Домой Популярное Возрастные особенности кроветворения. Постнатальный период кроветворения

Возрастные особенности кроветворения. Постнатальный период кроветворения

И.Б. Алакаева, Н.В. Непокульчицкая, Г.А. Самсыгина, Т.А. Высоцкая

ОСОБЕННОСТИ ГЕМОПОЭЗА ВО ВНУТРИУТРОБНОМ ПЕРИОДЕ И ВЛИЯНИЕ НА НЕГО ВРОЖДЕННЫХ ИНФЕКЦИЙ

ГОУ ВПО РГМУ Росздрава, Москва

Для эмбрионального кроветворения характерна смена локализации в ряде внезародышевых и зародышевых органов. По ведущей роли того или иного органа выделяют три , по данным других авторов - четыре периода: мезобластичес-кий, печеночный, селезеночный, медуллярный.

Мезобластический тип кроветворения возникает в желточном мешке, аллантоисе, хорионе, стебле хориона приблизительно к концу 2-й - началу 3-й недели после оплодотворения. К этому времени под энтодермой появляются плотные скопления мезенхимных клеток - кровяные островки. К концу 3-й недели центральные клетки островков округляются и превращаются в кроветворные клетки. Периферические клетки уплощаются и становятся эндотелиоцитами возникающих таким образом кровеносных сосудов. Первые клетки крови появляются как вне сосудов, так и внутри них. Но по мере разрастания сосудистой сети интраваскулярное кроветворение становится ведущим. Среди клеток крови, образующихся в этот период, преобладают крупные первичные эритропоэтические клетки, содержащие ядра. Выделяют крупные бласты с базофильной цитоплазмой, проэритробласты с полихроматофиль-ной цитоплазмой, эритробласты, ортохромные с эксцентричным ядром и безъядерные эритроб-ласты. Все эритробласты этого периода называют мегалобластами, а процесс мегалобластическим кроветворением. Гемоглобин эмбрионального типа отличается высокой степенью связывания с кислородом и встречается до 12 недель развития. На 7-й-8-й неделе развития эмбриона появляются мегалоциты (гипохромные эритроциты), нормо-бласты и нормоциты, количество которых к 12-й неделе резко возрастает (до 74%), а мегалобласты практически исчезают. Хотя в мезобластический период кроветворения отмечается преимущественно эритропоэз, тем не менее в этот период можно обнаружить клетки-предшественницы всех гемо-поэтических ростков . Гранулоциты обнаруживаются в крови эмбрионов на 4-й-5-й неделе, лимфоциты - на 6-й неделе, а моноциты и активированные макрофаги - на 8-й неделе. Клетки гранулоцитарного, моноцитарного, лимфоцитар-

ного и мегакариоцитарного рядов малочисленны. Кроветворение во внезародышевых органах прекращается к 9-й неделе .

Печеночный этап гемопоэза возникает с 5-й недели гестации. В течение 3-6 месяцев печень становится главным органом гемопоэза, а также печень является местом образования эритропоэтина . Источником кроветворения в печени является полипотентная гемопоэтическая стволовая клетка. Во время закладки печени на 3-й-4-й неделе эмбриогенеза в сосудистую систему закладки приносятся стволовые клетки первой генерации. Внутри сосудов печени вначале образуются мега-лобласты. На 4-й-5-й неделе между гепатоцитами появляются клетки-предшественницы с базофиль-ной цитоплазмой и эксцентричным ядром, лимфо-идные клетки, эритробласты и макрофаги. С 7-й недели число примитивных эритробластов уменьшается и преобладающими становятся нормоциты. На 9-й-15-й неделях дефинитивные эритроциты составляют 95% всех кроветворных клеток печени. Гемоглобин эмбрионального типа сменяется на фетальный. Ведущим становится экстраваскуляр-ное кроветворение. В течение первых 15 недель уровень гранулоцитопоэза низкий. С 21-й недели начинается увеличение числа гранулоцитов с локализацией в соединительной ткани портальных зон печени. Мегакариоциты определяются в печени с 5-й недели, лимфоциты - с 7-й недели. Содержание лимфоцитов повышается по мере увеличения сроков гестации и к 22-й-27-й недели составляют 10%. В печени содержатся стволовые и комми-тированные клетки-предшественники миелоид-ного и лимфоидного рядов. В печени начинается образование В-лимфоцитов. Пре-В-лимфоциты определяют по содержанию цитоплазматических иммуноглобулинов (^), В-лимфоциты - по мембранным В-лимфоциты выявляются в печени эмбриона человека на 8-й-9-й неделе. Макрофаги появляются в значительных количествах с самого начала кроветворения в печени, но с 6-й недели их количество снижается. Наиболее высокое количество миелоидных клеток-предшественников отмечается на 9-й и 21-й неделях гестации. В первый подъем (9-я неделя) миелопоэз носит моноци-

то-макрофагальный характер, также наблюдается активность клеток предшественников эритропоэ-за. На 21-й неделе - второй подъем - преобладают миелобласты и промиелоциты, иногда зрелые гранулоциты. Спонтанный эритропоэз отсутствует. К моменту рождения ребенка гемопоэз в печени прекращается, хотя в течение 1-й недели пос-тнатальной жизни ребенка у него в печени могут обнаруживаться единичные гемопоэтические элементы .

