Домой Травматология Как найти угол между двумя плоскостями. Нахождение угла между плоскостями (двугранный угол)

Как найти угол между двумя плоскостями. Нахождение угла между плоскостями (двугранный угол)

Статья рассказывает о нахождении угла между плоскостями. После приведения определения зададим графическую иллюстрацию, рассмотрим подробный способ нахождения методом координат. Получим формулу для пересекающихся плоскостей, в которую входят координаты нормальных векторов.

Yandex.RTB R-A-339285-1

В материале будут использованы данные и понятия, которые ранее были изучены в статьях про плоскость и прямую в пространстве. Для начала необходимо перейти к рассуждениям, позволяющим иметь определенный подход к определению угла между двумя пересекающимися плоскостями.

Заданы две пересекающиеся плоскости γ 1 и γ 2 . Их пересечение примет обозначение c . Построение плоскости χ связано с пересечением этих плоскостей. Плоскость χ проходит через точку М в качестве прямой c . Будет производиться пересечение плоскостей γ 1 и γ 2 с помощью плоскости χ . Принимаем обозначения прямой, пересекающей γ 1 и χ за прямую a , а пересекающую γ 2 и χ за прямую b . Получаем, что пересечение прямых a и b дает точку M .

Расположение точки M не влияет на угол между пересекающимися прямыми a и b , а точка M располагается на прямой c , через которую проходит плоскость χ .

Необходимо построить плоскость χ 1 с перпендикулярностью к прямой c и отличную от плоскости χ . Пересечение плоскостей γ 1 и γ 2 с помощью χ 1 примет обозначение прямых а 1 и b 1 .

Видно, что при построении χ и χ 1 прямые a и b перпендикулярны прямой c , тогда и а 1 , b 1 располагаются перпендикулярно прямой c . Нахождение прямых a и а 1 в плоскости γ 1 с перпендикулярностью к прямой c , тогда их можно считать параллельными. Таки же образом расположение b и b 1 в плоскости γ 2 с перпендикулярностью прямой c говорит об их параллельности. Значит, необходимо сделать параллельный перенос плоскости χ 1 на χ , где получим две совпадающие прямые a и а 1 , b и b 1 . Получаем, что угол между пересекающимися прямыми a и b 1 равен углу пересекающихся прямых a и b .

Рассмотрим не рисунке, приведенном ниже.

Данное суждение доказывается тем, что между пересекающимися прямыми a и b имеется угол, который не зависит от расположения точки M , то есть точки пересечения. Эти прямые располагаются в плоскостях γ 1 и γ 2 . Фактически, получившийся угол можно считать углом между двумя пересекающимися плоскостями.

Перейдем к определению угла между имеющимися пересекающимися плоскостями γ 1 и γ 2 .

Определение 1

Углом между двумя пересекающимися плоскостями γ 1 и γ 2 называют угол, образовавшийся путем пересечения прямых a и b , где плоскости γ 1 и γ 2 имеют пересечение с плоскостью χ , перпендикулярной прямой c .

Рассмотрим рисунок, приведенный ниже.

Определение может быть подано в другой форме. При пересечении плоскостей γ 1 и γ 2 , где c – прямая, на которой они пересеклись, отметить точку M , через которую провести прямые a и b , перпендикулярные прямой c и лежащие в плоскостях γ 1 и γ 2 , тогда угол между прямыми a и b будет являться углом между плоскостями. Практически это применимо для построения угла между плоскостями.

При пересечении образуется угол, который по значению меньше 90 градусов, то есть градусная мера угла действительна на промежутке такого вида (0 , 90 ] . Одновременно данные плоскости называют перпендикулярнымив случае, если при пересечении образуется прямой угол. Угол между параллельными плоскостями считается равным нулю.

Обычный способ для нахождения угла между пересекающимися плоскостями – это выполнение дополнительных построений. Это способствует определять его с точностью, причем делать это можно с помощью признаков равенства или подобия треугольника, синусов, косинусов угла.

Рассмотрим решение задач на примере из задач ЕГЭ блока C 2 .

Пример 1

Задан прямоугольный параллелепипед А В С D A 1 B 1 C 1 D 1 , где сторона А В = 2 , A D = 3 , А А 1 = 7 , точка E разделяет сторону А А 1 в отношении 4: 3 . Найти угол между плоскостями А В С и В E D 1 .

