Домой Кардиология Каков основной механизм первого вдоха новорожденного. Дыхание плода

Каков основной механизм первого вдоха новорожденного. Дыхание плода

Первый вдох новорожденного происходит по такому механизму — перемежающееся сжатие грудной клетки в процессе родов через естественные родовые пути облегчает удаление из легких фе­тальной жидкости. Сурфактант выстилающего альвеолы слизистого слоя, снижая поверхностное натяжение и необходимое для открытия альвеол давление, облегчает аэрацию легких.

Несмотря на это, давление, необходимое для наполнения возду­хом легких при первом вдохе новорожденного, выше, чем при вдохе в любом другом возрасте. Оно колеблется от 10 до 50 см вод. ст. и обычно составляет 10-20 см вод. ст., в то время как при последующих вдохах у здоровых новорожденных и у взрослых оно около 4 см вод. ст. Это обусловлено необходимостью преодоления при первом вдохе сил поверхностного натяжения (особенно в мелких разветвлениях бронхов), вяз­кости оставшейся в дыхательных путях жидкости и поступления в легкие приблизительно 50 мл воздуха, 20-30 мл из которых остаются в легких, образуя ФОЕ. Большая часть фетальной жидко­сти из легких всасывается в легочный кровоток, который многократно увеличивается, так как весь выброс правого желудочка направляется в сосу­дистое русло легких. Остатки фетальной жидко­сти выделяются через верхние дыхательные пути и проглатываются, а иногда вновь попадают из ро­тоглотки в дыхательные пути. Механизм удаления жидкости нарушается при кесаревом сечении или вследствие повреждения эндотелия, гипоальбуминемии, повышенного венозного давления в легких, поступления в кровь новорожденного седативных препаратов.

Пусковые факторы первого вдоха новорожденного многочис­ленны. Каков вклад каждого из них, неизвестно. В их число входят снижение Ро2 и pH и повыше­ние Рсо2 вследствие прекращения плацентарного кровообращения, перераспределение сердечного выброса после пережатия сосудов пуповины, сни­жение температуры тела, разнообразные тактиль­ные стимулы.

У детей с низкой массой тела при рождении лег­кие значительно податливей, чем у доношенных, что затрудняет первый вдох новорожденного. ФОЕ у глубоко недо­ношенных наименьшая в связи с наличием ателек­тазов. Нарушения вентиляционно-перфузионного отношения наиболее выражены и длительны при образовании воздушных полостей по типу воздуш­ных ловушек. В результате ателектазов, внутрилегочного шунтирования и гиповентиляции развива­ется гипоксемия (Рао2 50-60 мм рт. ст.) и гиперкапния. Наиболее глубокие, близкие к таковым при болезни гиалиновых мембран нарушения газооб­мена наблюдаются у детей с экстремально низкой массой тела при рождении.

Статью подготовил и отредактировал: врач-хирург

Видео:

Полезно:

Статьи по теме:

  1. Оценка состояния новорожденного ребенка в первую очередь отражает его жизнеспособность и возможность адаптации к внешней...
  2. В характеристику неврологического статуса новорожденного ребенка входит состояние тонуса мышц и двигательной актив­ности, оценка безусловных...
  3. Рождение ребенка одно из самых важных событий в семье любого человека. В этом сложном процессе...
  4. Новорожденный малыш вначале выглядит «скрюченным». Ручки и ножки еще не смогли разогнуться. Со временем, когда...
  5. Под зрелостью новорожденного ребенка подразумевают соответствие морфологического и функционального развития ЦНС, желудочно-кишечного аппарата и дыхательной...
  6. Появление в доме новорожденного крохи – невероятная радость и безграничное счастье. Однако это еще и...

Наиболее очевидным следствием родов является прекращение связи ребенка с организмом матери, обеспечивавшейся плацентой и, следовательно, утрата им метаболической поддержки. Одной из самых важных приспособительных реакций, немедленно реализуемых новорожденным, должен быть переход к самостоятельному дыханию.