Селезенка закладывается на 5-й-6-й неделе эмбриогенеза, кроветворение в селезенке начинается с 11-й-12-й недели гестации . Первоначально в селезенке определяются грануло,- эритро-и мегакариоцитопоэз. Лимфоциты появляются на 11-й неделе, а в 13 недель выявляются В-лим-фоциты с ^ рецепторами. С 12-й недели размер селезенки увеличивается, в пульпе идет диффе-ренцировка ретикулярных клеток, появляются аргирофильные волокна и очаги миелоидного кроветворения. Белая пульпа формируется на 15-й неделе. Гемопоэз в селезенке продолжается до 6 месяцев эмбриогенеза, на 7-м месяце миелопоэз угасает и усиливается лимфоцитопоэз. Некоторые авторы считают, что селезенка играет значительную роль не столько как орган фетального гемопо-эза, сколько как место секвестрации и деструкции клеток .

Становление кроветворения в костном мозге. Формирование костного мозга связано с образованием костей. Он появляется на 7-й-8-й неделе эмбриогенеза в ключице, далее на 9-й-10-й неделе - в трубчатых костях, на 18-й-19-й неделе - в ребрах, телах позвонков и грудине. У плода 11-й-14-й недель гестации в подвздошной кости определяются незрелые гемопоэтические клетки и эритроциты, на 23-й-27-й неделе гестации обнаруживаются элементы всех трех ростков кроветворения на всех стадиях развития. В диафизах плечевой и бедренной кости среди костно-мозговых элементов определяются клетки миелоидного и мегакарио-цитарного ряда. К 22-й неделе гестации количество гемопоэтических стволовых клеток в костном мозге составляет 1,6%. Эмбриональный костный мозг отличается от других типов гемопоэза тем, что здесь доминирует миелопоэз. Эритропоэз в эмбриональном костном мозге развивается позже и в основном смешивается с процессом миелопоэза. Различные очаги эмбрионального гемопоэза активны на соответствующих этапах развития. За этой активацией следует программируемая инволюция. Исключение составляет костный мозг, который сохраняется как основной центр гемопоэза у взрослых.

Существует гипотеза о качественном различии стволовых клеток в разные периоды жизни человека . Согласно этой гипотезе, смена мест основного кроветворения в эмбриогенезе представляет собой не перемещение одинаковых стволовых

клеток из одного органа в другой, а пролиферацию иной стволовой группы клеток. В связи с чем мы видим морфофункциональные различия эритроцитов плода, новорожденного и взрослого, а также разнообразие лейкозов по форме и возрасту пациентов.

Состав крови плода отражает динамику кроветворения в органах гемопоэза. До 12 недель в сосудистом русле идет мегалобластический эритро-поэз, в нем циркулируют моноциты и макрофаги, фагоцитирующие отдельные эритроидные клетки и их ядра. С 13-й недели число ядросодержащих эритроидных клеток снижается и начинается повышение дефинитивных эритроидных клеток. Наибольшее содержание ядросодержащих эритро-идных клеток отмечается в 24-25 недель. На протяжении первых 7 суток постнатальной жизни ядросодержащие эритроидные клетки исчезают. Первые гранулоциты и их предшественники определяются в крови эмбриона в 4-5 недель. До 20 недель они составляют в миелограмме 4-7% всех клеток. В 21-23 недели активизируется грану-лоцитопоэз в костном мозге и в крови отмечается снижение клеток-предшественников гранулоци-тов и повышается количество зрелых гранулоци-тов. В 6 недель в крови определяются лимфоциты, к 21-23-й неделе они составляют 56-60% от всех лейкоцитов. В этот период отмечается активность развития лимфоидных органов. На 24-25-й неделе количество лимфоцитов снижается до 27% и снова повышается на 28-30-й неделе до 43-48%. К моменту рождения количество лимфоцитов снова снижается до 33-35%. С 8-й недели появляются большие гранулярные лимфоциты - МК-клетки. Они составляют 2-13% от всех лимфоцитов. Т- и В-лимфоциты выявляются в крови с 13-й недели. Содержание Т-лимфоцитов с 13-й до 40-й недель увеличивается от 13 до 60%. Концентрация В-лим-фоцитов достигает максимального значения (28%) в 21-23 недели и 28-30 недель.