Решение

Для наглядности необходимо выполнить чертеж. Получим, что

Наглядное представление необходимо для того, чтобы было удобней работать с углом между плоскостями.

Производим определение прямой линии, по которой происходит пересечение плоскостей А В С и В E D 1 . Точка B является общей точкой. Следует найти еще одну общую точку пересечения. Рассмотрим прямые D A и D 1 E , которые располагаются в одной плоскости A D D 1 . Их расположение не говорит о параллельности, значит, они имеют общую точку пересечения.

Однако, прямая D A расположена в плоскости А В С, а D 1 E в B E D 1 . Отсюда получаем, что прямые D A и D 1 E имеют общую точку пересечения, которая является общей и для плоскостей А В С и B E D 1 . Обозначает точку пересечения прямых D A и D 1 E буквой F . Отсюда получаем, что B F является прямой, по которой пересекаются плоскости А В С и В E D 1 .

Рассмотрим на рисунке, приведенном ниже.

Для получения ответа необходимо произвести построение прямых, расположенных в плоскостях А В С и В E D 1 с прохождением через точку, находящуюся на прямой B F и перпендикулярной ей. Тогда получившийся угол между этими прямыми считается искомым углом между плоскостями А В С и В E D 1 .

Отсюда видно, что точка A – проекция точки E на плоскость А В С. Необходимо провести прямую, пересекающую под прямым углом прямую B F в точке М. Видно, что прямая А М – проекция прямой Е М на плоскость А В С, исходя из теоремы о тех перпендикулярах A M ⊥ B F . Рассмотрим рисунок, изображенный ниже.

∠ A M E - это искомый угол, образованный плоскостями А В С и В E D 1 . Из получившегося треугольника А Е М можем найти синус, косинус или тангенс угла, после чего и сам угол, только при известных двух сторонах его. По условию имеем, что длина А Е находится таким образом: прямая А А 1 разделена точкой E в отношении 4: 3 , то означает полную длину прямой – 7 частей, тогда А Е = 4 частям. Находим А М.

Необходимо рассмотреть прямоугольный треугольник А В F . Имеем прямой угол A с высотой А М. Из условия А В = 2 , тогда можем найти длину A F по подобию треугольников D D 1 F и A E F . Получаем, что A E D D 1 = A F D F ⇔ A E D D 1 = A F D A + A F ⇒ 4 7 = A F 3 + A F ⇔ A F = 4

Необходимо найти длину стороны B F из треугольника A B F , используя теорему Пифагора. Получаем, что B F   = A B 2 + A F 2 = 2 2 + 4 2 = 2 5 . Длина стороны А М находится через площадь треугольника A B F . Имеем, что площадь может равняться как S A B C = 1 2 · A B · A F , так и S A B C = 1 2 · B F · A M .

Получаем, что A M = A B · A F B F = 2 · 4 2 5 = 4 5 5

Тогда можем найти значение тангенса угла треугольника А Е М. Получим:

t g ∠ A M E = A E A M = 4 4 5 5 = 5

Искомый угол, получаемый пересечением плоскостей А В С и B E D 1 равняется a r c t g 5 , тогда при упрощении получим a r c t g 5 = a r c sin 30 6 = a r c cos 6 6 .

Ответ: a r c t g 5 = a r c sin 30 6 = a r c cos 6 6 .

Некоторые случаи нахождения угла между пересекающимися прямыми задаются при помощи координатной плоскости О х у z и методом координат. Рассмотрим подробней.

Если дана задача, где необходимо найти угол между пересекающимися плоскостями γ 1 и γ 2 , искомый угол обозначим за α .

Тогда заданная система координат показывает, что имеем координаты нормальных векторов пересекающихся плоскостей γ 1 и γ 2 . Тогда обозначим, что n 1 → = n 1 x , n 1 y , n 1 z является нормальным вектором плоскости γ 1 , а n 2 → = (n 2 x , n 2 y , n 2 z) - для плоскости γ 2 . Рассмотрим подробное нахождение угла, расположенного между этими плоскостями по координатам векторов.

Необходимо обозначить прямую, по которой происходит пересечение плоскостей γ 1 и γ 2 буквой c . На прямой с имеем точку M , через которую проводим плоскость χ , перпендикулярную c . Плоскость χ по прямым a и b производит пересечение плоскостей γ 1 и γ 2 в точке M . из определения следует, что угол между пересекающимися плоскостями γ 1 и γ 2 равен углу пересекающихся прямых a и b , принадлежащих этим плоскостям соответственно.

