Домой Популярное Оптическая сила физика. Тонкая линза: формула и вывод формулы

Оптическая сила физика. Тонкая линза: формула и вывод формулы

(вогнутые или рассеивающие). Ход лучей в этих видах линз различен, но свет всегда преломляется , однако, чтобы рассмотреть их устройство и принцип действия, надо ознакомиться с одинаковыми для обоих видов понятиями.

Если дорисовать сферические поверхности двух сторон линзы до полных сфер, то прямая, проходящая сквозь центры этих сфер, будет являться оптической осью линзы. Фактически, оптическая ось проходит сквозь самое широкое место выпуклой линзы и самое узкое у вогнутой.

Оптическая ось, фокус линзы, фокусное расстояние

На этой оси находится точка, где собираются все лучи, прошедшие через собирающую линзу. В случае же рассеивающей линзы можно провести продолжения расходящихся лучей, и тогда мы получим точку, также расположенную на оптической оси, где сходятся все эти продолжения. Эта точка называется фокусом линзы.

У собирающей линзы фокус действительный, и расположен он с обратной стороны от падающих лучей, у рассеивающей фокус мнимый, и располагается он с той же стороны, с которой свет падает на линзу.

Точка на оптической оси ровно посередине линзы называется ее оптическим центром. А расстояние от оптического центра до фокуса линзы – это фокусное расстояние линзы.

Фокусное расстояние зависит от степени кривизны сферических поверхностей линзы. Более выпуклые поверхности будут сильнее преломлять лучи и, соответственно, уменьшать фокусное расстояние. Если фокусное расстояние короче, то данная линза будет давать большее увеличение изображения.

Оптическая сила линзы: формула, единица измерения

Для характеристики увеличивающей способности линзы ввели понятие «оптическая сила». Оптическая силы линзы – это величина, обратная ее фокусному расстоянию. Оптическая сила линзы выражается формулой:

где D – оптическая сила, F – фокусное расстояние линзы.

Единицей измерения оптической силы линзы является диоптрия (1 дптр). 1 диоптрия – это оптическая сила такой линзы, фокусное расстояние которой равно 1 метру. Чем меньше фокусное расстояние, тем большей будет оптическая сила, то есть тем сильнее данная линза увеличивает изображение.

Так как фокус у рассеивающей линзы мнимый, то условились считать ее фокусное расстояние величиной отрицательной. Соответственно, и ее оптическая сила - тоже отрицательная величина. Что касается собирающей линзы, то ее фокус действительный, поэтому и фокусное расстояние и оптическая сила у собирающей линзы – величины положительные.

Оптическая сила — важный параметр при покупке контактных линз, от выбора которого зависит четкость зрения и комфортность ношения. Оптическая сила контактной линзы отличается от такого же показателя у очков, так как она дает более точную коррекцию. Поэтому предлагаем инструкцию, как правильно выбирать оптику по такому параметру.

Что такое оптическая сила и как ее определить?

В центре мягкой контактной линзы есть оптическая зона, благодаря которой Вы видите окружающий мир четко и ясно. Так как зрение может отличаться не только у разных людей, но даже у одного человека на правом и левом глазу, параметры этой зоны задают с помощью оптической силы и обозначаются диоптриями (D или дптр).

Вычислить такой показатель самостоятельно невозможно — это делает только офтальмолог с помощью специального оборудования. Для этого специалист прикладывает к глазам линзы с разными диоптриями до тех пор, пока Ваше зрение не будет четким. После этого он выписывает рецепт, где будет указана оптическая сила для каждого глаза со знаком «+» или «-». Правый глаз в рецепте обозначается символом OD, а левый — OS.