Кровь у новорожденного имеет некоторые особенности гемограммы и лейкоцитарной формулы. Характерно повышенное содержание эритроцитов - до 6-7 млн/мкл. К 10-14-м суткам количество эритроцитов приближается к количеству эритроцитов у взрослых, затем к 3-6 месяцам уменьшается, с 5-6 месяцев до 1 года - постепенно увеличивается. Для новорожденных характерны анизоцитоз, наличие макроцитов и ретикулоци-тов . Средняя продолжительность жизни эритроцитов у детей до 1 года меньше, чем у взрослых. В крови новорожденного повышенное содержание гемоглобина и в первые сутки после рождения составляет в среднем 200 г/л. Со 2-го дня уровень гемоглобина постепенно снижается до 140-150 г/л к 1 месяцу. Снижение содержания гемоглобина продолжается в течение первого полугодия жизни, остается низким до 1 года и только затем начинает постепенно повышаться. К 1 году жизни

Педиатрия/2009/Том 87/№4

фетальный гемоглобин сменяется на гемоглобин взрослого типа. Уровень тромбоцитов в крови новорожденного такой же, как у взрослых, колебания содержания в течение первого года жизни незначительные. Характерно наличие юных форм тромбоцитов. Количество лейкоцитов в первые сутки после рождения повышено до 11,4-22,0 тыс/мкл, начиная со 2-го дня число лейкоцитов снижается и достигает к 1 месяцу 7,6-12,4 тыс/ мкл. В течение первого года жизни количество лейкоцитов остается относительно стабильным. В лейкоцитарной формуле преобладают нейтро-филы (60-65%), часто со сдвигом влево, моноциты составляют 8-14%, эозинофилы - 0,5-3%, базофилы - до 1%, лимфоциты - 20-30%. На 4-е сутки происходит первый физиологический перекрест - уравнивается количество нейтрофи-лов и лимфоцитов. В возрасте 1-2 лет лимфоциты составляют 65%, нейтрофилы - 25%. В 4 года наступает второй физиологический перекрест - количество лимфоцитов и нейтрофилов опять становится одинаковым, а нейтрофильный профиль устанавливается к 14-15 годам.

Анализ данных литературы последних 15 лет, показал, что и в настоящее время достаточно актуальной является проблема врожденных инфекций (ВИ) вследствие высокого тератогенного действия различных возбудителей, а также их влияния на гемопоэз новорожденного.

По данным многих авторов , гематологические изменения (анемия, нейтропения, тром-боцитопения) чаще встречаются при ВИ, вызванных сочетанием вируса простого герпеса (ВПГ) с цитомегаловирусом (ЦМВ). Другими авторами описаны гематологические изменения при наличии только герпетической инфекции, при этом в равной степени отмечались лейкопения и лейкоцитоз, реже выявлялись тромбоцитопения и анемия. Все авторы считают, что из гематологических проявлений при врожденной ЦМВИ чаще встречается тромбоцитопения (76%). Причины возникновения тромбоцитопении и геморрагического синдрома одни авторы связывают с репродукцией ЦМВ в мегакариоцитах костного мозга, другие - с синдромом диссеминирован-ного внутрисосудистого свертывания. Кровотечения, наблюдающиеся в 40-50% случаев генерализованной герпетической инфекции, вызваны диссеминированным внутрисосудистым свертыванием. Кровотечения ассоциированы с тромбоцито-пенией и вариабельным дефицитом фибриногена и факторов V и VIII .

В ряде наблюдений геморрагический синдром характеризовался не только подкожными кровоизлияниями и петехиями, но легочными и желудочно-кишечными кровотечениями . По данным Шабалдина А.В. и соавт. , у всех детей с ЦМВИ была выявлена среднетяжелая анемия, причем гемолитический характер анемии имел место у одно-

го ребенка, у остальных анемия была смешанного генеза (инфекционного и анемия недоношенных). Некоторыми авторами отмечается в периферической крови лейкоцитоз со сдвигом влево в нейтрофильном ряду (50%). Случаи цитопении описаны при сочетании ЦМВИ с ВПГ .

Впервые доказана возможность непосредственного поражения ВПГ костного мозга, селезенки и тимуса (метод гибридизации in situ) . Кроме того, была выявлена иммуносупрессорная активность ВПГ в отношении Т-лимфоцитов и нейтро-фильных гранулоцитов.

При морфологическом исследовании у погибших плодов и новорожденных с генерализованной ЦМВИ в костном мозге отмечалось омоложение клеток с картиной реактивного эритробластоза и пролиферацией незрелых клеточных элементов миелоидного и эритроидного ряда. Отмечались очаги экстрамедуллярного кроветворения .

При хламидийной инфекции со стороны периферической крови, по данным литературы , чаще наблюдаются анемия и моноцитоз, возможно развитие эозинофилии к концу 1-2-й недели. Другие авторы отмечают, что в 50% случаев наблюдается лейкоцитоз со сдвигом влево в ней-трофильном ряду.

Выраженная тромбоцитопения, геморрагическая сыпь на коже характерны для острого токсо-плазмоза .

По данным литературы , у всех новорожденных с микоплазменной инфекцией наблюдаются нормохромная анемия, эозинофилия, моноци-тоз, реже лейкоцитоз, нейтрофилез.

Для врожденной краснухи характерно развитие тромбоцитопенической пурпуры. Большинство авторов описывает только тромбоцитопению со стороны периферической крови .

Парвовирус В19 литически размножается в эритробластах в печени, селезенке, костного мозга и приводит к торможению эритропоэза . Происходит сокращение продолжительности жизни эритроцитов до 45-70 дней, резкое снижение уровня ретикулоцитов, вплоть до их полного исчезновения. Возможно временное снижение уровня лимфоцитов, гранулоцитов, тромбоцитов.

