Домой Кардиология Что такое оптическая сила линзы для глаз. Оптическая сила линзы

Что такое оптическая сила линзы для глаз. Оптическая сила линзы

Основные направления эволюции растений.

Все виды ныне живущих растений в зависимости от их организации делят на две большие группы: низших и высших растений.

Низшие отличаются нерасчлененным телом (таллом, слоевище). Наиболее примитивные формы – одноклеточны.

Высшие растения имеют расчлененное тело, их органы состоят из различных тканей. Растительная клетка имеет одни и те же черты организации: наличие наружной полисахаридной оболочки, являющейся опорной системой, наружным скелетом. Ее возникновение – следствие фототрофного питания – образуется избыток растворимых углеводов. Эти вещества выводятся из клетки и превращаются в нерастворимые элементы клеточной оболочки.

Особенности растений:

    Автотрофное питание. Когда квант света возбуждает молекулу хлорофилла, один из электронов переходит на более высокий энергетический уровень, затем передается молекуле акцептору, запуская поток электронов, и за долю секунды возвращается в исходное энергетическое состояние. Вся жизнь на нашей планете, за немногими исключениями, зависит от энергии, на мгновение приобретаемой электроном. Альберт Сент-Дьердьи: «Жизнью движет слабый непрекращающийся поток солнечного света».

    Строение клетки. Эта оболочка не препятствует поглощению и выделению растворенных веществ. Т.к. элементы питания (вода, минеральные соли) равномерно рассеяны в окружающей среде, то растения постепенно теряют подвижность. Поглощение элементов питания происходит через наружную поверхность растений →

    Тенденция к увеличению поверхности соприкосновения с внешней средой.

    Появление многоклеточности: появление твердых оболочек приводит к дифференциации клеток. Наличие плазмодесм, являющихся плазматической связью между клетками обеспечивает целостность органа.

    Способность к длительному нарастанию приводит дифференциации тела растения.

    Выход на сушу требует приспособлений к жизни в почвенно – воздушной среде. Происходит стабилизация водного обмена. Низшие растения – пойкилогидрические, высшие – гомойогидрические. Образование тканей (проводящие, образовательные, механические, покровные, запасающие и т.д.)

    Возникновение побегов.

    Возникновение почек – замкнутых вместилищ верхушечных меристем, защищенных листовыми зачатками и почечными чешуями.

Широко распространено мнение, что предковые формы высших растений обладали изоморфным чередованием поколений, и от этого типа в дальнейшем эволюция пошла по двум направлениям: гаметофитному и спорофитному.

Однако высказывается мысль и о том, что уже исходная группа водорослей обладала разными типами цикла воспроизведения и дала две независимые линии эволюции.

Все высшие растения обладают рядом общих признаков:

    Наличием функционально сходных тканей;

    Морфологически сходных вегетативных органов

    Однотипных (за исключением покрытосеменных) многоклеточных половых органов и спорангиев, кутинизированных спор, правильном чередовании поколений.

Это позволяет сделать вывод о единстве происхождения высших растений от какой – то одной группы водорослей. Длительное время в качестве исходной группы рассматривались бурые водоросли, т.к. они имеют расчлененный, часто весьма специализированный таллом.

У некоторых представителей формируются ткани и встречаются многокамерные гаметангии. Однако, различия пигментного состава и запасных питательных веществ вызывают возражения.

Большинство современных ученых в качестве предковой группы рассматривает зеленые многоклеточные водоросли, обладающие гетеротрихальным талломом. В этом убеждает сходство пигментного состава, запасных питательных веществ, наличие у некоторых современных хетофоровых многокамерных гаметангиев.

Все высшие растения подразделяют на 8 отделов: риниофиты, мохообразные, плауновидные, псилотовые, хвощевидные (членистые), папоротниковидные (папоротники), голосеменные, цветковые (покрытосеменные).

Первые вполне достоверные остатки наземных организмов известны с Силура. Заселение безжизненных материков шло на протяжении ордовика, силура и девона.

