Домой Терапевтология Генетическая схема митоза и мейоза. Мейоз

Генетическая схема митоза и мейоза. Мейоз

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки - зиготы.

Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.

Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых же лез образуются гаплоидные гаметы (1 n ). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 - профаза; 6 -метафаза; 7 - анафаза; 8 - телофаза; 9 - интеркинез. Мейоз II; 10 -метафаза; II -анафаза; 12 - дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).

Рис. 2. Схема гаметогенеза: ? - сперматогенез; ? - овогенез

Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c ) — репликация ДНК.

Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

— это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным .

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

    Перейти к лекции №12 «Фотосинтез. Хемосинтез»

    Перейти к лекции №14 «Размножение организмов»

Цель: учащиеся углубляют знания о формах размножения организмов; формируются новые понятия о митозе и мейозе и их биологическом значении.

Оборудование:

  1. Учебно-наглядные пособия: табл., плакаты
  2. технические средства обучения: интерактивная доска, мультимедийные презентации, обучающие компьютерные программы.

План урока:

  1. Организационный момент
  2. Повторение.
    1. Что такое размножение?
    2. Какие типы размножения вам известны? Дайте им определения?
    3. Перечислите примеры бесполого размножения? Приведите примеры.
    4. Биологическое значение бесполого размножения?
    5. Какое размножение называется половым?
    6. Какие половые клетки вам известны?
    7. Чем гаметы отличаются от соматических клеток?
    8. Что такое оплодотворение?
    9. В чем заключается преимущества полового размножения по сравнению с бесполым размножением?
  3. Изучение нового материала

Ход урока

В основе передачи наследственной информации, размножения, а также роста, развития и регенерации лежит важнейший процесс – деление клеток. Молекулярная сущность деления заключена в способности ДНК к самоудвоению молекул.

Объявление темы урока. Поскольку фазы митоза и мейоза в общих чертах мы уже изучали в 9 классе, задачей общей биологии является рассмотрение этого процесса на молекулярном и биохимическом уровне. В связи с этим особое внимание мы уделим изменению хромосомных структур.

Клетка является не только единицей строения и функции у живых организмов, но также и генетической единицей. Это единица наследственности и изменчивости, проявляющихся в процессе деления клеток. Элементарным носителем наследственных свойств клетки является ген. Ген представляет собой отрезок молекулы ДНК из нескольких сотен нуклеотидов, где закодировано строение одной молекулы белка и проявление какого-то наследственного признака клетки. Молекула ДНК в комплексе с белком образует хромосому. Хромосомы ядра и локализованные в них гены являются основными носителями наследственных свойств клетки. В начале клеточного деления хромосомы укорачиваются и окрашиваются более интенсивно, так что становятся видимыми по отдельности.

В делящейся клетке хромосома имеет вид двойной палочки и состоит из двух разделенных щелью вдоль оси хромосомы половинок или хроматид. Каждая из хроматид содержит одну молекулу ДНК.

Внутреннее строение хромосом, число нитей ДНК в них меняются в жизненном цикле клетки.

Вспомним: что такое клеточный цикл? Какие этапы выделяют в клеточном цикле? Что происходит на каждом этапе?

Интерфаза включает в себя три периода.

Пресинтетический период G 1 наступает сразу после деления клетки. В это время в клетке происходит синтез белков, АТФ, разных видов РНК и отдельных нуклеотидов ДНК. Клетка растет, и в ней интенсивно накапливаются различные вещества. Каждая хромосома в этот период однохроматидна, генетический материал клетки обозначается 2n 1xp 2с (n – набор хромосом, хр – число хроматид, с – количество ДНК).

В синтетическом периоде S осуществляется редупликация молекул ДНК клетки. В результате удвоения ДНК в каждой из хромосом оказывается вдвое больше ДНК, чем было до начала S-фазы, но число хромосом не изменяется. Теперь генетический набор клетки составляет 2n 2xp 4с (диплоидный набор, хромосомы двухроматидны, количество ДНК – 4).

В третьем периоде интерфазы – постсинтетическом G 2 – продолжается синтез РНК, белков и накопление клеткой энергии. По окончании интерфазы клетка увеличивается в размерах и начинается ее деление.