Анализ данных литературы показал наличие разнонаправленных исследований, касающихся ге-мопоэза плода и новорожденного. Эти исследования проводятся в разные сроки жизни плода и детей первых месяцев жизни, не носят системный характер и в основном определяются теми гематологическими изменениями, которые появляются в результате воздействия различных возбудителей на гемопоэз.

Таким образом, полученные сведения позволяют сделать вывод о необходимости проведения исследований и выявления изменений в гемопо-эзе плода и новорожденного в результате воздействия на эту систему различных инфекционных агентов.

ЛИТЕРАТУРА

1. Бобова Л.П., Кузнецов С.Л., Сапрыкин В.П. Гистофизио-логия крови и органов кроветворения и иммуногенеза. М.: «Новая волна», 2003.

2. Алексеев НА. Клинические аспекты лейкопений, ней-тропений и функциональных нарушений нейтрофилов. СПб.: Фолиант, 2002.

3. Schiffman F.Е. Haemathologic pathophisiology. Philadelphia, NY, Lippincott. Raven, 1998.

4. Pallisiter C. Blood. Physiology and Pathophisiology. Boston, Butterworth Heinemann, 1997.

5. Banasik C. Pathophisiology. Philadelphia, NY, Saunders, 2000.

6. Воробьев А.И., Брилиант М.Д. и др. Руководство по гематологии. М.: Медицина, 1985.

7. Цинзерлинг А.В., Цинзерлинг ВА. Современные инфекции. Патологическая анатомия и вопросы патогенеза. 2-е изд. СПб.: Сотис, 2002.

8. Рыжова О.Б., Торубарова НА. Роль вирусных инфекций в патогенезе цитопенических синдромов у новорожденных детей. Материалы XI конгресса «Человек и лекарство». М., 2004: 137-138.

9. Кузьмин В.Н., Адамян Л.В. Вирусные инфекции и беременность. М.: Дипак, 2005.

10. Kohl S. Neonatal herpes simplex virus infection. Clin. Perinatol. 1997; 24: 129.

11. Jenkins M, Kohl S. New aspects of neonatal herpes. Infectious Diseases clinics of North America. 1992; 6; 59-74.

12. Капранова Е.И., Белоусова Н.А., Мельникова Е.В. и др. Клиническое течение и диагностика внутриутробных инфекций у новорожденных. Эпидемиология и инфекционные болезни. 1997; 27-30.

13. Сидорова И.С., Макаров И.О., Матвиенко НА. Внутриутробные инфекции: Учебное пособие. М.: ООО «Медицинское

информационное агентство», 2006.

14. Румянцев А.Г. Гематологические проявления внутриутробных инфекций. Леч. дело. 2004; 1: 9-17.

15. Stagno S. Britt W. Cytomegalovirus infections. In: Infectious Diseases of the Fetus and Newborn Infant. 6th ed. Eds. Remington JS, Klein JO, Wilson CB, Baker CJ. Philadelphia: Elsevier Saunders, 2006.

16. Протоколы диагностики, лечения и профилактики внутриутробных инфекций у новорожденных детей. Российская ассоциация специалистов перинатальной медицины. М.: ГОУ ВУНМЦ МЗ РФ, 2001.

17. Шабалдин А.В., Балаянова ЛА., Казакова Л.М. Применение полимеразной цепной реакции в диагностике внутриутробных инфекций у плодов и новорожденных. Педиатрия. 2000; 3: 38-41.

18. СенчукА.Я., Дубоссарская З.М. Перинатальные инфекции: практическое пособие. М.: МИА, 2005.

19. Stagno S. Pass RF. doud G. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus and outcome. JAMA. 1986; 256: 1904-1908.

20. Газовская Л.А. Клиническое течение и лабораторная диагностика внутриутробных инфекций (хламидийной, мико-плазменной, цитомегаловирусной и герпесвирусной) у новорожденных детей. Автореф. дисс. ... канд. мед. наук. М., 1997.

21. Remington, JS, McLeod, R, Thulliez, P, Desmonts, G. Toxoplasmosis. In: Infectious Diseases of the Fetus and Newborn Infant. 6th ed. Eds. Remington JS, Klein JO, Wilson CB, Baker CJ. Philadelphia: Elsevier Saunders, 2006.

22. Epps RE, Pittelkow MR, Su WP. TORCH syndrome. Semin. Dermatol. 1995; 115: 680.

23. Cooper LZ. Alford CA. Rubella. In: Infectious Diseases of the Fetus and Newborn Infant. 6th ed (Eds), Remington JS, Klein JO, Wilson CB, Baker CJ, Elsevier Saunders, Philadelphia, 2006.

Гемоцитопоэз

Гемоцитопоэз процесс образования форменных элементов крови. Различают два вида кроветворения: миелоидное и лимфоидное.

В свою очередь миелоидное кроветворение подразделяется на эритропоэз, гранулоцитопоэз, моноцитопоэз, тромбоцитопоэз.

В гемопоэзе различают два периода: эмбриональный и постэмбриональный.