Начало освоения суши – появление пленчатых обрастаний прибрежных камней в полосе приливно – отливной зоны сине-зеленых водорослей. Потом они заселялись бактериями. Сформированные пленчатые бактериально-водорослевые образования перекрывались неорганическими материалами (выветривание горных пород). Происходило первичное почвообразование. Освоение ее растениями и животными усиливало почвообразовательные процессы.

Древнейшие растения, имеющие наземный облик, но населяющие пограничную зону между водой и сушей, влажные местообитания были псилофиты из группы риниевых – невысокие травянистые или кустарниковые растения, еще не имевшие настоящих корней и листьев. В их древесине уже имелись примитивные сосудистые образования – трахеиды.

Риниевые могли возникнуть от каких – либо высших водорослей еще в ордовике.

В верхнесилурийских отложениях встречаются ископаемые остатки спор и гиф, которые интерпретируют как древнейшие известные остатки наземных грибов – аскомицетов.

В самом раннем девоне от самых примитивных риниевых могли возникнуть мохообразные, а от высших псилофитов произошли различные группы сосудистых растений, обладающие расчлененным талломом и более совершенными способами размножения: от зостерофиллофитов – плаунообразные; от тримерофитов – хвощевые и папоротникообразные. Представители этих груаа растений лучше приспособленные к жизни на суше, в позднем девоне повсеместно вытеснили псилофитов и сформировали первую настоящую наземную флору. К этому времени относится появление первых голосеменных (семенные папоротники), возникших от древних разноспоровых папоротников.

В процессе приспособления к жизни на суше в растений совершенствовались вегетативные органы, в которых дифференцировались различные ткани:

    покровные защищали растения от избыточного испарения и повреждений;

    механические (опорные и проводящие).

Особенно сложной для растений на суше стала проблема осуществления полового процесса. В воде подвижные мужские гаметы легко достигали яйцеклетку, тогда как в воздушной среде при неподвижности растений встреча гамет невозможна без специальных приспособлений, обеспечивающих их перенос от одного растения к другому.

У высших наземных растений такие приспособления сформировались из гаплоидного поколения (гаметофита), которое редуцируется до одной – нескольких клеток (пыльца семенных растений). Диплоидное поколение (спорофит) становится основным в жизненном цикле.

Противоположное соотношение этих поколений в жизненном цикле -–с преобладанием гаметофита имеется лишь у мхов, что, вероятно, решающим образом ограничило адаптивные возможности этой группы в освоении суши. Мхи выживают лишь в условиях достаточно высокой влажности и тесно связаны с субстратом.

Во влажном и теплом климате, характерном для первой половины каменноугольного периода, широкое распространение получила обильная наземная флора, имевшая характер густых влажных тропических лесов.

Среди древовидных растений выделялись представители плауновидных – липидодендроны и сигиллярии (30 – 40 метров высотой и до 2 метров в диаметре). Высились хвощеобразные пирамидальные каламиты. Очень обильны были различные папоротники. Голосеменные были представлены разнообразными птеридоспермами, и новой группой – кордаитами, напоминающими хвойные.

Начиная с верхнего карбона в Южном полушарии усилились процессы оледенения. Гондванская флора этого периода называется глоссоптериевой по распространенности в ней видам семенного папоротника Glossopteris – небольшое растение с крупными цельными листьями. В состав глоссоптериевой флоры кроме различных семенных папоротников входили представители других групп голосеменных растений: кордаитовых, гинкговых, хвойных.

Пермское вымирание по масштабу принадлежит к категории «великих вымираний». Пермское оледенение и последовавшее вслед за ним глобальное потепление климата изменили общий облик флоры. Вымерли древовидные плаунообразные, семенные папоротники и кордаиты. Их место занимают представители других групп голосеменных: саговниковые, гинкговые, хвойные.

В позднем мезозое появляются цветковые растения. Первые достоверные остатки были обнаружены в нижнемеловых отложениях с возрастом около 120 млн. лет. Это были мелколистные кустарники или небольшие деревья. В начале позднего мела покрытосеменные приобретают самое широкое распространение и огромное разнообразие размеров и форм. Среди них становятся многочисленными крупнолистные растения, представители современных семейств магнолиевых, лавровых, платановых, кленовых.

