Домой Исследования Что такое зрачковый рефлекс. Зрительный путь и путь зрачкового рефлекса

Что такое зрачковый рефлекс. Зрительный путь и путь зрачкового рефлекса

Размер зрачка определяется многими факто­рами. Это возраст, эмоциональное состояние, степень освещения сетчатки, степень аккомода­ции и др. Изменение диаметра зрачка контроли­руется действием парасимпатических и симпа­тических эфферентных трактов.

Зрачковый рефлекс заключается в содруже­ственном и равном сужении зрачков при осве­щении одного из глаз, обеспечивая при этом уменьшение светового потока, падающего на сетчатку. Сужение зрачка выявляется при ис­ключительно низкой интенсивности освещения и пропорционально интенсивности и продолжи­тельности стимула .

Свет, проходя через преломляющие среды глаза, попадает на сетчатку. Фоторецепторы сетчатой оболочки и являются началом рефлек­са. Парасимпатическая иннервация сфинктера является эфферентным плечом зрачкового реф­лекса рефлекторной дуги.


Афферентный путь (рис. 4.5.10). Афферент­ный путь начинается в палочках и колбочках сетчатой оболочки и проходит в составе зри­тельного нерва к структурам центральной нервной системы. До сих пор обсуждается воп­рос - «зрительные» и «зрачковые» волокна зрительного нерва идентичны или нет? Если даже волокна «зрачкового рефлекса» являются самостоятельными и не обеспечивают передачу зрительной информации, они все же располага­ются вблизи волокон, несущих зрительную ин­формацию. Об этом свидетельствуют факты исчезновения зрачкового рефлекса на слепом глазу (поражение зрительного нерва).

Проходя в зрительном нерве, зрачковые во­локна достигают зрительного перекреста, где они частично перекрещиваются и часть их пере­ходит на противоположную сторону.

Затем волокна поступают в зрительный тракт. Повреждение этой области приводит к развитию гемианопсической реакции зрачка Вернике (Wernicke).

В задней трети зрительного тракта, не до­стигая наружного коленчатого тела, волокна покидают зрительный тракт и проходят поверх­ностно в составе ручки верхнего бугорка по направлению к латеральной части верхнего хол­мика четверохолмия (рис. 4.5.10). Раз­рушение обеих ручек верхнего холмика приво­дит к тому, что зрачок не реагирует при осве­щении обоих глаз .

Ни одно из волокон зрачкового рефлектор­ного пути, по-видимому, не заканчивается в наружном коленчатом теле. Однако некоторые исследователи полагают, что возможно пере­ключение части волокон, идущих в претекталь-ную область, в прегеникулярном ядре, хотя морфологическими методами существование по­добных связей не установлено.

В последующем «зрачковые» волокна прохо­дят к среднему мозгу по боковой поверхности верхнего четверохолмия и достигают парного претектального ядра (плохо очерченное скоп­ление мелких клеток, расположенных впереди латерального края верхнего четверохолмия). Здесь волокна прерываются, образуя термина­лы (рис. 4.5.10, б).


Многочисленные подгруппы нейронов отно­сят к претектальным ядрам, хотя их функцио­нальное значение не совсем ясно. К ним отно­сят ядро оливы, подчечевицеобразное ядро, ядро зрительного тракта, заднее ядро и пред-крышечное ядро (рис. 4.5.11).

Волокна, идущие от сетчатки, заканчивают­ся преимущественно в дорзомедиальной части ядра оливы (п. olivaris) с этой же стороны, а также в подчечевицеобразном ядре противо­положной стороны (п. sublentiformis). Анало­гичная проекция выявляется и на ядро пред-крышечной области .

Аксоны нейронов ядра оливы и подчечевице-подобного ядра частично перекрещиваются


Вегетативная (автономная) иннервация глаза

ЗРИТЕЛЬНЫЙ ПУТЬ

Анатомическая структура зрительного пути достаточно сложна и включает в себя ряд нейронных звеньев. В пределах сетчатки каждого глаза – это слой палочек и колбочек (фоторецепторы – первый нейрон), затем слой биполярных (второй нейрон) и ганглиозных клеток с их длинными аксонами (третий нейрон). Все вместе они образуют периферическую часть зрительного анализатора. Проводящие пути представлены зрительными нервами, хиазмой и зрительными трактами.

Последние оканчиваются в клетках наружного коленчатого тела, играющего роль первичного зрительного центра. От них берут начало уже волокна центрального нейрона зрительного пути, которые достигают области затылочной доли мозга. Здесь локализуется первичный кортикальный центр зрительного анализатора.

Зрительный нерв образован аксонами ганглиозных клеток сетчатки и заканчивается в хиазме. Значительную часть нерва составляет глазничный отрезок, который в горизонтальной плоскости имеет 8‑образный изгиб, благодаря чему не испытывает натяжений при движении глазного яблока.

На значительном протяжении (от выхода из глазного яблока до входа в зрительный канал) нерв, подобно мозгу, имеет три оболочки: твердую, паутинную, мягкую. Вместе с ними толщина его составляет 4–4,5 мм, без них – 3–3,5 мм. У глазного яблока твердая оболочка срастается со склерой и телоновой капсулой, а у зрительного канала – с надкостницей. Внутричерепной отрезок нерва и хиазма, находящиеся в субарахноидаль‑ной хиазматической цистерне, одеты только в мягкую оболочку. Подоболочечные пространства глазничной части нерва (субду‑ральное и субарахноидальное) соединяются с аналогичными пространствами головного мозга, но изолированы друг от друга. Они заполнены жидкостью сложного состава (внутриглазная, тканевая, цереброспинальная).