В плоскости χ откладываем от точки M нормальные векторы и обозначаем их n 1 → и n 2 → . Вектор n 1 → располагается на прямой, перпендикулярной прямой a , а вектор n 2 → на прямой, перпендикулярной прямой b . Отсюда получаем, что заданная плоскость χ имеет нормальный вектор прямой a , равный n 1 → и для прямой b , равный n 2 → . Рассмотрим рисунок, приведенный ниже.

Отсюда получаем формулу, по которой можем вычислить синус угла пересекающихся прямых при помощи координат векторов. Получили, что косинусом угла между прямыми a и b то же, что и косинус между пересекающимися плоскостями γ 1 и γ 2 выводится из формулы cos α = cos n 1 → , n 2 → ^ = n 1 x · n 2 x + n 1 y · n 2 y + n 1 z · n 2 z n 1 x 2 + n 1 y 2 + n 1 z 2 · n 2 x 2 + n 2 y 2 + n 2 z 2 , где имеем, что n 1 → = (n 1 x , n 1 y , n 1 z) и n 2 → = (n 2 x , n 2 y , n 2 z) являются координатами векторов представленных плоскостей.

Вычисление угла между пересекающимися прямыми производится по формуле

α = a r c cos n 1 x · n 2 x + n 1 y · n 2 y + n 1 z · n 2 z n 1 x 2 + n 1 y 2 + n 1 z 2 · n 2 x 2 + n 2 y 2 + n 2 z 2

Пример 2

По условию дан параллелепипед А В С D A 1 B 1 C 1 D 1 , где А В = 2 , A D = 3 , А А 1 = 7 , а точка E разделяет сторону А А 1 4: 3 . Найти угол между плоскостями А В С и B E D 1 .

Решение

Из условия видно, что стороны его попарно перпендикулярны. Это значит, что необходимо ввести систему координат О х у z с вершиной в точке С и координатными осями О х, О у, О z . Необходимо поставить направление по соответствующим сторонам. Рассмотрим рисунок, приведенный ниже.

Пересекающиеся плоскости А В С и B E D 1 образуют угол, который можно найти по формуле α = a r c cos n 1 x · n 2 x + n 1 y · n 2 y + n 1 z · n 2 z n 1 x 2 + n 1 y 2 + n 1 z 2 · n 2 x 2 + n 2 y 2 + n 2 z 2 , в которой n 1 → = (n 1 x , n 1 y , n 1 z) и n 2 → = (n 2 x , n 2 y , n 2 z) являются нормальными векторами этих плоскостей. Необходимо определить координаты. По рисунку видим, что координатная ось О х у совпадает в плоскостью А В С, это значит, что координаты нормального вектора k → равняются значению n 1 → = k → = (0 , 0 , 1) .

За нормальный вектор плоскости B E D 1 принимается векторное произведение B E → и B D 1 → , где их координаты находятся путем координат крайних точек В, Е, D 1 , которые определяются, исходя из условия задачи.

Получаем, что B (0 , 3 , 0) , D 1 (2 , 0 , 7) . Потому как A E E A 1 = 4 3 , из координат точек A 2 , 3 , 0 , A 1 2 , 3 , 7 найдем E 2 , 3 , 4 . Получаем, что B E → = (2 , 0 , 4) , B D 1 → = 2 , - 3 , 7 n 2 → = B E → × B D 1 = i → j → k → 2 0 4 2 - 3 7 = 12 · i → - 6 · j → - 6 · k → ⇔ n 2 → = (12 , - 6 , - 6)

Необходимо произвести подстановку найденных координат в формулу вычисления угла через арккосинус. Получаем

α = a r c cos 0 · 12 + 0 · (- 6) + 1 · (- 6) 0 2 + 0 2 + 1 2 · 12 2 + (- 6) 2 + (- 6) 2 = a r c cos 6 6 6 = a r c cos 6 6

Метод координат дает аналогичный результат.

Ответ: a r c cos 6 6 .

Завершающая задача рассматривается с целью нахождения угла между пересекающимися плоскостями при имеющихся известных уравнениях плоскостей.

Пример 3

Вычислить синус, косинус угла и значение угла, образованного двумя пересекающимися прямыми, которые определены в системе координат О х у z и заданы уравнениями 2 x - 4 y + z + 1 = 0 и 3 y - z - 1 = 0 .