Деление клетки.

В природе существует 3 способа клеточного деления – амитоз, митоз мейоз.

Амитозом делятся прокариотические организмы и некоторые клетки эукариот, например, мочевого пузыря, печени человека, а также старые либо поврежденные клетки. Сначала в них делится ядрышко, затем ядро на две или несколько частей путем перетяжек и в конце деления перешнуровывается цитоплазма на две или несколько дочерних клеток. Распределение наследственного материала и цитоплазмы не равномерно.

Митоз – универсальный способ деления эукариотических клеток, при котором из диплоидной материнской клетки образуются две подобные ей дочерние клетки.

Длительность митоза 1-3 часа и в его процессе 4 фазы: профаза, метафаза, анафаза и телофаза.

Профаза. Обычно самая продолжительная фаза клеточного деления.

Увеличивается объем ядра, хромосомы спирализуются. В это время хромосома состоит из двух хроматид, соединенных между собой в области первичной перетяжки или центромеры. Затем растворяются ядрышки и ядерная оболочка – хромосомы лежат в цитоплазме клетки. Центриоли расходятся к полюсам клетки и образуют между собой нити веретена деления, а в конце профазы нити крепятся к центромерам хромосом. Генетическая информация клетки, по-прежнему, как в интерфазе (2n 2хр 4с).

Метафаза. Хромосомы располагаются строго в зоне экватора клетки, образуя метафазную пластину. На стадии метафазы хромосомы имеют самую малую длину, так как в это время они сильно спирализованы и конденсированы. Поскольку хромосомы хорошо видны подсчет и изучение хромосом обычно проходит в этот период деления. По продолжительности это самая короткая фаза митоза, так как она длится то мгновение, когда центромеры удвоенных хромосом располагаются строго по линии экватора. И уже в следующий момент начинается следующая фаза.

Анафаза. Каждая центромера расщепляется на две, и нити веретена оттягивают дочерние центромеры к противоположным полюсам. Центромеры тянут за собой отделившиеся одна от другой хроматиды. На полюса приходят по одной хроматиде из пары – это дочерние хромосомы. Количество генетической информации на каждом полюсе теперь равно (2n 1хр 2с).

Завершается митоз телофазой. Процессы, происходящие в этой фазе, обратны процессам, которые наблюдались в профазе. На полюсах происходит деспирализация дочерних хромосом, они утоньшаются и становятся слаборазличимыми. Вокруг них образуются ядерные оболочки, а затем появляются ядрышки. Одновременно с этим идет деление цитоплазмы: в животных клетках – перетяжкой, а у растений со средины клетки к периферии. После образования цитоплазматической мембраны в растительных клетках формируется целлюлозная оболочка. Образуются две дочерние клетки с диплоидным набором однохроматидных хромосом (2n 1хр 2с).

Следует отметить, что все процессы, происходящие в клетке, в том числе и митоз, находятся под генетическим контролем. Гены контролируют последовательные стадии редупликации ДНК, движение, спирализацию хромосом и т.д.

Биологическое значение митоза:

  1. Точное распределение хромосом и их генетической информации между дочерними клетками.
  2. Обеспечивает постоянство кариотипа и генетическую преемственность во всех клеточных проявлениях; т.к. иначе было бы не возможным постоянство строения и правильность функционирования органов и тканей многоклеточного организма.
  3. Обеспечивает важнейшие процессы жизнедеятельности – эмбриональное развитие, рост, восстановление тканей и органов, а также бесполое размножение организмов.

Мейоз

Образование половых клеток (гамет) происходит иначе, чем процесс размножения соматических клеток. Если бы образование гамет шло таким же путем, то после оплодотворения (слияния мужской и женской гамет) число хромосом каждый раз удваивалось бы. Однако этого не происходит. Каждому виду свойственно определенное число и свой специфический набор хромосом (кариотип).

Мейоз – это особый вид деления, когда из диплоидных (2п) соматических клеток половых органов образуются половые клетки (гаметы) у животных и растений или споры у споровых растений с гаплоидным (п) набором хромосом в этих клетках. Затем в процессе оплодотворения ядра половых клеток сливаются, и восстанавливается диплоидный набор хромосом (n+n=2n).

