обеспечение полноценного физического и умственного развития, контроль синтеза, секреции и метаболизма гормонов.
Методы исследования гормональной системы
  • Удаление (экстирпация) железы и описание эффектов операции
  • Введение экстрактов желез
  • Выделение, очистка и идентификация активного начала железы
  • Избирательное подавление секреции гормонов
  • Пересадка эндокринных желез
  • Сравнение состава крови, притекающей и оттекающей от железы
  • Количественное определение гормонов в биологических жидкостях (кровь, моча, спинно-мозговая жидкость и др.):
    • биохимические (хроматография и др.);
    • биологическое тестирование;
    • радиоиммунный анализ (РИА);
    • иммунорадиометрический анализ (ИРМА);
    • радиорецеиторный анализ (РРА);
    • иммунохроматографический анализ (тест-полоски экспресс-диагностики)
  • Введение радиоактивных изотопов и радиоизотопное сканирование
  • Клиническое наблюдение за больными с эндокринной паталогией
  • Ультразвуковое исследование эндокринных желез
  • Компьютерная томография (КТ) и магнитно-резонансная томография (МРТ)
  • Генная инженерия

Клинические методы

Они основаны на данных расспроса (анамнеза) и выявлении внешних признаков нарушения функций эндокринных желез, в том числе и их размеров. Например, объективными признаками нарушения функции ацидофильных клеток гипофиза в детском возрасте являются гипофизарный нанизм — карликовость (рост меньше 120 см) при недостаточном выделении гормона роста или гигантизм (рост больше 2 м) при его избыточном выделении. Важными внешними признаками нарушения функции эндокринной системы могут быть избыточная или недостаточная масса тела, избыточная пигментация кожи или ее отсутствие, характер волосяного покрова, выраженность вторичных половых признаков. Очень важными диагностическими признаками нарушений функции эндокринной системы являются выявляемые при тщательном расспросе человека симптомы жажды, полиурии, нарушения аппетита, наличие головокружений, гипотермии, нарушения месячного цикла у женщин, нарушения полового поведения. При выявлении этих и других признаков можно заподозрить наличие у человека целого ряда эндокринных нарушений (сахарного диабета, заболеваний щитовидной железы, нарушения функции половых желез, синдрома Кушинга, болезни Аддисона и др.).

Биохимические и инструментальные методы исследования

Основаны на определении уровня самих гормонов и их метаболитов в крови, ликворе, моче, слюне, скорости и суточной динамики их секреции, регулируемых ими показателей, исследовании гормональных рецепторов и отдельных эффектов в тканях-мишенях, а также размеров железы и ее активности.

При проведении биохимических исследований используются химические, хроматографические, радиорецепторные и радиоиммунологические методики определения концентрации гормонов, а также тестирование эффектов гормонов на животных или на культурах клеток. Большое диагностическое значение имеет определение уровня тройных, свободных гормонов, учет циркадианных ритмов секреции, пола и возраста больных.

Радиоиммунный анализ (РИА, радиоиммунологический анализ, изотопный иммунологический анализ) — метод количественного определения физиологически активных веществ в различных средах, основанный на конкурентном связывании искомых соединений и аналогичных им меченных радионуклидом веществ со специфическими связывающими системами, с последующей детекцией на специальных счетчиках-радиоспектрометрах.

Иммунорадиометрический анализ (ИРМА) — особая разновидность РИА, в котором используются меченные радионуклидом антитела, а не меченый антиген.

Радиорецепторный анализ (РРА) - метод количественного определения физиологически активных веществ в различных средах, в котором в качестве связывающей системы используются гормональные рецепторы.

Компьютерная томография (КТ) — метод рентгеновского исследования, основанный на неодинаковой поглощаемости рентгенологического излучения различными тканями организма, который дифференцирует по плотности твердые и мягкие ткани и используется в диагностике патологии щитовидной железы, поджелудочной железы, надпочечников и др.

Магнитно-резонансная томография (МРТ) инструментальный метод диагностики, с помощью которого в эндокринологии проводится оценка состояния гипоталамо-гипофизар- но-надпочечниковой системы, скелета, органов брюшной полости и малого таза.

Денситометрия - рентгенологический метод, применяемый для определения плотности костной ткани и диагностики остеопороза, позволяющий выявлять уже 2-5 % потери массы кости. Применяются однофотонная и двухфотонная денситометрия.