Поскольку внутриглазное давление в норме в два раза выше внутричерепного (10–12 мм рт. ст.), направление ее тока совпадает с градиентом давления. Исключение составляют случаи, когда существенно повышается внутричерепное давление (например, при развитии опухоли мозга, кровоизлияниях в полость черепа) или, наоборот, значительно снижается тонус глаза.

Все первичные волокна, входящие в состав зрительного нерва, группируются в три основные пучка. Аксоны ганглиозных клеток, отходящие от центральной (макулярной) области сетчатки, составляют папилломакулярный пучок, который входит в височную половину диска зрительного нерва. Волокна от ганглиозных клеток носовой половины сетчатки идут по радиальным линиям в носовую половину диска. Аналогичные волокна, но от височной половины сетчатки, на пути к диску зрительного нерва сверху и снизу «обтекают» папилломаку‑лярный пучок.



В глазничном отрезке зрительного нерва вблизи глазного яблока соотношения между нервными волокнами остаются такими же, как и в его диске. Далее папилломакулярный пучок перемещается в осевое положение, а волокна от височных квадратов сетчатки – на всю соответствующую половину зрительного нерва. Таким образом, зрительный нерв четко разделен на правую и левую половины. Менее выражено его деление на верхнюю и нижнюю половины. Важной в клиническом смысле особенностью является то, что нерв лишен чувствительных нервных окончаний.

В области черепа зрительные нервы соединяются над областью турецкого седла, образуя хиазму, которая покрыта мягкой мозговой оболочкой и имеет следующие размеры: длина 4‑10 мм, ширина 9‑11 мм, толщина 5 мм. Хиазма снизу граничит с диафрагмой турецкого седла (сохранившийся участок твердой мозговой оболочки), сверху (в заднем отделе) – с дном третьего желудочка мозга, по бокам – с внутренними сонными артериями, сзади – с воронкой гипофиза.

В области хиазмы волокна зрительных нервов частично перекрещиваются за счет порций, связанных с носовыми половинками сетчаток.

Переходя на противоположную сторону, они соединяются с волокнами, идущими от височных половин сетчаток другого глаза, и образуют зрительные тракты. Здесь же частично перекрещиваются и папилломакулярные пучки.

Зрительные тракты начинаются у задней поверхности хиазмы и, обогнув с наружной стороны ножки мозга, оканчиваются в наружном коленчатом теле, задней части зрительного бугра и переднем четверохолмии соответствующей стороны. Однако только наружные коленчатые тела являются безусловным подкорковым зрительным центром. Остальные два образования выполняют другие функции.

В зрительных трактах, длина которых у взрослого человека достигает 30–40 мм, папилломакулярный пучок также занимает центральное положение, а перекрещенные и неперекрещен‑ные волокна по‑прежнему идут отдельными пучками. При этом первые из них расположены вектромедиально, а вторые – до‑реолатерально. Зрительная лучистость (волокна центрального нейрона) начинается от ганглиозных клеток пятого и шестого слоев наружного коленчатого тела.

Сначала аксоны этих клеток образуют так называемое поле Верника, а затем, пройдя через заднее бедро внутренней капсулы, веерообразно расходятся в белом веществе затылочной доли мозга. Центральный нейрон заканчивается в борозде птичьей шпоры. Эта область и олицетворяет сенсорный зрительный центр – семнадцатое корковое поле по Бродману.

Путь зрачкового рефлекса – светового и на установку глаз на близкое расстояние – довольно сложен. Афферентная часть рефлекторной дуги первого из них начинается от колбочек и палочек сетчатки в виде автономных волокон, идущих в составе зрительного нерва. В хиазме они перекрещиваются точно так же, как и зрительные волокна, и переходят в зрительные тракты. Перед наружными коленчатыми телами пупилломоторные волокна оставляют их и после частичного перек‑реста оканчиваются у клеток так называемой претектальной области. Далее новые, межуточные нейроны после частичного перекреста направляются к соответствующим ядрам (Якутовича – Эдингера – Вестфаля) глазодвигательного нерва. Афферентные волокна от желтого пятна сетчатки каждого глаза представлены в обоих глазодвигательных ядрах.

Эфферентный путь иннервации сфинктера радужки начинается от уже упомянутых ядер и идет обособленным пучком в составе глазодвигательного нерва. В глазнице волокна сфинктера входят в его нижнюю ветвь. А затем через глазодвигательный корешок – в ресничный узел. Здесь заканчивается первый нейрон рассматриваемого пути и начинается второй. По выходу из ресничного узла волокна сфинктера в составе коротких ресничных нервов, пройдя через склеру, попадают в пе‑рихориоидальное пространство, где образуют нервное сплетение. Его конечные разветвления проникают в радужку и входят в мышцу отдельными радиальными пучками, т. е. иннервируют ее секторально. Всего в сфинктере зрачка насчитывается 70–80 таких сегментов.