В непрерывном процессе мейоза идут два последовательных деления: мейоз I и мейоз II. В каждом делении те же фазы, что и в митозе, но разные по продолжительности и изменениям генетического материала. В результате мейоза I число хромосом в образовавшихся дочерних клетках уменьшается вдвое (редукционное деление), а при мейозе II гаплоидность клеток сохраняется (эквационное деление).

Профаза мейоза I – удвоенные в интерфазе гомологичные хромосомы попарно сближаются. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой и могут разрываться в одинаковых местах. Во время этого контакта гомологичные хромосомы могут обмениваться соответствующими участками (генами), т.е. идет кроссинговер. Кроссинговер вызывает перекомбинацию генетического материала клетки. После этого процесса гомологичные хромосомы снова разъединяются, растворяются оболочки ядра, ядрышек и образуется веретено деления. Генетическая информация клетки в профазе составляет 2n 2хр 4с (диплоидный набор, хромосомы двухроматидные, количество молекул ДНК – 4).

Метафаза мейоза I – хромосомы располагаются в плоскости экватора. Но если в метафазе митоза гомологичные хромосомы имеют положение, независимое друг от друга, то в мейозе они лежат рядом – попарно. Генетическая информация прежняя (2n 2хр 4с).

Анафаза I – к полюсам клетки расходятся не половинки хромосом из одной хроматиды, а целые хромосомы, состоящие из двух хроматид. Значит, из каждой пары гомологичных хромосом в дочернюю клетку попадет лишь одна, но двухроматидная хромосома. Их число в новых клетках уменьшится вдвое (редукция числа хромосом). Количество генетической информации на каждом полюсе клетки становится меньше (1n 2хр 2с).

В телофазе первого деления мейоза формируются ядра, ядрышки и делится цитоплазма – образуются две дочерние клетки с гаплоидным набором хромосом, но эти хромосомы состоят из двух хроматид (1n 2хр 2с).

Вслед за первым наступает второе деление мейоза, но ему не предшествует синтез ДНК. После короткой профазы мейоза II двухроматидные хромосомы в метафазе мейоза II располагаются в плоскости экватора и крепятся к нитям веретена деления. Их генетическая информация прежняя – (1n 2хр 2с).

В анафазе мейоза II к противоположным полюсам клетки расходятся хроматиды и в телофазе мейоза II образуются четыре гаплоидные клетки с однохроматидными хромосомами (1n 1хр 1с). Таким образом, в сперматозоидах и яйцеклетках число хромосом уменьшается вдвое. Такие половые клетки образуются у половозрелых особей различных организмов. Процесс формирования гамет называют гаметогенез.

Биологическое значение мейоза:

1.Образование клеток с гаплоидным набором хромосом. При оплодотворении обеспечивается постоянный для каждого вида набор хромосом и постоянное количество ДНК.

2.Во время мейоза происходит случайное расхождение негомологичных хромосом, что приводит к большому числу возможных комбинаций хромосом в гаметах. У человека число возможных комбинаций хромосом в гаметах составляет 2 n , где n – число хромосом гаплоидного набора: 2 23 =8 388 608. Число возможных комбинаций у одной родительской пары 2 23 х 2 23

3.Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом

определяют закономерности наследственной передачи признака от родителей потомству.

Из каждой пары двух гомологичных хромосом (материнской и отцовской), входящих в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится только одна хромосома. При этом она может быть: 1) отцовской хромосомой; 2) материнской хромосомой; 3) отцовской с участком материнской хромосомы; 4) материнской с участком отцовской. Эти процессы приводят к эффективной рекомбинации наследственного материала в гаметах, образуемым организмом. В результате обуславливается генетическая разнородность гамет и потомства.