Например, если в Вашем рецепте написано «OD Sph +2,5» и «OS Sph +3,0», это значит что для правого глаза она равна +2,5 D, а для левого глаза +3,0 D.
На упаковке и блистере этот параметр обозначают двумя маркировками — PWR и SPH. Это нужно для того, чтобы Вы проверили, получили ли Вы те линзы или нет, поэтому внимательно смотрите на этот показатель при покупке. То есть, если на коробке написано PWR -2,00, это значит что внутри находятся офтальмологические изделия с оптической силой -2,00 дптр.

Оптическая сила линз при близорукости и дальнозоркости

Две самые распространенные проблемы со зрением — это близорукость (миопия) и дальнозоркость (гиперметропия). Эти две проблемы абсолютно разные и требуют прямо противоположной коррекции.

При близорукости человек плохо видит предметы вдали, поэтому диоптрийная сила контактной линзы идет со знаком «-». В продаже есть оптика с минусовыми диоптриями для коррекции разной степени миопии — от -0,25 до -30 D (с шагом 0,25). Главное преимущество таких линз в том, что даже при большом минусе их толщина не меняется, а глаза визуально не кажутся меньше, в отличие от стекол очков для близорукости.

При дальнозоркости сложно рассматривать предметы вблизи, особенно трудно читать. В этом случае сила в рецепте контактных линз указывается со знаком «+». Купить с плюсом можно для коррекции разной степени рефракции — от +0,25 до +30,0 (с шагом 0,25).
Если у Вас миопия или гиперметропия, подобрать контактные линзы не составит труда, но при этом есть несколько нюансов:

  • Самое большое количество моделей представлено для коррекции степени рефракции от +10,0 до -16 D. То есть, если у Вас довольно высокая степень, выбирать нужно уже не по популярности бренда, а именно по наличию — есть ли такой плюс или минус у конкретной модели. В интернет-магазине это просто сделать: через фильтр выбираете только модели с нужными диоптриями, что значительно облегчает поиск.
  • Если Вы хотите не просто скорректировать зрение, а сменить или оттенить свой оттенок глаз, в продаже много цветных и оттеночных контактных линз с диоптриями. Но диоптрийная сила здесь ограничена — для близорукости от -0,25 до -20 D, для дальнозоркости от +0,25 до +17 D.

Линзы с оптической силой ноль диоптрий — для чего нужны?

В продаже можно найти пару линз с нулевыми диоптриями. В центре таких офтальмологических изделий отсутствует оптическая зона — они не корректируют зрение. Подобные контактные линзы используют только в косметических целях для изменения цвета глаз или скрытия дефектов радужки. Они бывают трех видов:

  • Оттеночные — усиливают природный цвет глаз, делая их более насыщенными и выразительными. Их подбирают в тон своему оттенку радужки, поэтому на глазах незаметны.
  • Цветные — могут полностью перекрыть радужку, кардинально изменив цвет с темного на светлый и наоборот.
  • Карнавальные — предназначены для создания тематических образов. На их поверхность нанесены разные рисунки и узоры, которые перекрывают радужную оболочку.

Если у Вас нет проблем со зрением, то нужно заказывать именно контактные линзы с нулевыми диоптриями. Учитывайте, что вся декоративно окрашенная оптика немного уступает по кислородопроницаемости прозрачным изделиям, поэтому ее нужно носить по времени чуть меньше в течение дня.

Несмотря на то, что карнавальные линзы продаются только с нулевой оптической силой, это не значит что их могут носить люди только с хорошим зрением. Если у Вас небольшой минус или плюс, можете некоторое время находиться без корректирующей оптики, надев crazy-линзы на вечеринку или выступление. Если высокая степень рефракции, то можно использовать карнавальные линзы для фотосессии.

Оптическая сила контактных линз при пресбиопии

При пресбиопии человек плохо видит вдали и вблизи, поэтому для ее коррекции используются линзы с другой конструкцией — мультифокальные. У них оптическая сила изменяется от центра к периферии, тем самым, обеспечивая четкое зрение на разных расстояниях. Обычно в центре располагается зона для зрения вблизи, в средней части для средних расстояний, и в последней — для дали. Поэтому здесь оптическая сила подбирается не так, как для других контактных линз.