Эфферентный путь дилататора (расширителя) зрачка, получающего симпатическую иннервацию, начинается от ци‑лиоспинального центра Будге. Последний находится в передних рогах спинного мозга. Отсюда отходят соединительные ветви, которые через пограничный ствол симпатического нерва, а затем нижний и средний симпатические шейные ганглии достигают верхнего ганглия. Здесь заканчивается первый нейрон пути и начинается второй, входящий в состав сплетения внутренней сонной артерии. В полости черепа волокна, иннер‑вирующие дилататор зрачка, выходят из упомянутого сплетения, входят в тройничный (гассеров) узел, а затем покидают его в составе глазного нерва. Уже у вершины границы они переходят в носоресничный нерв и далее вместе с длинными ресничными нервами проникают в глазное яблоко. Кроме того, от центра Будге отходит центральный симпатический путь, заканчивающийся в коре затылочной доли мозга. Отсюда начинается уже кортиконуклеарный путь торможения сфинктера зрачка.

Регуляция функции дилататора зрачка проходит с помощью супрануклеарного гипоталамического центра, находящегося на уровне третьего желудочка мозга перед воронкой гипофиза. Посредством ретикулярной формации он связан с цилиоспи‑нальным центром Будге.

Реакция зрачков на конвергенцию и аккомодацию имеет свои особенности, и рефлекторные дуги в этом случае отличаются от описанных выше.

При конвергенции стимулом к сужению зрачка служат про‑приоцептивные импульсы, идущие от сокращающихся внутренних прямых мышц глаза. Аккомодация же стимулируется расплывчатостью (расфокусировкой) изображений внешних объектов на сетчатке. Эффективная часть дуги зрачкового рефлекса в обоих случаях одинакова.

Центр установки глаза на близкое расстояние находится, как полагают, в восемнадцатом корковом поле по Бродману.

При ярком свете зрачок сужается, при слабом свете - расширяется.

Изменение размера зрачка происходит благодаря работе мышц радужной оболочки: сфинктера и дилятатора. Сфинктер радужки (сужает зрачок) представлен гладкомышечными волокнами, расположенными циркулярно в зрачковой части радужки, иннервируется парасимпатической нервной системой, а дилятатор (расширяет зрачок) представлен гладкомышечными волокнами, расположенными радиально в цилиарной зоне радужки, иннервируется симпатической нервной системой (рисунок 1).

Механизм возникновения зрачкового рефлекса

Первое звено зрачкового рефлекса – фоторецепторы: палочки и колбочки. В них содержатся пигменты, после активации пигмента светом начинается цепная химическая реакция, приводящая к формированию нервного импульса, передаваемого с фоторецепторных клеток на другие клетки сетчатки: биполярные, амакринные, ганглионарные, далее по аксонам ганглионарных клеток, формирующим зрительный нерв, импульс доходит до хиазмы.

Хиазма – зрительный перекрест, где часть волокон правого зрительного нерва переходят на левую сторону, а часть волокон левого зрительного нерва – на правую. У собак количество «переходящих» волокон 75%, у кошек 63%. После хиазмы импульс продолжает передаваться по зрительному тракту, большая часть волокон (80%) идет к латеральному коленчатому ядру и далее передает сигнал для формирования зрительного образа.

Однако 20% волокон зрительного тракта отделяются, не доходя до латерального коленчатого ядра, и идет в претектальное ядро среднего мозга, где происходит синапс. Аксоны претектальных клеток идут в парасимпатическое ядро глазодвигательного нерва (ядро Эдингера-Вестфала), часть волокон перекрещивается и идет в противоположное ядро Эдингера-Вестфала.

Из ядра Эдингера-Вестфала выходят парасимпатические аксоны и в составе глазодвигательного/окуломоторного нерва (CN III) идут в орбиту. В орбите есть цилиарный ганглий, где происходит синапс, постганглионарные волокна в составе коротких цилиарных нервов входят в глазное яблоко и иннервируют сфинктер радужки (рисунок 2).

У собак короткие цилиарные нервы распределяются равномерно по радужке, а у кошек - сначала делятся на 2 ветви: темпоральную и назальную, при изолированном поражении одной из ветвей у кошек возникает D-образный или обратно-D-образный зрачок.

Нормальный зрачковый рефлекс говорит о возможности передачи импульса от сетчатки по зрительному нерву через хиазму по всего 20% волокон зрительного тракта , в некоторые зоны среднего мозга и о функции парасимпатических волокон глазодвигательного нерва.

Важно помнить, что для зрения необходимо не только, чтобы импульс шел от сетчатки по нерву в хиазму, но и чтобы он поступил по 80% волокон зрительного тракта в зрительные зоны коры головного мозга. Поэтому при повреждении участков зрительных трактов и зрительной коры зрения не будет, а зрачковый рефлекс будет нормальным.

Оценка зрачкового рефлекса происходит обычно с использованием белого света от ручки-фонарика или трансиллюминартора, или щелевой лампы. В норме зрачок быстро сужается в ответ на световой раздражитель (прямой рефлекс), одновременно сужается и зрачок другого глаза (содружественный рефлекс). Замедленный, неполный, отсутствующий прямой или содружественный зрачковый рефлекс – это следствие нарушения в передаче импульса от сетчатки до головного мозга или от головного мозга по глазодвигательному нерву.

Мидриаз – расширение зрачка и отсутствие зрачкового рефлекса, может быть при следующих состояниях:

  • Поражение глазодвигательного нерва, при этом глаз зрячий
  • Атрофия радужки, при этом глаз зрячий
  • Использование мидриатиков, при этом глаз зрячий
  • Поражение сетчатки (отслойка), при этом глаз слепой
  • Поражение зрительного нерва (неврит, разрыв, повреждение при глаукоме), при этом глаз слепой
  • Поражение хиазмы (новообразование, воспаление, травма), характерна двусторонняя слепота и двусторонний мидриаз.