Причина первого вдоха новорожденного . После нормальных родов, когда функции новорожденного не угнетены наркотическими препаратами, ребенок обычно начинает дышать и у него появляется нормальный ритм дыхательных движений не позднее чем через 1 мин после родов. Быстрота включения самостоятельного дыхания - это реакция на внезапность перехода во внешний мир, и причиной первого вдоха может быть: (1) формирование небольшой асфиксии в связи с самим процессом родов; (2) сенсорные импульсы, идущие от охлаждаемой кожи.

Если новорожденный не начинает дышать самостоятельно сразу, у него нарастает гипоксия и гиперкапния, которые обеспечивают дополнительную стимуляцию дыхательного центра и обычно способствуют возникновению первого вдоха не позднее следующей минуты после родов.

Задержка включения самостоятельного дыхания после родов - опасность гипоксии. Если в родах мать находилась под действием общего наркоза, то ребенок после родов неизбежно оказывается также под влиянием наркотических препаратов. В этом случае часто наступление самостоятельного дыхания у новорожденного задерживается на несколько минут, что указывает на необходимость как можно меньшего применения при родах препаратов для анестезии.

Кроме того, многие новорожденные , получившие травму в процессе родов или вследствие затянувшихся родов, не могут начать дышать самостоятельно либо у них обнаруживаются нарушения ритмичности и глубины дыхания. Это может быть результатом: (1) резкого снижения возбудимости дыхательного центра вследствие механического повреждения головки плода или кровоизлияния в головной мозг во время родов; (2) длительной внутриутробной гипоксии плода во время родов (что, возможно, является более серьезной причиной), приведшей к резкому снижению возбудимости дыхательного центра.

Во время родов гипоксия плода часто возникает по причинам: (1) пережатия пуповины; (2) преждевременной отслойки плаценты; (3) чрезвычайно сильных сокращений матки, приводящих к прекращению кровотока через плаценту; (4) передозировки наркотических препаратов у матери.

Степень гипоксии , переживаемая новорожденным. Прекращение дыхания у взрослого человека на срок более 4 мин часто заканчивается смертью. Новорожденные часто выживают, даже если дыхание не включается в течение 10 мин после родов. При отсутствии дыхания у новорожденных на протяжении 8-10 мин отмечаются хронические и очень тяжелые нарушения функции центральной нервной системы. Наиболее частые и тяжелые повреждения возникают в таламусе, нижних буграх четверохолмия и других областях головного мозга, что чаще всего приводит к хроническим нарушениям моторных функций.

Расправление легких после рождения . Первоначально альвеолы легких пребывают в спавшемся состоянии из-за поверхностного натяжения пленки жидкости, заполняющей альвеолы. Необходимо снизить давление в легких приблизительно на 25 мм рт. ст., чтобы противодействовать силе поверхностного натяжения в альвеолах и вызвать расправление стенок альвеол во время первого вдоха. Если альвеолы раскроются, для обеспечения дальнейшего ритмического дыхания уже не нужно будет такого мышечного усилия. К счастью, здоровый новорожденный способен продемонстрировать очень мощное усилие в связи с первым вдохом, приводящее к снижению внутриплеврального давления приблизительно на 60 см рт. ст. относительно атмосферного давления.

На рисунке показаны чрезвычайно высокие значения отрицательного внутриплеврального давления , необходимые для расправления легких в момент первого вдоха. В верхней части приводится кривая «объем-давление» (кривая растяжимости), отражающая первый вдох новорожденного. Прежде всего отметим, что нижняя часть кривой начинается от нулевой точки давления и смещается вправо. Кривая показывает, что объем воздуха в легких остается практически равным нулю, пока отрицательное давление не достигнет величины -40 см вод. ст. (-30 мм рт. ст.). Когда отрицательное давление приближается к -60 см. вод. ст., около 40 мл воздуха поступает в легкие. Для обеспечения выдоха необходимо значительное повышение давления (до 40 см вод. ст.), что объясняется высоким вязким сопротивлением бронхиол, содержащих жидкость.