Для этого нужно знать дополнительный параметр — аддидацию , или «плюсовую добавку». По сути, это разница между диоптриями, которая нужна, чтобы одновременно корректировать зрение на разных расстояниях. Причем определить аддидацию нужно как для дальнозорких, так и для близоруких людей, и с возрастом этот параметр может увеличиться. В рецепте аддидация обозначается «add» или «ADD» и бывает трех видов — низкая (LOW), средняя (MEDIUM), высокая (HIGH). У каждого производителя диапазон аддидации может немного отличаться, но в основном диоптрийная сила Low бывает до +1, Medium от +1,25 до +2, High больше +2.

Еще один очень важный параметр — это доминантность. От него будет зависеть дизайн офтальмологического изделия. Для недоминантного глаза (N) центральная зона разработана для коррекции вблизи, а для доминантного (D) наоборот — для дали.

Подбирать оптическую силу мультифокальных средств контактной коррекции сложнее, к тому же некоторые модели доступны только под заказ, поэтому обязательно проконсультируйтесь с врачом.

Линзами называются прозрачные для данного излучения тела, ограниченные двумя поверхностями различной формы (сферической, цилиндрической и т. д.). Образование сферических линз показано на рис. IV.39. Одна из ограничивающих линзу поверхностей может быть сферой бесконечно большого радиуса, т. е. плоскостью.

Ось, проходящая через центры образующих линзу поверхностей, называется оптической осью; у плосковыпуклой и плосковогнутой линз оптическая ось проводится через центр сферы пер пен ярно плоскости.

Линза называется тонкой, если ее толщина значительно меньше радиусов кривизны образующих поверхностей. В тонкой линзе можно пренебречь смещением а лучей, проходящих через центральную часть (рис. IV.40). Линза является собирающей, если она преломляет проходящие через нее лучи в сторону оптической оси, и рассеивающей, если она отклоняет лучи от оптической оси.

ФОРМУЛА ЛИНЗЫ

Рассмотрим преломление лучей сначала на одной сферической поверхности линзы. Обозначим точки пересечения оптической оси с рассматриваемой поверхностью через О, с падающим лучом - через и с преломленным лучом (или его продолжением) - через точка есть центр сферической поверхности (рис. IV.41); обозначим расстояния радиус кривизны поверхности). В зависимости от угла падения лучей на сферическую поверхность возможны различные расположения точек относительно точки О. На рис. IV.41 показан ход лучей, падающих на выпуклую поверхность под разными углами падения а при условии где показатель преломления среды, откуда идет падающий луч, а показатель преломления среды, куда идет преломленный луч. Предположим, что падающий луч - параксиальный, т. е.

составляет с оптической осью очень малый угол тогда углы также малые и можно считать:

На основании закона преломления при малых углах а и у

Из рис. IV.41, а следует:

Подставив эти выражения в формулу (1.34), получим после сокращения на формулу преломляющей сферической поверхности:

Зная расстояние от «предмета» до преломляющей поверхности, можно по этой формуле рассчитать расстояние от поверхности до «изображения»

Заметим, что при выводе формулы (1.35) величина сократилась; это означает, что все параксиальные лучи, вышедшие из точки какой бы угол они ни составляли с оптической осью, соберутся в точке

Проведя аналогичные рассуждения для других углов падения (рис. IV.41,б, в), получим соответственно:

Отсюда получаем правило знаков (полагая расстояние всегда положительным): если точка или лежит на той же стороне преломляющей поверхности, на которой находится точка то расстояния

и следует брать со знаком минус; если же точка или находится по другую сторону поверхности по отношению к точке то расстояния следует брать со знаком плюс. Такое же правило знаков получится, если рассматривать преломление лучей через вогнутую сферическую поверхность. Для этой цели можно воспользоваться теми же чертежами, приведенными на рис. IV.41, если только изменить направление лучей на обратное и переменить обозначения у показателей преломления.