Перевод с немецкого Н.А. Игнатенко

При исследовании глаз есть одно преимущество: большинство структур являются видимыми, поэтому уже во время клинического исследования можно поставить диагноз. В любом случае очень важным во время клинического осмотра пациента является сбор анамнеза, поскольку нередко изменения глаз являются признаком системного заболевания.

Последовательность офтальмологического исследования ориентирована на анатомическое строение глаза и зависит от него. Большое значение имеет строго систематический подход. Сначала необходим осмотр, а лишь потом дальнейшие мероприятия, такие как пальпация, выворачивание третьего века, окраска роговицы, расширение зрачка для офтальмоскопии и т.д.

Обязательным является детальное исследование обоих глаз, даже если изменения наблюдаются в одном.

Анамнез

В офтальмологии, как и во всех областях ветеринарной медицины, очень важным является детальный сбор анамнеза. Необходимо начинать с того, как долго животное на­ходится у этих владельцев, как давно и при каких обстоятельствах были замечены изменения, связанные со зрением. Восприятие владельцами проблем с глазами у питомца может быть важным пунктом для определения последовательности заболева­ния, например, при развитии слепоты.

При выраженной билатеральной катаракте исследование глазного дна становится невозможным. Если владелец животного говорит, что его питомец мог видеть, «пока зрачки не стали белыми», то катаракта может быть единственной причиной потери зрения. Если же владелец уверен, что «зрачки были нормальными», а питомец уже ос­леп, то, возможно, кроме катаракты, речь может идти также о дегенерации сетчатки. В общем, вопросы к владельцу направлены на то, чтобы понять последовательность изменений в глазах его питомца. Относительно слепоты можно задавать следующие вопросы:

Может ли пациент видеть лучше при определенном освещении?

Коррелирует ли потеря зрения с переездом, перестановкой мебели или прогулками в непривычной местности (например, при посещении клиники)?

Как хозяин понял, что его питомец больше не видит? Все ли время питомец старается держаться рядом с ногой владельца?

Были ли изменения общего состояния здоровья пациента (например, симптомы сахарного диабета и др.)?

Исследование передней камеры глаза

Во время этого исследования следует стараться по возможности избегать стресса. Если глаз пациента очень болезненный, и существует опасность его дальнейшего пов­реждения во время исследования, то необходимо положить животное в кратковременный наркоз. Сначала проводится осмотр пациента в освещенной комнате на некотором расстоянии (наблюдение). При этом необходимо обратить внимание на следующие моменты:

Речь идет об односторонних или двусторонних изменениях?

Каково соотношение глаза к орбите, к векам, ко второму глазу?

Оценить размер глазного яблока: большое, маленькое, нормальное?

Какое положение занимает глазное яблоко: наблюдаются ли экзофтальм или эндофтальм?

Одинаковы ли оси обоих глаз?

Наблюдается ли выпадение третьего века?

Имеются ли выделения из глаз? Одинакового ли размера оба зрачка, или имеет место анизокория (зрачки разного размера)? Имеет ли место расширение зрачков (мидриаз) (Рис. 1, 2) ?

На заключительном этапе осматриваются вспомогательные части глаза при помощи фокального (прямого и бокового) источника света. Для этого можно использовать отоскоп или щелевую лампу. Принцип щелевой лампы основывается на фокальном ос­вещении. Он делает возможным точное исследование передней и средней частей глаза при пятнадцатикратном увеличении. Оценка при этом осуществляется бинокулярно. Боковое освещение через световую щель делает возможным исследование оптических слоев.

Необходимо обратить внимание также на воспаления, новообразования, анатомические отклонения (врожденные и приобретенные), целостность роговицы, наличие или отсутствие увлажнения, инородных тел, признаки травмы, боли (вероятное самотравмирование, моргание). Любые изменения должны быть соответствующим образом запротоколированы, например, посредством эскиза (Рис. 3, 4) .

Для исследования структур, которые располагаются позади хрусталика, обязательным является медикаментозно достигаемый мидриаз (см. Раздел офтальмоскопии).

Неврологическое исследование глаза

Проверка рефлексов

Зрачковый рефлекс

Для того чтобы оценить прямой зрачковый рефлекс, источник света направляется в исследуемый глаз.

Полезным может быть направление света на сетчатку в височную часть, поскольку она очень чувствительна. Лучше всего проводить исследование в комнате с нормальным освещением, для того чтобы сразу оценивать симметричность зрачков без осложнений, которые могут возникнуть в темноте из-за изменений парасимпатического тонуса.

Часто сложно оценить ответ на свет не стимулированного глаза (непрямой зрачковый рефлекс), поскольку комнатный свет может рефлектировать на роговице и усложнять оценку зрачка. Этого можно избежать при помощи следующих методик:

Использование прямого офтальмоскопа, во время которого можно оценивать прямой ответ в каждом глазу при комнатном освещении. Можно затемнить комнату или выключить свет и отдалиться от пациента настолько, чтобы было видно в обоих зрачках отражение дна глазного яблока посредством офтальмоскопа с «0» диоптрией. Ассистент светит сначала в один, потом во второй глаз, во время этого можно наблюдать реакцию глаза, в который не поступает прямой источник света.