Решение

При изучении темы общего уравнения прямой вида A x + B y + C z + D = 0 выявили, что А, В, С являются коэффициентами, равными координатам нормального вектора. Значит, n 1 → = 2 , - 4 , 1 и n 2 → = 0 , 3 , - 1 являются нормальным векторами заданных прямых.

Необходимо подставить координаты нормальных векторов плоскостей в формулу вычисления искомого угла пересекающихся плоскостей. Тогда получаем, что

α = a r c cos 2 · 0 + - 4 · 3 + 1 · (- 1) 2 2 + - 4 2 + 1 2 = a r c cos 13 210

Отсюда имеем, что косинус угла принимает вид cos α = 13 210 . Тогда угол пересекающихся прямых не является тупым. Подставив в тригонометрическое тождество, получаем, что значение синуса угла равняется выражению. Вычислим и получим, что

sin α = 1 - cos 2 α = 1 - 13 210 = 41 210

Ответ: sin α = 41 210 , cos α = 13 210 , α = a r c cos 13 210 = a r c sin 41 210 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Использование метода координат при вычислении угла

между плоскостями

Наиболее общий метод нахождения угла между плоскостями - метод координат (иногда - с привлечением векторов). Его можно использовать тогда, когда испробованы все остальные. Но бывают ситуации, в которых метод координат имеет смысл применять сразу же, а именно тогда, когда система координат естественно связана с многогранником, указанным в условии задачи, т.е. явно просматриваются три попарно перпендикулярные прямые, на которых можно задать оси координат. Такими многогранниками являются прямоугольный параллелепипед и правильная четырехугольная пирамида. В первом случае система координат может быть задана выходящими из одной вершины ребрами (рис.1), во втором - высотой и диагоналями основания (рис. 2)

Применение метода координат состоит в следующем.

Вводится прямоугольная система координат в пространстве. Желательно ввести ее «естественным» образом - «привязать» к тройке попарно перпендикулярных прямых, имеющих общую точку.

Для каждой из плоскостей, угол между которыми ищется, составляется уравнение. Проще всего составить такое уравнение, зная координаты трех точек плоскости, не лежащих на одной прямой.

Уравнение плоскости в общем виде имеет вид Ах + By + Cz + D = 0.

Коэффициенты А, В, С в этом уравнении являются координатами нормального вектора плоскости (вектора, перпендикулярного плоскости). Определяем затем длины и скалярное произведение нормальных векторов к плоскостям, угол между которыми ищется. Если координаты этих векторов (А 1 , В 1 ; С 1 ) и (А 2 ; В 2 ; С 2 ), то искомый угол вычисляется по формуле

Замечание. Необходимо помнить, что угол между векторами (в отличие от угла между плоскостями) может быть тупым, и чтобы избежать возможной неопределенности, в числителе правой части формулы стоит модуль.

Решите методом координат такую задачу.

Задача 1. Дан куб ABCDA 1 B 1 C 1 D 1 . Точка К - середина ребра AD, точка L - середина ребра CD. Чему равен угол между плоскостями А 1 KL и A 1 AD?

Решение . Пусть начало системы координат находится в точке А, а оси координат идут вдоль лучей AD, АВ, АА 1 (рис. 3). Ребро куба примем равным 2 (удобно делить пополам). Тогда координаты точек A 1 , К, L таковы: А 1 (0; 0; 2), К(1; 0; 0), L(2; 1; 0).

Рис. 3

Запишем уравнение плоскости А 1 К L в общем виде. Затем подставим в него координаты выбранных точек этой плоскости. Получим систему трех уравнений с четырьмя неизвестными:

Выразим коэффициенты А, В, С через D и придем к уравнению

Разделив обе его части на D (почему D = 0?) и домножив затем на -2, получим уравнение плоскости A 1 KL: 2х - 2 у + z - 2 = 0. Тогда нормальный вектор к этой плоскости имеет координаты (2: -2; 1) . Уравнение плоскости A 1 AD таково: y=0, а координаты нормального вектора к ней, например, (0; 2: 0) . Согласно приведенной выше формуле для косинуса угла между плоскостями получаем:

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Рассмотрим две плоскости р 1 и р 2 с нормальными векторами n 1 и n 2 . Угол φ между плоскостями р 1 и р 2 выражается через угол ψ = \(\widehat{(n_1; n_2)}\) следующим образом: если ψ < 90°, то φ = ψ (рис. 202, а); если ψ > 90°, то ψ = 180° - ψ (рис. 202,6).