Эмбриональный период представляет собой гистогенез и приводит к образованию крови как ткани. Осуществляется в эмбриогенезе поэтапно, в нем различаются три основные этапа:

Желточный (мезобластический);

Печеночный

Медуллярный (костно-мозговой)

Желточный этап.

В мезенхиме желточного мешка образуются «кровяные островки», представляющие собой очаговые скопления мезенхимных клеток. Затем происходит дивергентная дифференцировка этих клеток.

Периферические клетки образуют эндотелиальную выстилку сосуда. Центральные клетки округляются, превращаясь в стволовые кроветворные клетки. Их этих клеток в сосудах, т.е. интраваскулярно начинается процесс образования первичных эритроцитов. Они отличаются большими, чем у нормоцитов размерами, наличием ядра и содержанием особого вида гемоглобина – HbP (эмбрионального). Такой тип кроветворения называется мегалобластическим.

Часть стволовых клеток оказывается вне сосудов и из них начинают развиваться зернистые лейкоциты, которые затем мигрируют в сосуды.

Важнейшим итогом этого этапа является образование стволовых клеток крови I-й генерации.

Второй этап – печеночный - начинается на 5-й неделе эмбриогенеза в печени, экстраваскулярно – по ходу капилляров, врастающих с мезенхимой внутрь печени. В печени активно развиваются стволовые клетки II-й генерации и из них образуются эритроциты и гранулоциты до конца 5-го месяца, затем процесс гемоцитопоэза там постепенно снижается. Тимус начинает заселяться стволовыми клетками с 7-8 недели, дает начало Т-лимфоцитам.

Селезенка заселяется стволовыми клетками на 7-8 неделе и в ней экстраваскулярно начинается универсальное кроветворение, т.е. происходит и миело- и лимфоцитопоэз..

Третий период эмбрионального кроветворения – медулло-тимусо-лиенальный . Закладка красного костного мозга начинается со 2-го месяца эмбриогенеза. Кроветворение в нём начинается с 4-го месяца закладкой стволовых клеток III-й генерации, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т.е. осуществляется универсальный гемоцитопоэз.

Постнатальный период кроветворения.

Постэмбриональное кроветворение является физиологической регенерацией и восполняет естественную убыль форменных элементов крови.

В настоящее время принята унитарная теория кроветворения, на основе которой И.Л. Чертковым и А.И. Воробьевым разработана принятая в настоящее время схема кроветворения.


Согласно этой схеме существует два вида кроветворения: миелоидное и лимфоидное.

Миелопоэз в свою очередь подразделяется на эритропоэз, гранулоцитопоэз, моноцитопоэз и тромбоцитопоэз.

Лимфоцитопоэз подразделяется на Т- и В-лимфоцитопоэз.

В процессе поэтапной дифференцировки стволовых клеток в форменные элементы крови в каждом ряду кроветворения образуются типы клеток, которые в совокупности образуют классы клеток.

Всего в схеме кроветворения различают 6 классов клеток:

I – стволовые клетки – полипотентные

II – полустволовые – коммитированные, мультипотентные

III- унипотентные -

IV- бластные – клетки предшественники

V - созревающие

VI- зрелые форменные элементы.

I класс – стволовые полипотентные клетки. Концентрация этих клеток очень редка 10–4– 10-5от общего числа клеток костного мозга.

Располагаются в местах, хорошо защищенных от внешних

воздействий и обладающих обильным кровоснабжением.

С возрастом число стволовых клеток не изменяется.

Способны к неограниченному самоподдержанию своей популяции.

По морфологии соответствуют малому лимфоциту,

Стволовые клетки крови устойчивы к действию повреждающих факторов, в том числе и радиации.

Поддержание численности популяции происходит с помощью симметричных (некоммитирующих) митозов.

Стволовые клетки делятся редко.

Способны циркулировать в кровь, мигрируя в другие кроветворные органы.

II класс – полустволовые , ограниченно полипотентные (или частично коммитированные) клетки бывают двух типов:

Предшественники миелопоэза

Предшественники лимфопоэза

Каждая из них также образует колонию, т.е. клон клеток, но либо миелоидных, либо лимфоидных. В последнее время среди полустволовых клеток миелопоэза выделены 3 типа клеток: КОЕ-ГМ (дающие начало моноцитам и гранулоцитам), КОЕ-ГнЭ (гранулоцитам и эритроцитам), КОЕ-МгцЭ (мегакариоцитам и эритроцитам). Все полустволовые клетки также как стволовые по морфологии являются лимфоцитоподобными и способны к ограниченному самоподдержанию.

III класс – унипотентные поэтинчувствительные клетки- предшественники своего ряда. По морфологии соответствуют малым лимфоцитам, способны давать колонии, состоящие только из одного типа форменных элементов.

Методом колониеобразования среди унипотентных клеток определены

КОЕ-М – предшественники моноцитов

КОЕ-Гн – нейтрофильных гранулоцитов

КОЕ-Эо – эозинофильных гранулоцитов

КОЕ-Б – базофильных гранулоцитов

КОЕ-Э – эритроцитов (её предшественник БОЕ-Э – бурст-образующая единица)

КОЕ-Мгц – мегакариоцитов.