Так называемый тест с карманным фонариком можно проводить без ассистента и без затемнения комнаты. Сначала необходимо точно установить, что каждый глаз де­монстрирует прямой ответ. Потом источник света направляется в правый глаз. Если зрачок реагирует (или если зрачок не реагирует через одну-две секунды), источник света быстро направляется в левый глаз. Если реакция была на левом глазу, то левый зрачок должен оставаться суженным (если сделать это недостаточно быстро, то левый зрачок снова несколько расширится и покажет нормальную прямую реакцию на свет). Таким же образом нужно действовать и для другой стороны.

Оценка рефлекторного ответа описана ниже.

Роговичный рефлекс

Он контролируется тройничным нервом (V чувствительной ветвью) и лицевым нервом (VII двигательной ветвью). Следовательно, каждое прикосновение или болезненная стимуляция роговицы приводит к рефлекторному прикрытию глаза посредством сокращения круговой мышцы глаза (M. orbicularis oculi ). Различают прямой роговичный рефлекс (реакцию раздраженного глаза) и реакцию контралатерального глаза.

Рефлекс угрозы

Он также известен как мигательный рефлекс. Контролируется зрительным нервом (II афферентной ветвью) и лицевым (VII двигательной ветвью). Следовательно, субкортикальный рефлекс, который вызывается внезапным стимулированием визуальной системы (например, инородным телом, которое движется в направлении глаза), приводит к рефлекторному закрытию глаза и одергиванию головы. Рефлекс может содержать кортикальные компоненты, так как ему необходимы интактные (неповрежденные) фоточувствительные и двигательные участки коры мозга на ипсилатеральной стороне. Непрозрачность сред глаза и цветовые отклонения могут привести к ошибочному диагнозу. Если у пациента, например, полная катаракта, то исследование рефлекса угрозы не будет иметь практического значения. Рефлекс угрозы может не коррелировать напрямую со способностью животного видеть. Есть ситуации, в которых пациент видит, но рефлекс угрозы отрицательный, или наоборот, пациент не видит, а рефлекс угрозы - положительный.

Реакция на свет

Это непроизвольная реакция глаза на источник света. Особенно если сильный свет прямо светит в глаз, реакция включает мигание, выпячивание третьего века (если есть третье веко) и иногда движение головы в сторону, противоположную источнику света. Несмотря на нейроанатомическую поддержку этой реакции, не полностью понятно, является ли положительный ответ в общем признаком ненарушенного проведения зрительного импульса в мозг и может ли приниматься как признак сохраненного зрения. Этот рефлекс является более надежным признаком сохранения зрения, чем рефлекс угрозы, и особенно полезен у тех пациентов, у которых наблюдается помутнение глаза по различным причинам. Даже полная катаракта или поражения роговицы не оказывают влияния на этот рефлекс.

Нарушения зрения

Тестирование зрительных способностей

Поскольку мы не можем спросить наших пациентов об их зрительных способностях, то стоит несколько минут понаблюдать за их поведением. Посредством зрачкового реф­лекса, рефлекса угрозы и реакции на свет проверяется скорее целостность нейроанатомических структур. Все эти тесты могут быть положительными, а пациент, тем не менее, не в состоянии обойти препятствия или прокладывать себе путь.

Полоса препятствий

У вас в распоряжении должна быть простая полоса препятствий, однако некоторые животные, особенно кошки, не идут на контакт.

Полосу препятствий необходимо пройти при дневном освещении (для контроля фотопического зрения) и в темноте (для контроля скотопического зрения), для того чтобы проверить зрительную способность колбочек и палочек. Красный свет полезен для стимуляции скотопического (палочкового) зрения.

У кошек очень сложно отдифференцировать потерю зрения. Можно посадить кошку на стол и наблюдать, насколько она уверена при прыжке и приземлении на лапы, насколько целенаправлен был ее прыжок.

Если есть подозрение на одностороннюю слепоту, то животное должно проходить полосу препятствий с заклеенным глазом. В любом случае должны оцениваться оба глаза, поскольку некоторые пациенты отказываются проходить полосу препятствия с заклеенным глазом, независимо от того, страдают они от слепоты или нет.

Тест-реакции на движение

Волнообразное движение руки перед глазом может заставить пациента моргать только из-за колебаний воздуха, даже если у него нет способности видеть. Для того чтобы уменьшить сквозняк, можно между рукой и глазом держать прозрачный пластиковый лист. В качестве альтернативы можно использовать кусочек ваты, который роняют пе­ред пациентом и наблюдают, как он следит за падением. При тесте с кусочком ваты можно проверять также объем зрительного поля, которое очень уменьшается при глаукоме. Для проверки ватный шарик должен всегда лететь сверху, от височного края, вниз, к носовому.

Признаки слепоты

Внезапная полная слепота, как правило, сопровождается замедленными, более осторожными движениями, животное начинает натыкаться на предметы. При постепенно возникающей или врожденной слепоте пациент очень часто кажется зрячим, поскольку отсутствующее зрение он компенсирует другими органами чувств (слух и обоняние). Животные знают свое окружение и передвигаются в нем без проблем.

CAVE: Отсутствующий зрачковый рефлекс не указывает на слепоту, так же как и его присутствие не всегда означает, что животное видит.

Дифференциальная диагностика потери зрения

Потеря зрения (слепота) может быть унилатеральной и билатеральной, также она может быть обусловлена неврологическими и офтальмологическими проблемами. Иногда для поиска причин необходимо тщательное неврологическое и офтальмологические обследования. В некоторых случаях необходимы специализированные исследования (электроретинография).