О происхождении цветковых до сих пор нет единого мнения. Характерные особенности покрытосеменных, например, образование завязи, защищающей семяпочки (макроспорангии) посредством срастания краев плодолистиков (макроспорофиллов), постепенно развивались у нескольких групп голосеменных растений. Происходило параллельное и независимое развитие признаков покрытосеменных в разных филетических линиях проангиоспермов (имеет место параллельная эволюция).

Широкое распространение покрытосеменных к середине мелового периода и приобретение ими ведущей роли среди флоры в большинстве наземных биоценозов произошло за 15 – 20 млн. лет, но не носило «взрывного» характера.

Расселение и адаптивная радиация покрытосеменных в первой половине мела имели характер постепенного, хотя и относительно быстрого процесса, обычно наблюдаемого после приобретения новой группой организмов важных приспособлений, обеспечивающих преимущества в борьбе за существование.

Главными направлениями биологического прогресса являются 1) арогенез (морфологический прогресс), 2) аллогенез , 3) катагенез (общая деградация)

Арогенез - эволюционное направление, сопровождающееся прообретением крупныхизменений строения - ароморфозов. Ароморфоз (от греч. "айро" - поднимаю, "морфо" - форма, образец) - это такое качественное изменение, при котором значительно увеличивается приспособленность группы, повышается ее жизнедеятельность в новых условиях обитания, что дает широкие преимущества данной группе и способствует расширению ее ареала. Например, появление у плоских червей двусторонней симметрии тела и третьего зародышевого листка послужило основой для усложнения в последующих группах животных пищеварительной системы, мускулатуры, кровеносной и выделительной систем, а также возникновения скелета у позвоночных и т. п. Применительно к отдельным группам, например у млекопитающих, ароморфозы обусловили разделение сердца на четыре камеры и дифференцировку двух кругов кровообращения с одновременным увеличением рабочей емкости легких, усложнение головного мозга и органов чувств, а отсюда и развитие сложных реакций поведения, более гибкое приспособление к быстрой смене обстановки. У растений ароморфозы обеспечили переход из водной среды на сушу, от размножения спорами к размножению семенами. Ароморфозы всегда открывают широкий простор дивергентной эволюции и ведут к биологическому прогрессу.

Аллогенез - эволюционное направление, сопровождающееся прообретением идиоадаптаций . Идиоадаптации (от греч. "идиос" - особенность, "адаптация" - приспособление) - это эволюционные приспособления к специальным условиям среды, наступающие после ароморфозов. При этом общего подъема уровня организации и интенсивности жизнедеятельности организмов не происходит. Например, возникновение млекопитающих стало эволюционным изменением на уровне ароморфоза, но в дальнейшем, без коренных преобразований организации, наступает широкая адаптивная радиация этой группы, при этом появляются многие новые виды, роды, семейства и т. д., которые приспособились к обитанию в разнообразных условиях суши, в водной и воздушной среде.

Основные пути эволюционного процесса (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Ароморфоз - основной путь прогрессивной эволюции, так шла эволюция от одноклеточных к многоклеточным, от двуслойных к трехслойным
Идиоадаптация - эволюция идет вширь на одном уровне организации
Дегенерация - переход на нижеследующий уровень

Существует много гипотез относительно возможных путей происхождения основных царств живой природы. Рассмотрим основные пути исторического развития царств растений и животных, которые являются наиболее изученными с этой точки зрения.

Число видов ныне существующих растений достигает 500 тыс., из них цветковых примерно 300 тыс. видов. Первыми аутотрофами были цианеи и отчасти зеленые водоросли. Их останки находят в породах даже архейского возраста.

В протерозое в морях обитало много разных представителей зеленых и золотистых водорослей. В это же время, по-видимому, появились прикрепленные ко дну водоросли. На поверхности безжизненной суши создается первая почва, возникающая в результате действия абиотических (климатические условия) и биотических (присутствие бактерий и цианей) условий.