Заметьте, что второй вдох осуществляется намного легче на фоне существенно меньшего отрицательного и положительного давлений, необходимых для чередования вдоха и выдоха. Дыхание остается не вполне нормальным еще в течение приблизительно 40 мин после родов, как показано на третьей кривой растяжимости. Только через 40 мин после родов форма кривой становится сопоставимой с аналогичной кривой здорового взрослого человека.

Известно, что дыхательные движения у плода возникают на 13-й неделе внутриутробного периода. Однако они происходят при закрытой голосовой щели. В период родов нарушается трансплацентарное кровообращение, а при пережатии пуповины у новорожденного - его полное прекращение, что вызы­вает значительное снижение парциального давления кислорода (рО 2), повыше­ние рСО 2 , снижение рН. В связи с этим возникает импульс от рецепторов аорты и сонной артерии к дыхательному центру, а также изменение соответ­ствующих параметров среды вокруг самого дыхательного центра. Так, напри­мер, у здорового новорожденного ребенка рО 2 снижается с 80 до 15 мм рт. ст., рСО 2 возрастает с 40 до 70 мм рт. ст., а рН падает ниже 7,35. Наряду с этим имеет значение и раздражение кожных рецепторов. Резкое изменение температуры и влажности вследствие перехода от внутриутробного окруже­ния к пребыванию в атмосфере воздуха в комнате является дополнительным импульсом для дыхательного центра. Меньшее значение, вероятно, имеет так­тильная рецепция при прохождении по родовым путям и во время приема новорожденного.

Сокращение диафрагмы создает отрицательное внутригрудное давление, что облегчает вхождение воздуха в дыхательные пути. Более значительное со­противление вдыхаемому воздуху оказывают поверхностное натяжение в аль­веолах и вязкость жидкости, находящейся в легких. Силы поверхностного на­тяжения в альвеолах уменьшаются сурфактантом. Легочная жидкость быстро всасывается лимфатическими сосудами и кровеносными капиллярами, если происходит нормальное расправление легкого. Считается, что в норме отри­цательное внутрилегочное давление достигает 80 см вод. ст., а объем вдыхае­мого воздуха при первом вдохе составляет более 80 мл, что значительно вы­ше остаточного объема.

Регуляция дыхания осуществляется дыхательным центром, располо­женным в ретикулярной формации ствола мозга в области дна IVжелудочка. Дыхательный центр состоит из трех частей: медуллярной, которая начинает и поддерживает чередование вдоха и выдоха; апноэтической, которая вызы­вает длительный инспираторный спазм (расположена на уровне средней и нижней части моста мозга); пневмотаксической, которая оказывает тормо­зящее влияние на апноэтическую часть (расположена на уровне верхней части моста мозга).

Регуляция дыхания осуществляется центральными и периферическими хе-морецепторами, причем центральные хеморецепторы являются основными (в 80%) в регуляции дыхания. Центральные хеморецепторы более чувстви­тельны к изменению рН, и их главная функция состоит в поддержании по­стоянства Н + -ионов в спинномозговой жидкости. СО 2 свободно диффунди­рует через гематоэнцефалический барьер. Нарастание концентрации Н + в спинномозговой жидкости стимулирует вентиляцию. Периферические хемо- и барорецепторы, особенно каротидные и аортальные, чувствительны к изме­нению содержания кислорода и углекислого газа. Они функционально ак­тивны к рождению ребенка.

В то же время пневмотаксическая часть дыхательного центра созревает лишь на протяжении первого года жизни, чем и объясняется выраженная аритмичность дыхания. Апноэ наиболее часты и длительны у недоношенных детей, причем чем ниже масса тела, тем чаще и длительнее апноэ. Это свиде­тельствует о недостаточной зрелости пневмотаксической части дыхательного центра. Но еще большее значение в прогнозе выживаемости недоношенных детей имеет быстро нарастающее учащение дыхания в первые минуты жизни новорожденного. Это свидетельство недостаточности развития также апноэтической части дыхательного центра.