При объяснении учащиеся заполняют таблицу: «Сравнительная характеристика митоза и мейоза»

Типы деления Митоз (непрямое деление) Мейоз (редукционное деление)
Число делений одно деление два деление
Происходящие процессы Репликация и транскрипция отсутствуют В профазе 1 происходит конъюгация гомологичных хромосом и кроссинговер
К полюсам клетки расходятся хроматиды В первом делении к полюсам клетки расходятся гомологичные хромосомы
Число дочерних клеток 2 4
Набор хромосом в дочерних клетках (n – набор хромосом, хр – хроматиды, с – число ДНК) Число хромосом остается постоянным2n 1хр 2c (хромосомы однохроматидные) Число хромосом уменьшается вдвое 1n 1хр 1c (хромосомы однохроматидные)
Клетки, где происходит деление Соматические клетки Соматические клетки половых органов животных; спорообразующие клетки растений
Значение Обеспечивает бесполое размножение и рост живых организмов Служит для образования половых клеток

Закрепление изученного материала (по табл., тестовая работа).

Литература:

  1. Ю.И. Полянский. Учебник для 10-11 классов средней школы. –М.: «Просвещение», 1992.
  2. И.Н. Пономарева, О.А. Корнилова, Т.Е. Лощилина. Учебник «Биология» 11 класс, базовый уровень, –М.: «Вентана-Граф», 2010.
  3. С.Г. Мамонтов Биология для поступающих в ВУЗЫ. –М.: 2002.
  4. Н. Грин, У.Стаут, Д. Тейлор. Биология в 3 т. –М.: «Мир», 1993.
  5. Н.П. Дубинина. Общая биология. Пособие для учитетеля. –М.: 1990.
  6. Н.Н. Приходченко, Т.П. Шкурат «Основы генетики человека». Уч.пос. – Ростов н/Д: «Феникс», 1997.

Митоз (наряду со стадией цитокинеза) - процесс, в результате которого эукариотическая соматическая (или клетка тела) делится на две идентичные .

Мейоз - другой тип деления клеток, который начинается с одной клетки, имеющей правильное количество хромосом и заканчивается образованием четырех клеток с уменьшенным в двое количеством хромосом ().

У людей практически все клетки подвергаются митозу. Единственными клетками человека, которые делятся при помощи мейоза, являются или (яйцеклетка у женщин и сперма у мужчин).

Гаметы имеют только половину относительно клеток тела, потому что когда половые клетки сливаются во время оплодотворения, результирующая клетка (называемая зиготой) имеет правильное количество хромосом. Вот почему потомство представляет собой смесь генетики матери и отца (гаметы отца содержат одну половину хромосом, а гаметы матери - другую).

Хотя митоз и мейоз дают очень разные результаты, эти процессы довольно схожи и протекают с небольшими различиями на основных этапах. Давайте разберем основные отличия митоза и мейоза, чтобы лучше понять, как они работают.

Оба процесса начинаются после того, как клетка проходит через интерфазу и синтезирует ДНК на стадии S-фазы (или фазы синтеза). В этот момент каждая хромосома состоит из сестринских хроматид, которые удерживаются вместе .

Митотическая анафаза отделяет одинаковые сестринские хроматиды, поэтому идентичная генетика будет в каждой клетке. В анафазе I сестринские хроматиды, не идентичны, так как подверглись переходу во время профазы I. В анафазе I сестринские хроматиды остаются вместе, но гомологичные пары хромосом раздвигаются и переносятся на противоположные полюса клетки.

Телофаза

Заключительный этап называется телофазой. В митотической телофазе и телофазе II большая часть того, что было сделано во время профазы, будет отменено. Веретено деление разрушается и исчезает, образовывается ядерная оболочка, хромосомы распутываться, а клетка готовится к разделению во время цитокинеза.

В этот момент митотическая телофаза переходит в цитокинез, результатом которого будут две идентичные диплоидные клетки. Телофаза II уже прошла одно деление в конце мейоза I, поэтому она войдет в цитокинез, чтобы сделать в общей сложности четыре гаплоидных клетки. В телофазе I подобные события наблюдаться в зависимости от типа клетки. Веретено разрушается, но новая ядерная оболочка не формируется, а хромосомы могут оставаться плотно спутанными. Кроме того, некоторые клетки переходят сразу в профазу II вместо разделения на две клетки посредством цитокинеза.