В палеозое в царстве растений происходит крупное эволюционное событие – растения выходят на сушу. Однако в первые периоды этой эры растения по-прежнему населяют в основном моря. Встречаются зеленые и бурые водоросли, прикрепленные ко дну, а в толще воды диатомовые, золотистые, эвгленовые. В конце ордовика и начале силур а отмечено появление первых наземных растений – псилофитов, которые покрывали сплошным зеленым ковром прибрежные участки суши. Происходят перестройки в проводящей системе и покровных тканях растений: появляется проводящая сосудистая система со слабо дифференцированной флоемой и ксилемой, кутикула и устьица. Псилофиты оказались более надежно прикрепленными к субстрату с помощью дихотомически разветвленных нижних осей. У некоторых обнаружены примитивные листья. Псилофиты занимали промежуточное положение между наземными сосудистыми растениями и водорослями.

Дальнейшая эволюция растений в наземных условиях привела к усилению компактности тела, появлению корней, развитию эпидермальной ткани с толстыми, пропитанными воскоподобными веществами стенками, изменению способов размножения, распространения и т.д.

С момента выхода на сушу растения развиваются в двух основных направлениях: гаметофитном и спорофитном. Гаметофитное направление было представлено мхами, спорофитное – остальными растениями. Спорофитная ветвь оказалась более приспособленной к наземному образу жизни. У этих растений постепенно совершенствовались и усложнялись корневая и проводящая системы, покровные и механические ткани. Уже в девоне встречаются пышно разросшиеся леса из хвощей, плаунов, папоротникообразных и древних голосеменных(кордаитов). В карбоне эти леса еще более распространены, а климат увлажненный и равномерно теплый в течение всего года. Растения достигают 40 м высоты.

В этом же периоде находят первые семенные древесные растения из голосеменных, расцвет которых приходится на конец карбона пермский период. Их отличие от папоротникообразных и плавунообразных – превращение мегаспорангия в семяпочку. Полное освобождение у части растений процесса полового размножения от воды. Так, опыление у голосеменных осуществляется ветром и после оплодотворения семязачаток превращается в семя, а семена имеют приспособления для распространения ветром и животными.


Мезозойская эра характеризуется интенсивными горнообразовательными процессами: появляется Урал, Тянь-Шань, Алтай и др. Продолжается осушение климата, сокращаются площади океанов и морей. В триасе отмечено развитие пустынь, вымирание гигантских папоротников, древовидных хвощей, плаунов. В юрском периоде, на фоне расцвета голосеменных, появляются первые покрытосеменные растения и беннетитовые – прообраз цветковых растений.

Покрытосеменные постепенно распространяются, завоевывая все материки, что связано с наличием у них ряда преимуществ. Покрытосеменные имеют сильно развитую проводящую систему, цветок и плод (зародыш снабжается запасом питательных веществ). В процессе эволюции цветок претерпевает значительные изменения. Преимущество получали растения с перекрестным опылением. Опылители привлекались ароматом нектара, яркой окраской цветка.

Кайнозойскую эру считают временем расцвета покрытосеменных. В начале кайнозоя еще удерживается теплый климат. В неогене и палеогене формируются Анды, Пиренеи, Гималаи, обосабливаются Средиземное, Черное, Каспийское и Аральское моря. Формируются близкие к современным ботанико-географические области. На севере преобладают хвойные, на юге – каштаново-буковые леса с участием секвой и гинкго. Вся Европа была покрыта пышными лесами из таких деревьев как дуб, береза, сосна, каштан, бук, виноград, орех и т.д. Климат теплый и умеренный.

В четвертичном периоде кайнозойской эры (2-3 млн. лет назад) увеличилось количество осадков и наступило оледенение значительной части Земли, вызвавшее вымирание либо отступление теплолюбивой третичной растительности на юг. Появились холодоустойчивые травянистые и кустарниковые растения. На огромных территориях леса сменялись степью, полупустыней и пустыней. Появляется растительность с выраженной сезонностью в цикле развития, складываются современные фитоценозы.