Частота деления этих клеток и способность к дифференцировке зависит от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и т.д.).

Первые три класса объединяются в класс морфологически не идентифицируемых клеток, имеющих морфологию малого лимфоцита.

IV класс – бластные клетки (эритробласты, лимфобласты, мегакариобласты, монобласты, миелобласты). Эти клетки имеют характерную морфологию – имеют крупные размеры, крупное, богатое преимущественно эухроматином ядро с 2-4 ядрышками. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

V класс – класс созревающих клеток , характерных для своего ряда кроветворения.

Эритроидный ряд.

Клетки эритропоэтического ряда - эритрон - составляют от 20 до 30% всех клеток костного мозга. За один час образуется 10 10 эритроцитов. Родоначальник – БОЕ-Э – (от англ бурст – взрыв), из неё образуется более дифференцированная КОЕ-Э, чувствительная к эритропоэтину.

Под влиянием эритропоэтина КОЕ-Э дифференцирутся, давая начало морфологически распознаваемым стадиям эритроидного ряда. Ими являются:

Делящиеся клетки проэритробласт

базофильный эритробласт

полихроматофильный эритробласт

Неделящиеся клетки оксифильный эритробласт

ретикулоцит

эритроцит

Процесс дифференцировки сопровождается уменьшением размеров клеток, снижением содержания и, в конечном итоге, утрата всех органоидов, конденсация ядра с последующим его удалением из клетки. Самым ярким признаком эритроидной дифференцировки является появление в цитоплазме гемоглобина. Синтез гемоглобина продолжается до конца стадии ретикулоцита. Длительность всех этапов эритропоэза около 7 суток.

В костном мозге эритробласты созревают в тесном контакте с макрофагами, образуя эритробластические островки. Находящиеся в этих островках макрофаги снабжают эритробласты железом.

Денуклеация (удаление ядра) происходит путем отделения от оксифильного эритробласта отростка, содержащего ядро. Выброшенное ядро окружено тонкой полоской цитоплазмы.

Специфическими факторами регуляции эритропоэза являются эритропоэтины, кейлоны. Эритропоэтин – продуцируется на 90% почкой, на 10% печенью и вырабатывается в ответ на гипоксию. Его действие усиливается неспецифическими факторами. К ним относят, например тестостерон, АКТГ, преднизолон, витамины В6 и В12.

Зрелые эритроциты, обладающие большой эластичностью за счет активного движения проходят сквозь цитоплазму эндотелиальных клеток, проникая через поры, образуемы только во время миграции.

Гранулоцитопоэз.

Гранулоцитопоэз – образование и дифференцировка гранулоцитов происходит в красном костном мозге.

Миелобласты и образующиеся после их коммитирующего митоза промиелоциты трех рядов (нейтрофильного, эозинофильного, базофильного) гранулоцитопоэза являются делящимися клетками и морфологически сходны. Это крупные клетки, содержащие округлое ядро. В цитоплазме накапливаются первичные азурофильные гранулы, относящиеся к лизосомам.

Следующие клетки развития: миелоциты, метамиелоциты, палочкоядерные и сегментоядерные гранулоциты характеризуются дивергентной дифференцировкой цитоплазмы.

В нейтрофильном ряду появляются нейтрофильные гранулы, в базофильном – базофильные, в эозинофильном – специфические оксифильные. Из этих клеток способны делиться только миелоциты. Одновременно происходит уменьшение размеров клеток, изменение формы ядра от округлой до сегментированной, в различной степени в перечисленных рядах, усиление конденсации хроматина. Кроме того, на плазмолемме появляются разнообразные рецепторы, подвижность клеток нарастает.

Развитие нейтрофилов от КОЕ-ГнМ до выхода в кровоток завершается за 13-14 сут. Эозинофилы и базофилы созревают быстрее. Гранулоциты остаются в костном мозге в течение 1-2 сут., образуя костно-мозговой пул (запас) зрелых клеток. Затем они выходят в кровь, где циркулируют несколько часов.

Моноцитопоэз

Унипотентный предшественник моноцита (КОЕ-М) превращается в монобласт. Далее различают промоноцит и моноцит .

Морфологически созревание выражается в изменении формы ядра от округлой до бобовидной, в увеличении относительного количества цитоплазмы и появлении в ней лизосом, уменьшении базофилии цитоплазмы. Моноциты не образуют резервного костно-мозгового пула, покидают костный мозг вскоре после образования. Затем несколько часов циркулирует в крови. После выселения в ткани они превращаются в макрофаги.

Развитие тромбоцитов.

Кровяные пластинки образуются в костном мозге из мегакариоцитов.

Унипотентный предшественник (КОЕ-МГЦ) превращается в мегакариобласт – крупную клетку (диаметр около 16 мкм) с лапчатым ядром, базофильной цитоплазмой. Они превращаются в промегакариоциты и затем мегакариоциты. Количество мегакариоцитов в клоне невелико (от 4 до 50). Это связано с тем, что предшественники не только делятся, но и полиплоидизируются.