Таблица основных различий между митозом и мейозом

Сравниваемые характеристики Митоз Мейоз
Деление клеток Соматическая клетка делится один раз. Цитокинез (разделение ) происходит в конце телофазы. Половая клетка, как правило делится дважды. Цитокинез происходит в конце телофазы I и телофазы II.
Дочерние клетки Производится две дочерние диплоидные клетки, содержащие полный набор хромосом. Производится четыре . Каждая клетка представляет собой гаплоид, содержащий половину числа хромосом от родительской клетки.
Генетическая композиция Полученные в митозе дочерние клетки являются генетическими клонами (они генетически идентичны). Не происходит рекомбинации или перекрестка. Полученные в мейозе дочерние клетки содержат различные комбинации генов. Генетическая рекомбинация происходит в результате случайной сегрегации гомологичных хромосом в разные клетки и путем перехода (переноса генов между гомологичными хромосомами).
Длительность профазы Во время первой митотической стадии, известной как профаза, конденсируется в дискретные хромосомы, ядерная оболочка ломается, а волокна веретена деления формируются на противоположных полюсах клетки. Клетка проводит меньше времени в профазе митоза, чем клетка в профазе I мейоза. Профаза I состоит из пяти этапов и длится дольше, чем профаза митоза. Этапы мейотической профазы I включают: лептотен, зиготен, пахитен, диплотен и диакинез. Эти пять стадий не происходят при митозе. Генетическая рекомбинация и скрещивание происходят во время профазы I.
Образование тетрада (бивалента) Тетрада не образовывается. В профазе I пары гомологичных хромосом выстраиваются близко друг к другу, образуя так называемую тетраду, которая состоит из четырех хроматид (два набора сестринских хроматид).
Согласование хромосом в метафазе Сестринские хроматиды (дублированная хромосома, состоящая из двух идентичных хромосом, соединенных в области центромера) выровнены на метафазной пластине (плоскость, которая одинаково удалена от двух полюсов клетки). Тетрада гомологичных хромосом выравнивается на метафазной пластинке в метафазе I.
Разделение хромосом Во время анафазы сестринские хроматиды разделяются и начинают мигрировать к противоположным полюсам клетки. Отделяемая сестринская хроматида становится полной хромосомой дочерней клетки. Гомологичные хромосомы мигрируют к противоположным полюсам клетки во время анафазы I. Сестринские хроматиды не разделяются в анафазе I.

Митоз и мейоз в эволюции

Обычно мутации в ДНК соматических клеток, которые подвергаются митозу, не передаются потомству и поэтому не применимы к естественному отбору и не способствуют вида. Однако ошибки в мейозе и случайное смешивание генов и хромосом в течение всего процесса, действительно способствуют генетическому разнообразию и приводит к эволюции. Пересечение создает новую комбинацию генов, которые могут кодировать благоприятную адаптацию.

Кроме того, независимый ассортимент хромосом во время метафазы I также приводит к генетическому разнообразию. Гомологичные пары хромосом выстраиваются в линию на этом этапе, поэтому смешивание и сопоставление признаков имеет много вариантов, что способствует разнообразию. Наконец, случайное также может увеличить генетическое разнообразие. Поскольку в конце мейоза II образовывается четыре генетически разных гамета, которые фактически используются во время оплодотворения. По мере того, как имеющиеся признаки смешиваются и передаются, естественный отбор воздействует на них и выбирает наиболее благоприятные адаптации в качестве предпочтительных индивидуумов.

Митоз - это наиболее распространенный способ деления эукариотических клеток. При митозе геномы каждой из двух образовавшихся клеток идентичны между собой и совпадают с геномом исходной клетки.

Митоз является последним и обычно самым коротким по времени этапом клеточного цикла. С его окончанием жизненный цикл клетки заканчивается и начинаются циклы двух новообразовавшихся.

Диаграмма иллюстрирует длительность этапов клеточного цикла. Буквой M - обозначен митоз. Наибольшая скорость митоза наблюдается в зародышевых клетках, наименьшая - в тканях с высокой степенью дифференциации, если их клетки вообще делятся.

Хотя митоз рассматривают независимо от интерфазы, состоящей из периодов G 1 , S и G 2 , подготовка к нему происходит именно в ней. Самым важным моментом является репликация ДНК, происходящая в синтетическом (S) периоде. После репликации каждая хромосома состоит уже из двух идентичных хроматид. Они сближены по всей своей длине и соединены в области центромеры хромосомы.