1. Унилатеральная слепота

Потеря зрения одного глаза или одного поля зрения может быть результатом унилатерального поражения сетчатки, зрительного нерва, зрительного тракта, зрительной лучистости или коры головного мозга.

Если причина потери зрения кроется в зрительном нерве, то наблюдается односторонняя слепота и потеря реакции зрачков на свет в обоих глазах. Если источник света направить в ослепший глаз, то зрачки могут быть симметричными, или зрачок в ослепшем глазе может быть незначительно больше зрачка здорового глаза.

Если причина слепоты в зрительном тракте, зрительной лучистости или коре головного мозга, то в этом случае наблюдается выпадение поля зрения с нормальной реакцией зрачка. У животного также будут заметны другие симптомы церебрального заболевания, связанные с поражением в этой области. Потеря зрения происходит на стороне, противоположной от поражения ЦНС. Размер обоих зрачков одинаковый.

2. Билатеральная слепота

Если поражения располагаются в области сетчатки, зрительного нерва или зрительного тракта, то слепота сопровождается максимально расширенными зрачками, которые не реагируют на свет. Никаких других неврологических симптомов не наблюдается.

Если поражение располагается в обоих лучистых полях или зрительной коре, то происходит полная потеря зрения, но зрачки нормального размера. Также можно видеть нормальную реакцию на свет при зрительной стимуляции.

Нистагм

Нистагмом называют непроизвольные ритмичные движения обоих глаз. Различают физиологический и искусственно вызванный нистагм (провокационный нистагм), а также патологический спонтанный нистагм. О последнем пойдет речь более детально.

Классификация

У патологического нистагма есть две характеристики: по его направлению и по тому, чем он вызван. Оба могут дать информацию о локализации нарушения.

1. По направлению колебательных движений различают:

a) горизонтальный : колебания из одной стороны в другую в большинстве случаев свидетельствуют о периферическом заболевании, быстрое колебание идет от стороны поражения в противоположную;

b) вращательный : глаз вращается по направлению часовой стрелки орбиты или против, что не свидетельствует о специфической локализации поражения;

c) вертикальный : глаз вращается вентрально по отношению к уровню головы. Эта форма нистагма, как правило, наблюдается при заболеваниях ЦНС;

d) изменения направления : если направление нистагма изменяется при разных положениях головы, то это свидетельствует о заболевании ЦНС.

2. По типу возникновения по отношению к движению:

a) постоянный нистагм : наблюдается, если голова животного находится в нормальном положении. Как правило, такой тип нистагма возникает при периферических заболеваниях;

b) нистагм, обусловленный положением : наблюдается, когда голова располагается непараллельно по отношению к полу. Он длится более одной минуты, после того как голова прекратила движение. Позиционный нистагм наблюдается при заболеваниях ЦНС.

Причины

Патологический нистагм считается симптомом периферических или центральных заболеваний вестибулярного аппарата. С ним могут быть также ассоциированы следующие симптомы: атаксия, кривоголовость, круговые движения и головокружение. Центральные вестибулярные нарушения могут быть обусловлены поражением:

В стволе головного мозга. Будут выражаться в слабости и проприрецептивном дефиците;

В мозжечке. Будут характеризоваться тремором, гиперметрией, отсутствующим рефлексом угрозы при нормальном зрении. Причиной нистагма является асимметрия мышечного тонуса глазного яблока. При выпадении правого вестибулярного аппарата стимулируется только левый вестибулярный аппарат, это приводит к медленному тоническому отклонению глазного яблока вправо со стремительным возвратом влево. При этом быстрая фаза действует в сторону поражения. Причина фазы быстрой коррекции, вероятно, находится в коре головного мозга. Характерным для вестибулярного нистагма является тот момент, что он никак не соотносится с проверкой зрения и может наблюдаться у слепых животных.

1. Нистагм при периферическом вестибулярном заболевании:

a) Он очень выражен в начале заболевания и уменьшается на протяжении всей болезни (редко наблюдается дольше нескольких недель).

b) В большинстве случаев непроизвольный и всегда независим от положения головы.

c) Он в основном однонаправленный и выдерживает это направление, независимо от положения головы животного.

d) Его направление в большинстве случаев горизонтально.

e) Если его появление обусловлено поражением в области внутреннего уха, то будут также обнаруживаться симптомы поражения VII пары лицевых нервов и синдром Горнера. Если поражение располагается в области периферических нервов, то в этом случае другие симптомы будут отсутствовать.

2. Нистагм при центральном вестибулярном поражении:

a) Склонен к персистированию. Пока у животного есть заболевание, будет наблюдаться нистагм.

b) Часто имеет прогрессирующее течение и со временем становится тяжелее.

c) Направление нистагма может изменяться при наклоне головы.

d) Часто у него есть также вертикальные компоненты.

Продолжение в следующем номере .




Рефлексы – важнейшая функция организма. Ученые, которые занимались изучением рефлекторной функции, в большинстве своем были согласны с тем, что все сознательные и бессознательные акты жизнедеятельности по своей сути являются рефлексами.

Что такое рефлекс

Рефлекс – ответ центральной нервной системы на раздражение рецептов, который обеспечивает реакцию организма на изменение во внутренней или внешней среде. Осуществление рефлексов происходит за счет раздражения нервных волокон, которые собраны в рефлекторные дуги. Проявлениями рефлекса выступают возникновение или прекращение деятельности со стороны организма: сокращение и расслабление мышц, секреция желез или ее остановка, сужение и расширение сосудов, изменения зрачка и прочее.