Таким образом, основные черты эволюции царства растений следующие:

1. Переход от гаплоидности к диплоидности. У многих водорослей и мхов все клетки (кроме зиготы) гаплоидны. У папоротников еще представлен самостоятельный гаметофит, но уже у голосеменных и покрытосеменных наблюдается полная редукция гаметофита и переход к диплоидной фазе.

2. Освобождение процесса полового размножения от наличия воды.

3. Дифференциация тела с переходом к наземным условиям: корень, стебель, лист.

4. Специализация опыления (насекомые).

Для понимания сложной картины функциональной эволюции растений важно выяснить ее направления.

Это даст возможность сопоставить данные об их изменении с направлением морфологической эволюции. Направления эволюционного процесса связаны или с повышением организации и обшей энергии жизнедеятельности организма, приводящего к расширению ареала группы с выходом в новую адаптивную зону (орогенез ), или с развитием ее в прежней зоне (аллогенез ), но с резким расширением территории и увеличением многообразия форм при сохранении общих особенностей строения и функции.

К приобретениям типа арогенеза у растений следует отнести механизмы фотосинтеза и аэробного дыхания, формирование ядра и многоклеточности, дифференциацию тела на органы, развитие проводящей системы, покровов тела и устьичного аппарата в наземных условиях, переход к гормональной регуляции процессов роста и развития и т. д. Каждое из указанных приобретений способствовало выходу растений р новую адаптивную зону и процветанию эволюционирующей группы.

Вслед за подобными изменениями возникали и функциональные аллогенезы: возникновение разных экологических типов растений по использованию механизмов фотосинтеза и дыхания, различие растений в транспирации, по строению и числу хлоропластов и митохондрий, изменение типа листорасположения и формы листовой пластинки, отличия видов по строению устьичного аппарата и проводящей системы, специфические формы движения и питания растений, изменение фотопериодической реакции и т. п. Вследствие перечисленных приобретений растения могут полно и разносторонне использовать адаптивную зону, сохраняя метаболические механизмы. Крайнее выражение аллогенеза - специализация, которая широко распространена на функциональном уровне (С 4 — и CAM-типы ассимиляции углерода, насекомоядность, суккуленты, галофиты, эфемеры и т. п.). После каждого функционального арогенеза шел поиск возможностей для наиболее полного и разнообразного его испытания в борьбе за существование (аллогенез). Так что значение обоих направлений для возникновения разнообразия растений нельзя умалять, хотя они и не равнозначны в эволюционных масштабах.

Функциональная эволюция растений, как и морфологическая, проявляется в различных формах. Так, когда говорят о филетической эволюции, имеют в виду постепенное изменение и превращение одного вида в другой. Одним из ее примеров на функциональном уровне следует признать возникновение аэробного дыхания, а также преобразования в ряду хлорофилл - цитохром - ферредоксин.

Широко распространены на функциональном уровне и такие формы эволюции, как дивергенция, конвергенция и параллелизм.

Дивергенция - это формирование многообразия в живой природе под действием отбора. Дивергенция хорошо изучена на примере морфологических признаков. В отношении физиологических особенностей она также проявляется, хотя есть и кажущиеся противоречия. Например, с момента возникновения фотосинтеза не отмечены существенные изменения в его основных реакциях. Точно так же мало изменились механизмы аэробного дыхания и ряда других процессов. Дивергенция растений по фототрофному питанию идет в двух основных направлениях: усовершенствование аппарата фотосинтеза и поиск экологических возможностей для большего накопления ассимилятов. Отбор в указанных направлениях привел к дивергенции видов по эффективному сочетанию ростовых процессов и способов фиксации CO 2 (А. А. Ничипорович, 1980). Такие последующие изменения, как различия в числе устьиц и строении пучков, в величине и плоидности клеток палисадной ткани и размерах листовой пластинки (W. Gottschalk, 1976), также имели непосредственное отношение к дивергенции видов по интенсивности фотосинтеза и аэробного дыхания. Кроме того, используются и другие возможности для стабилизации механизмов энергетики, возникших на начальных этапах развития растений. Таким путем движущий отбор действовал в сторону усиления экологической дивергенции растений по эффективному использованию процессов. Поэтому на основе одних и тех же биохимических механизмов достигаются различия в их физиологической эффективности (М. Флоркен, 1947).