Зрелый мегакариоцит образует пропластинчатые отростки (ленты), которые вытягиваются в просвет синусоида. От этих лент отшнуровываются фрагменты цитоплазмы, ограниченные мембранами, превращаясь в кровяные пластинки.

Цикл развития от стволовой клетки до тромбоцитов составляет около 10 сут. Тромбоцитопоэз регулируется КСФ-Мег и тромбопоэтином.

Лимфоцитопоэз.

В отличие от миелопоэза, лимфоцитопоэз осуществляется поэтапно, сменяя разные лимфоидные органы. И в Т- и в В-лимфоцитопоэзе выделяются 3 этапа:

1. Костномозговой этап. На этом этапе из стволовых клеток дифференцируются предшественники Т- и В-лимфоцитопоэза.

2. Этап антигеннезависимой дифференцировки, осуществляемый в центральных органах иммуногенеза. На этом этапе образуются лимфоциты, способные только распознавать антигены.

3. Этап антигензависимой дифференцировки, осуществляемый в периферических лимфоидных органах. Из клеток, способных распознать антиген формируются эффекторные клетки, способные уничтожить антиген.

Т-лимфоцитопоэз

Первый этап осуществляется в красном костном мозге, где находятся принадлежащие к I классу стволовые клетки, II классу –полустволовые клетки лимфоцитопоэза и III классу – унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза – про-Т-лимфоциты (протимоциты). Клетки III класса мигрируют в кровяное русло и оседают в тимусе.

Второй этап – этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Под влиянием тимозина, унипотентные предшественники превращаются в IV класс – Т-лимфобласты, затем V класс – незрелые Т- лимфоциты (претимоциты) , и VI класс - Т лимфоциты. Здесь образуются все типы Т-лимфоцитов – Т-хелперы, Т-супрессоры, Т-киллеры.

Незрелые и затем зрелые тимоциты приобретают антигенраспознающие рецепторы к самым разнообразным антигенным веществам, однако здесь с антигенами они не встречаются, т.к. тимус защищен особым гемато-тимусным барьером. Одновременно происходит выбраковка Т-лимфоцитов, направленных против собственных антигенных детерминант. Образованные Т-лимфоциты проникают в сосудистое русло и с током крови заносятся в периферические лимфоидные органы.

Третий этап – этап антигензависимой дифференцировки осуществляется в Т-зависимых зонах периферических лимфоидных органов –лимфатических узлов, селезенки, лимфоидной ткани трубчатых органов, где создаются условия для встречи антигена с Т-лимфоцитом , имеющим рецептор к данному антигену.

Контакт с антигенными детерминантами вызывает активизацию Т-лимфоцита, он превращается в Т-иммунобласт . Процесс превращения Т-лимфоцита в Т-иммунобласт называется реакцией бласттрансформации. Т-иммунобласт неоднократно делится митотическим путем и образует клон клеток.

Часть Т-лимфоцитов из полученного клона становятся Т-лимфоцитами памяти.

Т-хелперы секретируют медиаторы – лимфокины, стимулирующие гуморальный иммунитет.

Т-супрессоров синтезируют лимфокины, которые угнетают гуморальный иммунитет.

Т-киллерный иммунобласт дает клон клеток, среди которых различаются

- Т-киллеры – цитотоксические лимфоциты, которые являются эффекторами клеточного иммунитета.

- Т-клетки памяти , обеспечивающие при повторно встрече с антигеном (по механизму новой бласттрансформации) вторичный иммунный ответ, который протекает быстрее и сильнее первого;

- Т-амплификаторы , которые не рециркулируют, являются короткоживущими, стимулируют размножение клеток – источников Т-лимфоцитов;

В-лимфоцитопоэз

Первый этап осуществляется в красном костном мозге и включает: I класс – стволовые клетки, II класс – полустволовые клетки, III класс – унипотентные В-поэтинчувствительные клетки – про-В-лимфоциты, в которых еще не начинается реаранжировка генома.

Второй этап – антигеннезависимой дифференцировки у птиц осуществляется в специальном лимфоидном органе – фабрициевой сумке. У млекопитающих и человека его аналог точно не установлен, но большинство исследователей считают, что второй этап также происходит в красном костном мозге. Здесь образуются IV класс – В-лимфобласты (на уровне которых начинается реаранжировка генома), V класс – В-пролимфоциты (пре-В-лимфоциты, в цитоплазме которых выявляется IgM), VI класс – рецепторные Во- лимфоциты – характеризуются появлением иммуноглобулинов класса М на поверхности плазматической мембраны.

В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам.

Третий этап – антигензависимой пролиферации и дифференцировки осуществляется в В-зонах периферических лимфоидных органов.

Здесь происходит встреча рецепторного Во-лимфоцита, его активизация и трансформация в В-иммунобласт. В результате пролиферации иммунобласта образуется клон клеток, среди которых различают В-клетки памяти и плазмоциты. Последние являются эффекторами гуморального иммунитета, т.е. синтезируют иммуноглобулины (антитела) разных классов. Во время первой стадии антителообразования лимфоциты секретируют IgM. Затем после перестройки гена (реаранжировки) происходит смена класса иммуноглобулина и синтезируются IgG.