В интерфазе хромосомы находятся в ядре и представляют собой клубок тонких очень длинных хроматиновых нитей, которые видны лишь под электронным микроскопом.

В митозе выделяют ряд последовательных фаз, которые также могут называться стадиями или периодами. При классическом упрощенном варианте рассмотрения выделяют четыре фазы. Это профаза, метафаза, анафаза и телофаза . Часто выделяют больше фаз: прометафазу (между профазой и метафазой), препрофазу (характерна для растительных клеток, предшествует профазе).

С митозом связан другой процесс – цитокинез , который протекает в основном в период телофазы. Можно сказать, что цитокинез является как бы составной частью телофазы, или оба процесса идут параллельно. Под цитокинезом понимают разделение цитоплазмы (но не ядра!) родительской клетки. Деление ядра называют кариокинезом , и оно предшествует цитокинезу. Однако при митозе как такового деления ядра не происходит, т. к. сначала распадается одно – родительское, потом образуются два новых – дочерних.

Бывают случаи, когда кариокинез происходит, а цитокинез - нет. В таких случаях образуются многоядерные клетки.

Длительность самого митоза и его фаз индивидуальна, зависит от типа клеток. Обычно профаза и метафаза является самыми длительными периодами.

Средняя продолжительность митоза около двух часов. Животные клетки обычно делятся быстрее, чем клетки растений.

При делении клеток эукариот обязательно образуется двухполюсное веретено деления, состоящее из микротрубочек и связанных с ними белков. Благодаря ему происходит равное распределение наследственного материала между дочерними клетками.

Ниже будет дано описание процессов, которые происходят в клетке в различные фазы митоза. Переход в каждую следующую фазу контролируется в клетке специальными биохимическими контрольными точками, в которых «проверяется», все ли необходимые процессы были правильно завершены. В случае наличия ошибок деление может остановиться, а может - и нет. В последнем случае возникают аномальные клетки.

Фазы митоза

В профазе происходят следующие процессы (в основном параллельно):

    Хромосомы конденсируются

    Ядрышки исчезают

    Ядерная оболочка распадается

    Формируются два полюса веретена деления

Митоз начинается с укорочения хромосом. Составляющие их пары хроматид спирализуются, в результате чего хромосомы сильно укорачиваются и утолщаются. К концу профазы их можно увидеть в световой микроскоп.

Ядрышки исчезают, т. к. образующие их части хромосом (ядрышковые организаторы) находятся уже в спирализованном виде, следовательно, неактивны и не взаимодействуют между собой. Кроме того распадаются ядрышковые белки.

В клетках животных и низших растений центриоли клеточного центра расходятся по полюсам клетки и выступают центрами организации микротрубочек . Хотя у высших растений центриолей нет, микротрубочки также образуются.

От каждого центра организации начинают расходиться короткие (астральные) микротрубочки. Формируется структура похожая на звезду. У растений она не образуется. Их полюса деления более широкие, микротрубочки выходят не из малой, а из относительно широкой области.

Распад ядерной оболочки на мелкие вакуоли знаменует конец профазы.


Справа на микрофотографии зеленым цветом подсвечены микротрубочки, синим - хромосомы, красным – центромеры хромосом.

Также следует отметить, что в период профазы митоза происходи фрагментация ЭПС, она распадается на мелкие вакуоли; аппарат Гольджи распадается на отдельные диктиосомы.

Ключевые процессы прометафазы идут большей часть последовательно:

    Хаотичное расположение и движение хромосом в цитоплазме.

    Соединение их с микротрубочками.

    Движение хромосом в экваториальную плоскость клетки.

Хромосомы оказываются в цитоплазме, они беспорядочно двигаются. Оказавшись на полюсах, у них больше шансов скрепиться с плюс-концом микротрубочки. В конце концов нить прикрепляется к кинетохоре.


Такая кинетохорная микротрубочка начинает нарастать, чем отдаляют хромосому от полюса. В какой-то момент к кинетохоре сестринской хроматиды крепится другая микротрубочка, нарастающая с другого полюса деления. Она тоже начинает толкать хромосому, но уже в противоположном направлении. В результате хромосома становится на экваторе.