В отношении отдельных свойств можно даже вычислить темпы дивергенции видов. Так, устойчивость подсолнечника к заразихе и агрессивность последней заметно изменились за истекшие 80 лет. Ныне наблюдается широкая дивергенция видов и популяций растений по устойчивости к промышленным выбросам. Вокруг промышленных городов происходит смена растительности и выживают преимущественно низкорослые кустарники или деревья с мелкими листьями.

Параллелизм - независимое возникновение одинаковых признаков и свойству генетически близких видов. Н. И. Вавилов (1967) подчеркивал, что чем ближе друг к другу виды, тем чаще проявляется параллелизм у растений; речь идет о сходстве их изменчивости и эволюции. Примеры параллелизма, связанные со сходной устойчивостью к грибным заболеваниям (иммунитет), были описаны Н. И. Вавиловым для хлебных злаков. Теперь они широко известны и для других культур.

Напомним, что скороспелые формы встречаются в пределах разных сортов и видов. Часто один и тот же результат - скороспелость и засухоустойчивость -может быть обусловлен мутациями, затрагивающими разные этапы онтогенеза. Представляют интерес примеры параллелизма у разных органов одного и того же растения. Так, антоцианы, определяющие окраску цветков (Р. Вагнер, Г. Митчел, 1958; Б. М. Медников, 1980), образуются благодаря сложным биохимическим превращениям. Оказывается, такие же превращения происходят в листьях, клубнях, плодах и побегах. Параллелизм в изменении окраски перечисленных органов возникает независимо и на разных этапах онтогенеза в силу их генетической общности.

Параллелизм в пределах вида, рода и семейства установлен по таким признакам, как озимость и яровость, гидрофильность и ксерофильность, устойчивость к холоду, содержание белка, продуктивность фотосинтеза и т. д. Н. И. Вавилов выявил параллелизм даже между семействами и типами по «изменчивости как морфологических, так и физиологических признаков».

Напомним, что древовидные формы встречаются в пределах разных семейств покрытосеменных. Сходный ряд наследственной изменчивости у генетически далеких форм Н. И. Вавилов назвал аналогичным.

Конвергенция - это явление схождения признаков у далеких форм. Вопрос о конвергенции (схождении) функциональных особенностей растений изучен слабо. Определенно можно сказать, что биохимия и физиология дают не меньше фактов о конвергенции видов, чем морфология растений. На примере изучения состава алкалоидов, эфирных масел, гормонов и т. д. выявлена конвергенция систематически далеких видов растений.

Заслуживает вниманий, что насекомоядные растения и животные обнаруживают одинаковые способности к расщеплению белков животного происхождения (Л. С. Берг, 1977). Установлены также черты сходства в энергетическом обмене у болотных растений и ныряющих животных (Р. М. Кроуфорд, 1981). Близок по строению и функции сократительный белок мышцы животных и подушки листа мимозы. Концентрацией данного белка определяется способность листьев мимозы к раздражимости. В подушках листьев мимозы локализованы Са 2+ — и Mg 2+ -АТФазы, сходные с АТФазами мышц и немышечных подвижных клеток животных (М. Н. Любимова-Энгельгард и др., 1981). Актиноподобный белок встречается в проводящих пучках и во флоэме высших растений, в цитоплазме у простейших и в плазмодии миксомицет. В немышечных клетках актиноподобный белок принимает участие в создании сети микрофиламентов, которая, взаимодействуя с миозинподобными белками, обеспечивает подвижность клеточных структур и цитоплазмы, светозависимое перемещение хлоропластов.

Изучение роли белков в защитных реакциях растений против фитовирусов показало их сходство с интерферонами животных по вирусоспецифичности, молекулярной массе, способности существовать в мономерных и полимерных формах. Причем индукторы интерферонов животных в тканях растений вызывают образование антивирусного белка, равно как фитовирусы, введенные в ткани животных, индуцируют синтез интерферона. Здесь наглядна конвергенция механизмов защитных функций на основе далекой общности происхождения животных и растений.