Человек, начинает жизнь после рождения - приступом удушья. Известно, что дыхание осуществляется дыхательным центром. Дыхательный центр расположен в ретикулярной формации ствола мозга в области дна IV желудочка. Дыхательный центр состоит из 3 - х частей:

Медуллярный - поддерживает чередование вдоха и выдоха;

Апноэтический - вызывает длительный инспираторный спазм (расположен на уровне средней и нижней части моста мозга);

Пневмотаксический - оказывает тормозящее влияние на апноэтическую часть (расположен на уровне верхней части моста мозга)

Первые дыхательные движения у плода, хотя возникают на 13 неделе внутриутробного периода, но ритмичные дыхательные движения устанавливаются только после рождения. Этому способствует

  • - нарушение транс плацентарного кровообращения во время родов и его полное прекращение после пережатия пуповины
  • - вследствии чего значительно снижается парциальное давление кислорода, (с 80 до 15 мм.рт.ст.)
  • - повышается рСО 2 (с 40 до 70 мм. Нg) и снижается рН на 7,35
  • - также оказывают влияние на:

Раздражение кожных рецепторов во время родов

Влияние изменений атмосферного давления, окружающей температуры, влажности и т.д.

Меньшее значение имеет и тактильная рецепция при прохождении по родовым путям и во время приема новорожденного

Следовательно регуляция дыхания осуществляется центральными и периферическими хеморецепторами. Основным в регуляции дыхания являются центральные хеморецепторы (80%). Они чувствительны к изменению рН и их главная функция состоит в поддержании постоянства Н + ионов в спинномозговой жидкости. СО 2 свободно дифференцирует через гематоэнцефалический барьер. Нарастание концентрации Н + в спинномозговой жидкости стимулируют вентиляцию.

Периферические хемо и барорецепторы (каротидные, аортальные) чувствительны к изменению содержания О 2 и уровня СО 2 .

Следует отметить, что пневмо-токсическая часть дыхательного центра созревает лишь к концу 1 года жизни, чем и объясняется аритмичность дыхания у детей до 1 года.

Таким образом, первый вдох осуществляется под влиянием суммы внешних воздействий (температурные, проприоцептивные, тактильные, барометрические и химические, прежде всего гипоксемии) акцивизирующих ретикулярную формацию, которая в свою очередь посылает нисходящее влияние на бульварный дыхательный центр и мотонейроны спинного мозга. При этом из - за сокращения мышц диафрагмы происходит внутриплевральное разряжение и в момент первого вдоха оно доходит до 70 - 100 мм.вод.ст. и в легкие поступает 30 - 90 мл воздуха. После короткой инспираторной паузы (около 2 сек) начинается выдох, сопровождающийся криком.

Первое дыхательное движение после рождения осуществляется по типу «гаспс» (первый гаспс является началом свободной жизни новорожденного). Дыхание типа «гаспс» с судорожным глубоким вдохом и затрудненным выдохом (инспираторная вспышка), наблюдается у всех здоровых новорожденных и в первые часы жизни, составляет 4 - 8% всех дыхательных движений. частота «инсператорных вспышек» у более старших детей падает, но менее 1% дыханий они занимают лишь у детей старше 5 - го дня жизни. Возникающий после таких инспираторных вспышек симптом «воздушной ловушки» (уровень спокойного выдоха достигается лишь через 2 - 3 дыхательных движения) способствует расправлению легких. Именно на это и направлен наблюдающийся у новорожденных (почти 65 - 70%) в первые 30 мин жизни (иногда до 6 часов) апноитический тип дыхания, высокое экспираторное сопротивление дыхательных путей, крик. Следовательно, у здоровых детей первых минут и часов жизни существуют особенности физиологии дыхания, способствующие расправлению легких, препятствующие их спадению на выдохе, но исчезающие в дальнейшем, что позволяет отнести их к переходным состояниям адаптации новорожденных к условиям внешней т.е. внеутробной жизни. У новорожденных детей в течении первых 3 дней жизни минутная вентиляция легких больше, чем у детей более старшего возраста, что направлено на компенсацию ацидоза т.е. у новорожденных наблюдается транзиторная физиологическая гипервентиляция. У всех детей одновременно бывает и гипокапния.