Радиоизотопное сканирование (скенирование) - способ получения двухмерного изображения, отражающего распределение радиофармпрепарата в различных органах при помощи сканера. В эндокринологии используется для диагностики патологии щитовидной железы.

Ультразвуковое исследование (УЗИ) - метод, основанный на регистрации отраженных сигналов импульсного ультразвука, который применяется в диагностике заболеваний щитовидной железы, яичников, предстательной железы.

Глюкозотолерантный тест — нагрузочный метод исследования метаболизма глюкозы в организме, применяемый в эндокринологии для диагностики нарушения толерантности к глюкозе (преддиабет) и сахарного диабета. Измеряется уровень глюкозы натощак, затем в течение 5 мин предлагается выпить стакан теплой воды, в котором растворена глюкоза (75 г), в последующем через 1 и 2 ч вновь измеряется уровень глюкозы в крови. Уровень менее 7,8 ммоль/л (через 2 ч после нагрузки глюкозой) считается нормой. Уровень более 7,8, но менее 11,0 ммоль/л — нарушение толерантности к глюкозе. Уровень более 11,0 ммоль/л — «сахарный диабет».

Орхиометрия - измерение объема яичек при помощи прибора орхиометра (тестикулометр).

Генная инженерия - совокупность приемов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. В эндокринологии используется для синтеза гормонов. Изучается возможность генной терапии эндокринологических заболеваний.

Генная терапия — лечение наследственных, мультифакториальных и ненаследственных (инфекционных) заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефекгов или придания клеткам новых функций. В зависимости от способа введения экзогенной ДНК в геном пациента генная терапия может проводиться либо в культуре клеток, либо непосредственно в организме.

Основополагающим принципом оценки функции гипофиззависимых желез является одновременное определение уровня тропного и эффекторного гормонов, а при необходимости — дополнительного определения уровеня гипоталамичсского рилизинг-гормона. Например, одновременное определение уровня кортизола и АКТГ; половых гормонов и ФСГ с ЛГ; йодсодержащих гормонов щитовидной железы, ТТГ и ТРГ. Для выяснения секреторных возможностей железы и чувствительности се рецепторов к действию регулягорных гормонов проводятся функциональные пробы. Например, определение динамики секреции гормонов щитовидной железой на введение ТТГ или на введение ТРГ при подозрении на недостаточность ее функции.

Для определения предрасположенности к сахарному диабету или выявления его скрытых форм проводят стимуляционную пробу с введением глюкозы (оральный глюкозотолерантный тест) и определением динамики изменения ее уровня в крови.

При подозрении на гиперфункцию железы проводят супрессивные тесты. Например, для оценки секреции инсулина поджелудочной железой измеряют его концентрацию в крови в процессе длительного (до 72 ч) голодания, когда уровень глюкозы (естественного стимулятора секреции инсулина) в крови существенно снижается и в нормальных условиях это сопровождается снижением секреции гормона.

Для выявления нарушений функции эндокринных желез широко используются инструментальные ультразвуковые (наиболее часто), визуализационные методы (компьютерная томография и магииторезонансная томография), а также микроскопическое изучение биопсийного материала. Применяют также специальные методы: ангиографию с селективным забором крови, оттекающей от эндокринной железы, радиоизотопные исследования, денситометрию — определение оптической плотности костей.

Для выявления наследственной природы нарушений эндокринных функций используют молекулярно-генетические методы исследования. Например, кариотипирование является достаточно информативным методом для диагностики синдрома Клайнфельтера.

Клинико-экспериментальные методы

Используются для изучения функций эндокринной железы после ее частичного удаления (например, после удаления ткани щитовидной железы при тиреотоксикозе или раке). На основании данных об остаточной гормонообразующей функции железы устанавливается доза гормонов, которые должны вводиться в организм с целью заместительной гормональной терапии. Заместительная терапия с учетом суточной потребности в гормонах проводится после полного удаления некоторых эндокринных желез. В любом случае проведения гормональной терапии определяется уровень гормонов в крови для подбора оптимальной дозы вводимого гормона и предотвращения передозировки.

Правильность проводимой заместительной терапии может оцениваться также по конечным эффектам вводимых гормонов. Например, критерием правильности дозировки гормона при проведении инсулиновой терапии является поддержание физиологического уровня глюкозы в крови больного сахарным диабетом и предотвращение у него развития гипо- или гипергликемии.



Новое на сайте

>

Самое популярное