Линзы имеют две преломляющие поверхности, радиусы кривизны которых и могут быть одинаковыми или различными. Рассмотрим двояковыпуклую линзу; для луча, проходящего через такую линзу, первая (входная) поверхность является выпуклой, а вторая (выходная) - вогнутой. Формулу для расчета по данным можно получить, если воспользоваться формулами (1.35) для входной и (1.36) для выходной поверхности (с обратным ходом лучей, так как луч переходит из среды в среду

Так как «изображение» от первой поверхности является «предметом» для второй поверхности, то Тогда из формулы (1.37) получаем, заменив на на

Из этого соотношения видно, что постоянная величина, т. е. взаимосвязаны. Обозначим где фокусное расстояние линзы называется оптической силой линзы и измеряется в диоптриях). Следовательно,

Если же расчет провести для двояковогнутой линзы, то получим

Сравнивая результаты, можно прийти к выводу, что для расчета оптической силы линзы любой формы следует пользоваться одной формулой (1.38) с соблюдением правила знаков: радиусы кривизны выпуклых поверхностей подставлять со знаком плюс, вогнутых - со знаком минус. Отрицательная оптическая сила т. е. отрицательное фокусное расстояние означает, что расстояние имеет знак минус, т. е. «изображение» находится на той же стороне, где расположен «предмет». В этом случае «изображение» является мнимым. Линзы о положительной оптической силой являются собирающими и дают действительные изображения, пока при расстояние приобретает знак минус и изображение получается мнимым. Линзы с отрицательной оптической силой - рассеивающие и дают всегда мнимое изображение; для них и ни при каких числовых значениях нельзя получить положительное расстояние

Формула (1.38) выведена при условии, что по обе стороны линзы находится одна и та же среда. Если же показатели преломления сред, граничащих с поверхностями линзы различны (например, у хрусталика глаза), то фокусные расстояния справа и слева от линзы не равны, причем

где фокусное расстояние с той стороны, где находится предмет.

Заметим, что, согласно формуле (1.38), оптическая сила линзы определяется не только ее формой, но и соотношением между показателями преломления вещества линзы и окружающей среды. Например, двояковыпуклая линза в среде с большим показателем преломления имеет отрицательную оптическую силу, т. е. является рассеивающей линзой.

Наоборот, двояковогнутая линза в такой же среде имеет положительную оптическую силу, т. е. является собирающей линзой.

Рассмотрим систему из двух линз (рис. IV.42, а); допустим, что точечный предмет находится в фокусе первой линзы. Луч, вышедший из первой линзы, будет параллельным оптической оси и, следовательно, пройдет через фокус второй линзы. Рассматривая эту систему как одну тонкую линзу, можем написать Так как то

Этот результат верен и для более сложной системы тонких линз (если только сама система может рассматриваться как «тонкая»): оптическая сила системы тонких линз равна сумме оптических сил составных частей:

(у рассеивающих линз оптическая сила имеет отрицательный знак). Например, плоскопараллельная пластинка, составленная из двух тонких линз (рис. IV.42, б), может быть собирающей (если или рассеивающей (если линзой. Для двух тонких линз, находящихся на расстоянии а друг от друга (рис. IV.43), оптическая сила является функцией от а и фокусных расстояний линз и

Преломление света широко используется в различных оптических приборах: фотоаппаратах, биноклях, телескопах, микроскопах. Непременной и самой существенной деталью таких приборов является линза. А оптическая сила линзы - одна из основных величин, характеризующая любой

Оптическая линза или оптическое стекло - это проницаемое для света стеклянное тело, которое ограничено с обеих сторон сферическими или иными кривыми поверхностями (одна из двух поверхностей может быть плоской).