Особенности внешнего дыхания у детей и методы исследования.

В функциональном отношении к органам дыхания относят воздухоносные пути, легкие, кровеносные, лимфатические сосуды органов дыхания, нервную систему с ее эффекторными и рецепторными окончаниями, скелет грудной клетки с его хрящами, связками, суставами, основную (диафрагма, межреберные мышцы) и вспомогательную (грудинно - клеточно - сосцевидные, брюшные, лестничные и др.) дыхательную мускулатуру. Центральная нервная система координирует нормальную функцию дыхания, постоянно регулируя как соотношения вентилируемых альвеол и временно выключенных из вентиляции так и их взаимоотношение с капиллярами, обеспечивая таким образом снабжение организма необходимым количеством кислорода.

Эффективность функции внешнего дыхания определяется 3 процессами:

Вентиляцией альвеолярного пространства

Адекватным легочной вентиляции капиллярным кровотоком (перфузией)

Диффузией газов через альвеолярно - капиллярную мембрану

Следует отметить о большой вариабельности показателей внешнего дыхания у детей. Так, частота дыхания у новорожденного ребенка 40 - 60 0 , у годовалого 30 - 35 0 , на 3 - 4 году жизни 25 - 30 0 , у 5 летнего - 25 0 , 10 летнего - 20 0 , у взрослого 16 - 18 0 . частота дыхания отражает компенсаторные возможности организма, но в сочетании с малым дыхательным объемом тахипноэ свидетельствует о дыхательной недостаточности. Из за большей частоты дыхания минутный объем дыхания на 1 кг массы тела значительно выше у детей, особенно раннего возраста, чем у взрослых. Величина потребления кислорода на 1 кг массы тела у детей также больше, особенно максимально у детей раннего возраста. Вместе с тем потребление кислорода 1 м 2 поверхности тела у 14 летних детей почти в 1,5 раза больше чем у новорожденных (соответственно 180 мл/мин м 2 , 125 мл/мин м 2). Однако у месячного и у годовалого, как у взрослого - около 180 мл/мин м 2 . Следовательно, 1 мл кислорода новорожденный утилизирует из 42 мл воздуха, месячный ребенок - из 54 мл, годовалый - из 29 мл, а 14 летний - из 17 мл. Эти цифры показывают, что новорожденные лучше утилизируют кислород из воздуха по сравнению с детьми в возрасте одного месяца, что объясняется «кислородной задолженностью» организма новорожденного ребенка и это исчезает к 5 - 7 му дню жизни.

Таким образом, из вышеприведенных примеров видно вариабельность функции внешнего дыхания у детей зависимой от возраста что необходимо учитывать при интерпретации полученных данных.

В настоящее время оценка функции внешнего дыхания проводится по следующим группам показателей:

Группа показателей характеризующих легочную вентиляцию включает в себя ритм, частоту дыхания, дыхательный объем, объем альвеолярной вентиляции, а также показатели распределения выдыхаемого воздуха. К легочным объемам относятся резервный объем вдоха, выдоха, остаточный объем, функциональная остаточная емкость, жизненная и общая емкость легких.

О показателях механики дыхания отражающих функциональное взаимодействие легких с дыхательными путями и грудной клетки с дыхательными мышцами судят по величине бронхиального сопротивления, объемной скорости вдоха и выдоха при спокойном и форсированном дыхании, форсированной жизненной емкости легких и ее отношению к общей жизненной емкости, максимальной вентиляции легких, а также по величине эластического сопротивления легких и работе дыхания.