Кинетохоры представляют собой белковые образования на центромерах хромосом. Каждая сестринская хроматида имеет свой кинетохор, который «созревает» в профазе.

Кроме астральных и кинетохорных микротрубочек есть те, которые идут от одного полюса к другому, как бы распирают клетку в перпендикулярном экватору направлении.

Признаком начала метафазы является расположение хромосом по экватору , образуется так называемая метафазная, или экваториальная, пластинка . В метафазу хорошо видны количество хромосом, их отличия и то, что они состоят из двух сестринских хроматид, соединенных в районе центромеры.

Хромосомы удерживаются за счет сбалансированных сил натяжения микротрубочек разных полюсов.


    Сестринские хроматиды разделяются, каждая двигается к своему полюсу.

    Полюса удаляются друг от друга.


Анафаза самая короткая фаза митоза. Она начинается, когда центромеры хромосом разделяются на две части. В результате каждая хроматида становится самостоятельной хромосомой и оказывается прикреплена к микротрубочке одного полюса. Нити «тянут» хроматиды к противоположным полюсам. На самом деле микротрубочки разбираются (деполимеризуются), т. е. укорачиваются.

В анафазе животных клеток двигаются не только дочерние хромосомы, но и сами полюса. За счет других микротрубочек они расталкиваются, астральные микротрубочки прикрепляются к мембранам и тоже «тянут».

    Движение хромосом останавливается

    Хромосомы деконденсируются

    Появляются ядрышки

    Восстанавливается ядерная оболочка

    Большая часть микротрубочек исчезает


Телофаза начинается, когда хромосомы перестают двигаться, остановившись у полюсов. Они деспирализуются, становятся длинными и нитевидными.

Микротрубочки веретена деления разрушаются от полюсов к экватору, т. е. со стороны своих минус-концов.

Вокруг хромосом образуется ядерная оболочка путем слияния мембранных пузырьков, на которые в профазе распалось материнское ядро и ЭПС. На каждом полюсе формируется свое дочернее ядро.

Поскольку хромосомы деспирализуются, ядрышковые организаторы становятся активными и появляются ядрышки.

Возобновляется синтез РНК.

Если на полюсах центриоли еще не парные, то около каждой достраивается парная ей. Таким образом на каждом полюсе воссоздается свой клеточный центр, который отойдет в дочернюю клетку.

Обычно телофаза заканчивается разделением цитоплазмы, т. е. цитокинезом.

Цитокинез может начаться еще в анафазе. К началу цитокинеза клеточные органеллы распределяются относительно равномерно по полюсам.

Разделение цитоплазмы растительных и животных клеток происходит по-разному.

У животных клеток благодаря эластичности цитоплазматическая мембрана в экваториальной части клетки начинает впячиваться во внутрь. Образуется борозда, которая в конце концов смыкается. Другими словами, материнская клетка делится перешнуровкой.


В растительных клетках в телофазе нити веретена не исчезают в области экватора. Они сдвигаются ближе к цитоплазматической мембране, их количество увеличивается, и они образуют фрагмопласт . Он состоит из коротких микротрубочек, микрофиламентов, частей ЭПС. Сюда перемещаются рибосомы, митохондрии, комплекс Гольджи. Пузырьки Гольджи и их содержимое на экваторе образуют срединную клеточную пластинку, клеточные стенки и мембрану дочерних клеток.

Значение и функции митоза

Благодаря митозу обеспечивается генетическая стабильность: точное воспроизводство генетического материала в ряду поколений. Ядра новых клеток содержат столько же хромосом, сколько их содержала родительская клетка, и эти хромосомы являются точными копиями родительских (если, конечно, не возникли мутации). Другими словами, дочерние клетки генетически идентичны материнской.

Однако митоз выполняет и ряд других немаловажных функций:

    рост многоклеточного организма,

    бесполое размножение,

    замещение клеток различных тканей у многоклеточных организмов,

    у некоторых видов может происходить регенерация частей тела.



Новое на сайте

>

Самое популярное