Рефлекторная деятельность позволяет человеку быстро реагировать и должным образом приспосабливаться к изменениям вокруг себя и внутри. Нельзя ее недооценивать: позвоночные животные настолько зависимы от рефлекторной функции, что даже частичное ее нарушение приводит к инвалидности.

Виды рефлексов

Все рефлекторные акты принято разделять на безусловные и условные. Безусловные передаются наследственным путем, они свойственны каждому биологическому виду. Рефлекторные дуги для безусловных рефлексов формируются еще до рождения организма и сохраняются в таком виде до конца его жизнедеятельности (если отсутствует влияние негативных факторов и болезней).

Условные рефлексы возникают в процессе развития и накопления определенных навыков. Новые временные связи вырабатываются в зависимости от условий. Они формируются из безусловных, при участии высших мозговых отделов.

Все рефлексы классифицируют по разным признакам. По биологическому значению разделяют пищевые, половые, оборонительные, ориентировочные, локомоторные (передвижение), позно-тонические (положение). Благодаря этим рефлексам живой организм способен обеспечивать главные условия жизнедеятельности.

В каждом рефлекторном акте в той или иной степени учувствуют все отделы ЦНС, поэтому любая классификация будет условной.

В зависимости от расположения рецепторов раздражения, рефлексы бывают:

  • экстерорецептивными (внешняя поверхность тела);
  • висцеро- или интерорецептивными (внутренние органы и сосуды);
  • проприорецептивные (скелетные мышцы, суставы, сухожилия).

По месту размещения нейронов, рефлексы бывают:

  • спинальными (спинной мозг);
  • бульбарными (продолговатый мозг);
  • мезенцефальными (средний мозг);
  • диэнцефальными (промежуточный мозг);
  • кортикальными (кора больших полушарий мозга).

В рефлекторных актах, осуществляемых нейронами высших отделов ЦНС, также участвуют волокна низших отделов (промежуточный, средний, продолговатый и спинной мозг). При этом рефлексы, которые производятся нижними отделами ЦНС, обязательно доходят до высших. По этой причине представленную классификацию нужно считать условной.

В зависимости от ответной реакции и участвующих органов, рефлексы бывают:

  • моторными, двигательными (мышцы);
  • секреторными (железы);
  • сосудодвигательными (кровеносные сосуды).

Однако эта классификация применима лишь к простым рефлексам, которые объединяют некоторые функции внутри организма. Когда происходят сложные рефлексы, раздражающие нейроны высших отделов ЦНС, в процесс вовлекаются разные органы. Так меняется поведение организма и его соотношение с внешней средой.

К простейшим спинальным рефлексам относят сгибательный, который позволяет устранить раздражитель. Сюда также можно отнести рефлекс почесывания или натирания, коленный и подошвенный рефлексы. Самые простые бульбарные рефлексы: сосательный и корнеальный (смыкание век при раздражении роговицы). К мезенцефальным простым относят зрачковый рефлекс (сужение зрачка при ярком освещении).

Особенности строения рефлекторных дуг

Рефлекторной дугой называют путь, который проходят нервные импульсы, осуществляя безусловные и условные рефлексы. Соответственно, вегетативная рефлекторная дуга – путь от раздражения нервных волокон до передачи информации в мозг, где она преобразуется в руководство к действию определенного органа. Уникальное строение рефлекторной дуги включает цепь из рецепторных, вставочных и эффекторных нейронов. Благодаря такому составу осуществляются все рефлекторные процессы в организме.

Рефлекторные дуги как части периферической нервной системы (часть НС за пределами головного и спинного мозга):

  • дуги соматической нервной системы, которые обеспечивают нервными клетками скелетную мускулатуру;
  • дуги вегетативной системы, которые регулируют функциональность органов, желез и сосудов.

Строение вегетативной рефлекторной дуги:

  1. Рецепторы. Они служат для приема факторов раздражения и ответа возбуждением. Одни рецепторы представлены в виде отростков, другие микроскопические, но они всегда включают нервные окончания и клетки эпителия. Рецепторы являются частью не только кожи, но также и всех других органов (глаза, уши, сердце и прочее).
  2. Чувствительное нервное волокно. Эта часть дуги обеспечивает передачу возбуждения к нервному центру. Так как тела нервных волокон расположены непосредственно вблизи спинного и головного мозга, их не включают в ЦНС.
  3. Нервный центр. Здесь обеспечивается переключение между чувствительными и двигательными нейронами (благодаря мгновенному возбуждению).
  4. Двигательные нервные волокна. Эта часть дуги передает сигнал от ЦНС к органам. Отростки нервных волокон расположены возле внутренних и внешних органов.
  5. Эффектор. В этой части дуги сигналы обрабатываются, формируется ответная реакция на раздражение рецептора. Эффекторами по большей части выступают мышцы, которые сокращаются, когда центр принимает возбуждение.

Сигналы рецепторных и эффекторных нейронов идентичны, так как она взаимодействуют, следуя по одной дуге. Простейшая рефлекторная дуга в человеческом организме образуется двумя нейронами (сенсорный, двигательный). Другие включают три и больше нейронов (сенсорный, вставочный, двигательный).

Простые рефлекторные дуги помогают человеку непроизвольно адаптироваться к изменениям в окружении. Благодаря ним мы отдергиваем руку, если чувствуем боль, а зрачки реагируют на изменения освещения. Рефлексы помогают регулировать внутренние процессы, способствуют сохранению постоянства внутренней среды. Без рефлексов гомеостаз был бы невозможен.