Легочный газообмен определяется составом воздуха, величиной потребления кислорода и выделения углекислоты в единицу времени, коэффициентом использования кислорода в легких.

К показателям характеризующим газовый состав артериальной крови, относят напряжения кислорода и углекислоты в крови, процент насыщения крови кислородом.

При изучении вентиляционной функции легких широкое применение нашел метод прямой спирографии. Наряду с этим в настоящее время также применяется пневмотахометрический, пневмотахографический методы исследования, общая плетизмография и т.д. С помощью пневмотахометрии исследуется бронхиальная проходимость, сущность метода ПТМ состоит в определении скорости воздушной струи (в л/с) при максимально быстром вдохе и выдохе, а общая плетизмография позволяет проводить прямое измерение бронхиального сопротивления путем синхронной регистрации пневмотахограммы и колебаний внутрикамерного давления, возникающих при дыхании испытуемого.

Объем альвеолярной вентиляции и газового состава выдыхаемого воздуха изучается с помощью специальных газоанализаторов - капнографов.

Дыхательным центром называется совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды. Эти нейроны на­ходятся в спинном, продолговатом мозге, варолиевом мосту, гипоталамусе и коре большого мозга. Основной структурой, задающей ритм и глубину Дыхания, является продолговатый мозг, который посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Мост, гипоталамус и кора контролируют и корригируют автоматическую Деятельность нейронов вдоха и выдоха продолговатого мозга.

Дыхательный центр продолговатого мозга является парным, симмет­рично расположенным на дне ромбовидной ямки образованием. В его состав входят две группы нейронов: инспираторные, обеспечивающие вдох, и экспираторные, обеспечивающие выдох. Между этими нейронами суще­ствуют реципрокные (сопряженные) соотношения. Это значит, что возбу­ждение нейронов вдоха сопровождается торможением нейронов выдоха и, наоборот, возбуждение нейронов выдоха сочетается с торможением ней­ронов вдоха. Мотонейроны, иннервирующие диафрагму, расположены в III-IV шейных сегментах, иннервирующие межреберные дыхательные мышцы, - в Ш-ХН грудных сегментах спинного мозга.

Дыхательный центр очень чувствителен к избытку углеки­слого газа , который является его главным естественным возбудителем. При этом избыток СО 2 действует на дыхательные нейроны как непосред­ственно (через кровь и спинномозговую жидкость), так и рефлекторно (че­рез хеморецепторы сосудистого русла и продолговатого мозга).

Роль СО 2 в регуляции дыхания выявля­ется при вдыхании газовых смесей, содержащих 5-7% СО 2 . При этом про­исходит увеличение легочной вентиляции в 6-8 раз. Вот по­чему при угнетении функции дыхательного центра и остановке дыхания наиболее эффективным является вдыхание не чистого О 2 , а карбогена, т.е. смеси 5-7% СО 2 и 95-93% О 2 . Повышенное содержание и напряжение ки­слорода в среде обитания, крови и тканях организма (гипероксия) может привести к угнетению дыхательного центра.



После предварительной гипервентиляции, т.е. произвольного увели­чения глубины и частоты дыхания, обычная 40-секундная задержка дыха­ния может возрасти до 3-3,5 минут, что указывает не только на увеличение количества кислорода в легких, но и на уменьшение СО 2 в крови и сниже­ние возбуждения дыхательного центра вплоть до остановки дыхания. При мышечной работе в тканях и крови возрастает количество молочной ки­слоты, СО2, которые являются мощными стимуляторами дыхательного центра. Снижение напряжения СО 2 в артериальной крови (гипоксемия) со­провождается увеличением вентиляции легких (при подъеме на высоту, при легочной патологии).