Одним из примеров конвергенции может служить сходство защитных веществ у растений и животных. Так, грибные полисахариды с β-связями играют индукторную роль в защитных реакциях не только растений, но и теплокровных животных и человека (Л. В. Метлицкий, О. Л. Озерецковская, 1985). Грибные циклические пептиды (Циклоспорионы) подавляют защитные реакции у высших животных.

Бесспорные факты функциональной конвергенции у растений описаны на примере С 4 -пути фотосинтеза у представителей далеких таксонов в пределах одно- и двудольных растений. Дивергенция С 4 -растений проявляется по строению обкладки пучка и первичным продуктам запасания CO 2 . Однако принцип пространственного разделения механизма первичного запасания CO 2 и его дальнейшего вовлечения в фотосинтетический метаболизм остается общим при конвергенции видов по С 4 -пути как результат отбора растений в определенных экологических условиях.

Есть и другие примеры. Так, Г. Балтчевским (см.: Г. Деборин и др., 1975) показана общность электрон-транспортных белков у животных и растений. Сходны строение и функция зрительного ретинала (родопсина) и бактериородопсина с каротиноидами. В частности, благодаря бактериородопсину Halobacterium halobium, живущая в условиях соленой рапы, осуществляет «бесхлорофилльный» фотосинтез. У растений встречаются ацетилхолин и гамма-аминомасляная кислота - вещества, выполняющие у животных роль нервных регуляторов.

Можно привести и другие примеры функциональной конвергенции. Так, устойчивость к неблагоприятным условиям (засуха, затопление, заморозки и т. д.) характерна для представителей низших и высших, голосеменных и покрытосеменных, однодольных и двудольных растений. В ряде случаев конвергенция наблюдается даже в отношении одинаковых реакций, обусловливающих устойчивость к недостатку воды в почве: сосущей силы, осмотического давления, интенсивности транспирации. Конвергенцию ошибочно пытались объяснить вопреки механизму действия естественного отбора (Л. С. Берг, 1977). Однако только направленность отбора в близких условиях способствует конвергенции видов (Ч. Дарвин, 1939). Экологическая экспансия видов приводит к захвату сходных ниш представителями систематически далеких форм. Это и способствует их функциональной конвергенции.

Все еще делаются попытки объяснить явления конвергенции и параллелизмов вне механизма действия естественного отбора, опираясь на палеонтологические, сравнительно-морфологические (А. Б. Иваницкий, 1977; В. А. Кордюм, 1982; А. А. Любышев, С. В. Мейен, 1979, 1988) и молекулярно-генетические данные (Л. И. Корочкин, 1985, 1991). В этом же плане следует рассматривать и гипотезу автоэволюции (А. Лима де Фариа, 1991), где факты конвергентного и параллельного развития формы и функции представлены как результат реализации общих закономерностей неживой природы. В принципе нельзя отрицать наличие аналогии между организацией строения стебля растений и минералов (А. Лима де Фариа, 1991), проявление общих закономерностей развития неживой природы, как в случае накопления и синтеза веществ вторичного метаболизма (М. Н. Запрометов, 1988, 1993; М. Е. Лоткова, 1981; М. Лукнер, 1979; В. А Пасешниченко, 1991; К. Mothes, 1981), при схождении физиологических особенностей у генетически неродственных форм (Т. К. Горышина, 1989; W. Larcher, 1980; W. V. Zucher, 1983) и пигментов у растений и животных (D. Fox, 1979). В то же время подобные факты нельзя понять вне механизма действия естественного отбора или при ограничении его роли «доработкой» новшеств. Явления конвергенции и параллелизмов в дарвинизме получили свое объяснение (К. М. Завадский и Э. И. Колчинский, 1977; А. С. Северцов, 1990; Т. Я. Сутт, 1977; Л. П. Татаринов, 1988), что в равной степени относится и к функциональному уровню.



Новое на сайте

>

Самое популярное