По форме ограничивающих поверхностей они могут быть сферическими, цилиндрическими и другими. Линзы, которые имеют середину толще, чем края, называются выпуклыми; с краями толще середины - вогнутыми.
Если пустить параллельный пучок лучей света на а за ней поместить экран, то, перемещая его относительно линзы, мы получим на нем небольшое светлое пятно. Это она, преломляя падающие на нее лучи, собирает их. Поэтому ее называют собирающей. Вогнутая же линза, преломляющая свет, рассеивает его в стороны. Ее называют рассеивающей.

Центр линзы называют ее оптическим центром. Любая прямая, которая проходит через него, получила называние оптической оси. А ось, пересекающая центральные точки сферических преломляющихся поверхностей, получила название главной (основной) оптической оси линзы, другие - побочных осей.

Если направить на осевой луч, параллельный ее оси, то, пройдя ее, пересечет ось на определенном расстоянии от нее. Это расстояние называют фокусным, а сама точка пересечения - ее фокусом. Все линзы имеют по два фокуса, которые находятся с двух сторон. Основываясь на можно теоретически доказать, что все осевые лучи, или лучи, идущие поблизости от основной оптической оси, падающие на тонкую собирательную линзу параллельно ее оси, сходятся в фокусе. Опыт подтверждает это теоретическое доказательство.

Пустив пучок осевых лучей параллельно основной оптической оси на тонкую двоякоугольную линзу, мы обнаружим, что из нее эти лучи выйдут пучком, который расходится. В случае попадания такого расходящегося пучка в наш глаз, нам покажется, что лучи выходят из одной точки. Эта точка получила называние мнимого фокуса. Плоскость, которая проведена перпендикулярно по отношению к основной оптической оси через фокус линзы, получила название фокальной плоскости. Фокальных плоскостей у линзы две, и находятся они по обе стороны от нее. Когда на линзу направлен пучок лучей, которые параллельны любой из побочных оптических осей, этот пучок, после того как произойдет его преломление, сходится на соответствующей оси в месте ее пересечения с фокальной плоскостью.

Оптическая сила линзы - это такая величина, которая обратна ее фокусному расстоянию. Определяем ее с помощью формулы:
1/F=D.

Единица измерения этой силы получила название диоптрия.
1 диоптрия - это оптическая сила линзы, имеющей в 1 м.
У выпуклых линз эта сила положительна, а у вогнутых - отрицательна.
Например: Чему будет равняться оптическая сила очковой выпуклой линзы, если F = 50 см - ее фокусное расстояние?
D = 1/F; по условию: F = 0,5 м; отсюда: D = 1/0,5 = 2 диоптриям.
Величина фокусного расстояния, а, следовательно, и оптическая сила линзы определяются вещества, из которого состоит линза, и радиусом ограничивающих ее сферических поверхностей.

Теория дает формулу, по которой можно ее рассчитать:
D = 1/F = (n - 1)(1/R1 + 1/R2).
В данной формуле n - преломление вещества линзы, R1, 2 - радиусы кривизны поверхности. Радиусы выпуклых поверхностей считают положительными, а вогнутых - отрицательными.

Характер получаемого от линзы изображения предмета, т. е. его величина и положение, зависит от расположения предмета по отношению к линзе. Местонахождение предмета и его величина могут быть найдены с помощью формулы линзы:
1/F = 1/d + 1/f.
Для определения линейного увеличения линзы пользуемся формулой:
k = f/d.

Оптическая сила линзы - понятие, которое требует подробнейшего изучения.

Фо́кусное расстоя́ние - физическая характеристика оптической системы. Для центрированной оптической системы, состоящей из сферических поверхностей, описывает способность собирать лучи в одну точку при условии, что эти лучи идут из бесконечности параллельным пучком параллельно оптической оси.

Для системы линз, как и для простой линзы конечной толщины, фокусное расстояние зависит от радиусов кривизны поверхностей, показателей преломления стёкол и толщин.