Механизм первого вдоха новорожденного

У родившегося ребенка после перевязки пуповины прекращается га­зообмен через пупочные сосуды, контактирующие в плаценте с кровью матери. В крови новорожденного накапливается углекислый газ, который, так же как и недостаток кислорода, гуморально возбуждает его дыхатель­ный центр и вызывает первый вдох.

Рефлекторная регуляция дыхания осуществляется постоян­ными и непостоянными рефлекторными влияниями на функцию дыха­тельного центра.

Постоянные рефлекторные влияния возникают в результате раздражения следующих рецепторов:

1) механорецепторов альвеол – рефлекс Э. Геринга - И. Брейера;

2) механорецепторов корня легкого и плевры - плевропульмональный рефлекс;

3) хеморецепторов сонных синусов - рефлекс К. Гейманса;

4) проприорецепторов дыхательных мышц.

Рефлекс Э. Геринга - И. Брейера называют рефлексом торможения вдо­ха при растяжении легких. Суть его: при вдохе в легких возникают им­пульсы, рефлекторно тормозящие вдох и стимулирующие выдох, а при выдохе - импульсы, рефлекторно стимулирующие вдох. Он является при­мером регуляции по принципу обратной связи. Перерезка блуждающих нервов выключает этот рефлекс, дыхание становится редким и глубоким. У спинального животного, у которого произведена перерезка спинного мозга на границе с продолговатым, после исчезновения спинального шока дыхание и температура тела не восстанавливаются совсем.

Плевропульмональный рефлекс возникает при возбуждении механо­рецепторов легких и плевры при растяжении последних. В конечном итоге он изменяет тонус дыхательных мышц, увеличивая или уменьшая дыха­тельный объем легких.

Рефлекс К. Гейманса заключается в рефлекторном усилении дыха­тельных движений при повышении напряжения СО 2 в крови, омывающей

сонные синусы.

К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц, которые при вдохе тормозят ак­тивность нейронов вдоха и способствуют наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыха­тельного центра связаны с возбуждением экстеро- и интерорецепторов:

слизистой оболочки верхних дыхательных путей;

температурных и болевых рецепторов кожи;

проприорецепторов скелетных мышц.

Например, при вдыхании аммиака, хлора, дыма и т.д. наблюдается Рефлекторный спазм голосовой щели и задержка дыхания; при раздражении слизистой оболочки носа пылью - чихание; гортани, трахеи, бронхов-кашель.

Кора большого мозга, посылая импульсы к дыхательному центру принимает активное участие в регуляции нормального дыхания. Именно благодаря коре осуществляется приспособление дыхания при разговоре пении, спорте, трудовой деятельности человека. Она участвует в выработ­ке условных дыхательных рефлексов, в изменении дыхания при внушении и т.д. Так, например, если человеку, находящемуся в состоянии гипноти­ческого сна, внушить, будто он выполняет тяжелую физическую работу, дыхание усиливается, несмотря на то, что он продолжает оставаться в со­стоянии полного физического покоя.

ИЛЛЮСТРАЦИИ

рисунок 218

рисунок 219

рисунок 220

рисунок 221

рисунок 222

рисунок 223

рисунок 224

рисунок 225

рисунок 226


рисунок 227


рисунок 228

рисунок 229

рисунок 230

рисунок 231

рисунок 232

рисунок 233

рисунок 234

рисунок 235

рисунок 236

Контрольные вопросы

1. Обзор дыхательной системы. Значение дыхания.

2. Полость носа.

3. Гортань.

4. Трахея и бронхи.

5. Строение легких и плевры.

6. Дыхательный цикл. Механизмы вдоха и выдоха.

7. Легочные объемы. Легочная вентиляция.

8. Газообмен в лёгких и транспорт кислорода и углекислого газа кровью.

9. Дыхательный центр и механизмы регуляции дыхания.

Механизм первого вдоха новорожденного.



Новое на сайте

>

Самое популярное