Как осуществляется рефлекс

Нервный процесс может спровоцировать активность органа или повысить ее. При принятии нервной тканью раздражения, она переходит в особое состояние. Возбуждение зависит от дифференцированных показателей концентрации анионов и катионов (отрицательно и положительно заряженные частицы). Они расположены по двум сторонам мембраны отростка нервной клетки. При возбуждении меняется потенциал электричества на мембране клетки.

Когда рефлекторная дуга имеет сразу два двигательных нейрона в спинномозговом ганглии (нервный узел), то дендрит клетки будет длиннее (разветвленный отросток, который получает информацию через синапсы). Он направлен к периферии, но остается частью нервной ткани и отростков.

Скорость возбуждения каждого волокна составляет 0,5-100 м/с. Деятельность отдельных волокон осуществляется изолировано, то есть скорость не переходит с одного на другое.

Торможение возбуждения прекращает функционирование участка раздражения, замедляя и ограничивая движения и ответные реакции. Причем возбуждение и торможение происходит параллельно: пока одни центры угасают, другие возбуждаются. Таким образом, задерживаются отдельные рефлексы.

Торможение и возбуждение взаимосвязаны. Благодаря этому механизму обеспечивается согласованная работа систем и органов. К примеру, движения глазного яблока осуществляются за счет чередования работы мышц, ведь при взгляде в разные стороны сокращаются разные группы мышц. Когда возбуждается центр, отвечающий за напряжение мышц одной стороны, центр другой тормозит и расслабляется.

В большинстве случаев сенсорные нейроны передают информацию непосредственно в головной мозг, используя рефлекторную дугу и несколько вставочных нейронов. Мозг не только обрабатывает сенсорную информацию, но также накапливает ее для будущего использования. Параллельно с этим мозг посылает импульсы по нисходящему пути, инициируя ответ эффекторов (орган-мишень, который выполняет задачи ЦНС).

Зрительный путь

Анатомическая структура зрительного пути представлена рядом нейронных звеньев. В сетчатке это палочки и колбочки, затем биполярные и ганглиозные клетки, а дальше аксоны (нейриты, которые служат путем для импульса, исходящего от тела клетки к органам).

Эта цепь представляет периферическую часть зрительного пути, которая включает зрительный нерв, хиазму и зрительный тракт. Последний заканчивается в первичном зрительном центре, откуда начинается центральный нейрон зрительного пути, который доходит до затылочной доли мозга. Здесь же расположен кортикальный центр зрительного анализатора.

Составляющие зрительного пути:

  1. Зрительный нерв начинается с сетчатки и заканчивается в хиазме. Его протяжность составляет 35-55 мм, а толщина 4-4,5 мм. Нерв имеет три оболочки, он четко разделен на половины. Нервные волокна зрительного нерва разделяются в три пучка: аксоны нервных клеток (от центра сетчатки), два волокна ганглиозных клеток (от носовой половины сетчатки, а также от височной половины сетчатки).
  2. Хиазма начинается над областью турецкого седла. Она покрыта мягкой оболочкой, по длине составляет 4-10 мм, по ширине 9-11 мм, в толщину 5 мм. Здесь соединяются волокна от обоих глаз, образуя зрительные тракты.
  3. Зрительные тракты берут начало от задней поверхности хиазмы, огибают ножки мозга и входят в наружное коленчатое тело (безусловный зрительный центр), зрительный бугор и четверохолмии. Длина зрительных трактов составляет 30-40 мм. От коленчатого тела начинаются волокна центрального нейрона, а заканчиваются в борозде птичьей шпоры – в сенсорном зрительном анализаторе.

Зрачковый рефлекс

Рассмотрим рефлекторную дугу на примере зрачкового рефлекса. Путь зрачкового рефлекса проходит по сложной рефлекторной дуге. Он начинается от волокон палочек и колбочек, которые входят в состав зрительного нерва. Волокна перекрещиваются в хиазме, переходя в зрительные тракты, останавливаются перед коленчатыми телами, частично перекручиваются и доходят до претектальной области. Отсюда новые нейроны идут к глазодвигательному нерву. Это третья пара черепных нервов, которая отвечает за движение глазного яблока, световую реакцию зрачков, поднятие века.

Обратный путь начинается от глазодвигательного нерва в глазницу и ресничный узел. Второй нейрон звена выходит из ресничного узла, через склеру в перихориоидальное пространство. Здесь образуется нервное сплетение, разветвления которого проникают в радужку. Сфинктер зрачка имеется 70-80 радиальных пучков нейрона, входящих в него секторально.

Сигнал для мышцы, которая расширяет зрачок, идет от цилиоспинального центра Будге , который расположен в спинном мозге между седьмым шейным и вторым грудным позвонками. Первый нейрон идет через симпатический нерв и симпатические шейные ганглии, второй начинается от верхнего ганглия, который входит в сплетение внутренней сонной артерии. Волокно, которое обеспечивает нервами дилататор зрачка, покидает сплетение в полости черепа и через тройничный узел входит в зрительный нерв. Через него волокна проникают в глазное яблоко.

Замкнутость кольцевой работы нервных центров делает ее совершенной. Благодаря рефлекторной функции коррекция и регуляция деятельности человека может происходить произвольно и непроизвольно, защищая организм от изменений и опасности.



Новое на сайте

>

Самое популярное