Определяется как расстояние от передней главной точки до переднего фокуса (для переднего фокусного расстояния), и как расстояние от задней главной точки дозаднего фокуса (для заднего фокусного расстояния). При этом, под главными точками подразумеваются точки пересечения передней (задней) главной плоскости соптической осью.

Величина заднего фокусного расстояния является основным параметром, которым принято характеризовать любую оптическую систему.

Парабола (или параболоид вращения) фокусирует параллельный пучок лучей в одну точку

Фо́кус (от лат. focus - «очаг») оптической (или работающей с другими видами излучения) системы - точка, в которой пересекаются («фокусируются» ) первоначально параллельные лучи после прохождения через собирающую систему (либо где пересекаются их продолжения, если система рассеивающая). Множество фокусов системы определяет её фокальную поверхность. Главный фокус системы является пересечением её главной оптической оси и фокальной поверхности. В настоящее время , вместо термина главный фокус (передний или задний) используются термины задний фокус и передний фокус .

Опти́ческая си́ла - величина, характеризующая преломляющую способность осесимметричных линз и центрированных оптических систем из таких линз. Измеряется оптическая сила в диоптриях (в СИ): 1 дптр=1 м -1 .

Обратно пропорциональна фокусному расстоянию системы:

где - фокусное расстояние линзы.

Оптическая сила положительна у собирающих систем и отрицательна в случае рассеивающих.

Оптическая сила системы, состоящей из двух находящихся в воздухе линз с оптическими силами и, определяется формулой :

где - расстояние между задней главной плоскостью первой линзы и передней главной плоскостью второй линзы. В случае тонких линзсовпадает с расстоянием между линзами.

Обычно оптическая сила используется для характеристики линз, используемых в офтальмологии, в обозначениях очков и для упрощённого геометрического определения траектории луча.

Для измерения оптической силы линз используют диоптриметры , которые позволяют проводить измерения в том числе астигматических и контактных линз.

18. Формула сопряжённых фокусных расстояний. Построение изображения линзой.

Сопряжённое фо́кусное расстоя́ние - расстояние от задней главной плоскости объектива до изображения объекта, когда объект расположен не в бесконечности, а на некотором расстоянии от объектива. Сопряженное фокусное расстояние всегда большефокусного расстояния объектива и тем больше, чем меньше расстояние от объекта допередней главной плоскости объектива . Эта зависимость приведена в таблице, в которой расстоянияивыражены в величинах.

Изменение величины сопряженного фокусного расстояния

Расстояние до объекта R

Расстояние до изображения d

Для линзы эти расстояния связаны отношением, непосредственно следующим из формулы линзы:

или, если d и R выразить в величинах фокусного расстояния :

б) Построение изображения в линзах .

Для построения хода луча в линзе применяются те же законы, что и для вогнутого зеркала. Луч, параллельный оси , проходит через фокус и наоборот. Центральный луч (луч, идущий через оптический центр линзы) проходит через линзу без отклонения ; в толстых

линзах он немного смещается параллельно самому себе (как в плоскопараллельной пластинке, см. рис. 214). Из обратимости хода лучей следует, что каждая линза имеет два фокуса, которые находятся на одинаковых расстояниях от линзы (последнее верно лишь для тонких линз). Для тонких собирающих линз и центральных лучей справедливы следующие законы построения изображений :

g > 2F ; изображение обратное, уменьшенное, действительное, b > F (рис.221).

g = 2F ; изображение обратное, равное, действительное, b = F .

F < g < 2F ; изображение обратное, увеличенное, действительное, b > 2F .

g < F ; изображение прямое, увеличенное, мнимое, - b > F .

При g < F лучи расходятся, на продолжении пересекаются и дают мнимое

изображение. Линза действует как увеличительное стекло (лупа).

Изображения в рассеивающих линзах всегда мнимые, прямые и уменьшенные (рис.223).



Новое на сайте

>

Самое популярное