Антитело взаимодействует со специфичным ему антигеном с образованием комплекса антиген-антитело. Эти иммунные комплексы затем фагоцитируются макрофагами, эозинофилами, нейтрофилами.

Натуральные киллеры (NK-клетки) образуются в красном костном мозге. Эти клетки выделяют специфический фактор NKCF (natural killer cytotoxic factor), дистантно действующий на клетки-мишени постепенно и длительно. При клонировании NK-клеток клетки-памяти не образуются.


Кроветворение или гемопоэз- процесс образования и последующего созревания форменных элементов крови.
Во время внутриутробного развития плода выделяют три периода кроветворения, постепенно сменяющие друг друга:
1 - эмбриональный (мегалобластический); период, который начинается в кровяных островках желточного мешка у двухнедельного зародыша, где образуются мегалобласты (первичные эритробласты) - крупные клетки, содержащие ядро и эмбриональные типы НЬ.
2 - печеночный; период, который начинается на 7-й неделе гестации, достигает максимума к 5 мес. В печени образуются эритробласты и эритроциты. На 3-4-м месяце гестации в гемопоэз включается селезенка. В ней происходит эритро-, грануло- и мегакариоцитопоэз. Активный лимфопоэз возникает в селезенке с 20-й недели внутриутробного развития.
3 -костномозговой (медуллярный); период, который начинается на
4- 5-м месяце гестации, постепенно он становится основным.
печень

Трубчатая кость плоская кость
Органы, где происходит внутриутробное кроветворениеК моменту рождения ребенка прекращается кроветворение в печени, а селезенка утрачивает способность к образованию клеток красного ряда, гранулоцитов, мегакариоцитов, сохраняя функции образования лимфоцитов, моноцитов и разрушения стареющих или поврежденных эритроцитов и тромбоцитов.
Во внеутробном периоде основным источником образования всех видов клеток крови, кроме лимфоцитов, становится красный костный мозг.
Красным костным мозгом у новорожденных заполнены плоские и трубчатые кости. Это имеет значение при выборе места костномозговой пункции.
Для получения костного мозга обычно пунктируют:
- у новорожденных - пяточную кость;
- у детей до 1 года - эпифиз большеберцовой кости;
- у детей старшего возраста - гребень подвздошной кости.
Пункция грудины в настоящее время практически не используется.
С первого месяца жизни красный костный мозг постепенно начинает замещаться жировым (желтым), и к 12-15 годам кроветворение сохраняется только в плоских костях.
Зрелые клетки периферической крови развиваются из своих предшественников, созревающих в красном костном мозге (рис. 11-2).
Стволовая кроветворная клетка (CFU-blast) - родоначальница всех форменных элементов крови.
Клетки, вышедшие из красного костного мозга в кровь, продолжают функционально изменяться. Постепенно меняется состав и уменьшается активность ферментов клеток, сами клетки стареют, разрушаются и утилизируются макрофагами.
Продолжительность жизни зрелых клеток крови в сосудистом русле:
- эритроциты - около 120 дней;
- тромбоциты - 9-11 дней;
- нейтрофилы -14 дней;
- лимфоциты - от нескольких суток до нескольких лет;
- эозинофилы - 8-12 дней;
-моноциты циркулируют в крови около 12 ч, затем проникают в ткани, где превращаются в макрофаги.
Факторы гемопоэза
Образование клеточных элементов крови активируется и регулируется факторами гемопоэза которыми являются:
1) гемопоэтические факторы роста;
2) факторы транскрипции;
3) фолиевая кислота, витамин В|2;
4) микроэлемент железо.

Эритроцит

Гемопоэтические факторы роста включают фактор стволовых клеток, колониестимулирующие факторы, интерлейкины, эритропоэтин, тромбопоэтин.
- Эритропоэтин - гормон гликопротеи новой природы. Он вырабатывается преимущественно в почках (около 90%) в ответ на гипоксическую стимуляцию, в меньшей мере - гепатоцитами печени. Эритропоэтин влияет на процесс развития и дифференцировки клеток эритроидного ряда, стимулирует продукцию в них НЬ. У здоровых людей концентрация эритропоэтина в плазме значительно повышается при возникновении гипоксии любого генеза.
- Тромбопоэтин - гормон, ускоряющий мегакариоцитопоэз после периода тромбоцитопении.
- Колониестимулирующие факторы выполняют функцию лейкопо- этинов.
Факторы транскрипции - это белки, связывающиеся с ДНК и регулирующие экспрессию генов кроветворных клеток.
Фолиевая кислота и витамин В|2необходимы для синтеза ДНК. Фолаты и витамин В12 поступают с пищей и всасываются в тонкой кишке. Для всасывания витамина В]2 в кишечнике необходим внутренний фактор Касла, синтезируемый париетальными клетками желудка. Фактор связывает витамин В|2 и защищает его от разрушения ферментами. Комплекс внутреннего фактора Касла с витамином В}

Новое на сайте

>

Самое популярное