Очевидно, что в любом случае справедливо равенство

cos φ = |cos ψ|

Так как косинус угла между ненулевыми векторами равен скалярному произведению этих векторов, деленному на произведение их длин, имеем

$$ cos\psi=cos\widehat{(n_1; n_2)}=\frac{n_1\cdot n_2}{|n_1|\cdot |n_2|} $$

и, следовательно, косинус угла φ между плоскостями р 1 и р 2 может быть вычислен по формуле

$$ cos\phi=\frac{n_1\cdot n_2}{|n_1|\cdot |n_2|} (1)$$

Если плоскости заданы общими уравнениями

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0,

то за их нормальные векторы можно взять векторы n 1 = (A 1 ; B 1 ; С 1) и n 2 = (A 2 ; B 2 ; С 2).

Записав правую часть формулы (1) через координаты, получим

$$ cos\phi=\frac{|A_1 A_2 + B_1 B-2 + C_1 C_2|}{\sqrt{{A_1}^2+{B_1}^2+{C_1}^2}\sqrt{{A_2}^2+{B_2}^2+{C_2}^2}} $$

Задача 1. Вычислить угол между плоскостями

х - √2 y + z - 2 = 0 и х+ √2 y - z + 13 = 0.

В данном случае A 1 .=1, B 1 = - √2 , С 1 = 1, A 2 =1, B 2 = √2 , С 2 = - 1.

По формуле (2) получаем

$$ cos\phi=\frac{|1\cdot 1 - \sqrt2 \cdot \sqrt2 - 1 \cdot 1|}{\sqrt{1^2+(-\sqrt2)^2+1^2}\sqrt{1^2+(\sqrt2)^2+(-1)^2}}=\frac{1}{2} $$

Следовательно, угол между данными плоскостями равен 60°.

Плоскости с нормальными векторами n 1 и n 2:

а) параллельны тогда и только тогда, когда векторы n 1 и n 2 коллинеарны;

б) перпендикулярны, тогда и только тогда, когда векторы n 1 и n 2 перпендикулярны, т. е. когда n 1 n 2 = 0.

Отсюда получаем.необходимые и достаточные условия параллельности и перпендикулярности двух плоскостей, заданных общими уравнениями.

Для того чтобы плоскости

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0

были параллельны, необходимо и достаточно, чтобы выполнялись равенства

$$ \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} \;\; (3)$$

В случае, если какой-либо из коэффициентов A 2 , B 2 , С 2 равен нулю, подразумевается, что равен нулю и соответствующий коэффициент A 1 , B 1 , С 1

Невыполнение хотя бы одного из этих двух равенств означает, что плоскости не параллельны, т. е. пересекаются.

Для перпендикулярности плоскостей

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0

необходимо и достаточно, чтобы выполнялось равенство

А 1 А 2 + B 1 B 2 + C 1 C 2 = 0. (4)

Задача 2. Среди следующих пар плоскостей:

2х + 5у + 7z - 1 = 0 и 3х - 4у + 2z = 0,

у - 3z + 1 = 0 и 2у - 6z + 5 = 0,

4х + 2у - 4z + 1 = 0 и 2х + у + 2z + 3 = 0

указать параллельные или перпендикулярные. Для первой пары плоскостей

А 1 А 2 + B 1 B 2 + C 1 C 2 = 2 3 + 5 (- 4) + 7 2 = 0,

т. е. выполняется условие перпендикулярности. Плоскости перпендикулярны.

Для второй пары плоскостей

\(\frac{B_1}{B_2}=\frac{C_1}{C_2}\), так как \(\frac{1}{2}=\frac{-3}{-6} \)

а коэффициенты А 1 и А 2 равны нулю. Следовательно, плоскости второй пары параллельны. Для третьей пары

\(\frac{B_1}{B_2}\neq\frac{C_1}{C_2}\), так как \(\frac{2}{1}\neq\frac{-4}{2} \)

и А 1 А 2 + B 1 B 2 + C 1 C 2 = 4 2 + 2 1 - 4 2 =/= 0, т. е. плоскости третьей пары не параллельны и не перпендикулярны.



Новое на сайте

>

Самое популярное