Домой Пульмонология Строение и функции нейронов головного мозга. Функции нейронов: как работают и какую задачу выполняют

Строение и функции нейронов головного мозга. Функции нейронов: как работают и какую задачу выполняют

На протяжении многих лет ученые думали, что головной мозг взрослого человека остается неизменным. Однако теперь науке точно известно: на протяжении всей жизни в нашем мозге формируются все новые и новые синапсы — контакты между нейронами или получающими их сигнал клетками другого типа. В совокупности

нейроны и синапсы формируют нейронную сеть, отдельные элементы которой постоянно контактируют между собой и обмениваются информацией.

Именно нейронные связи помогают разным областям головного мозга передавать друг другу данные, тем самым обеспечивая жизненно важные для нас процессы: формирование памяти, продуцирование и понимание речи, управление движениями собственного тела. Когда нейронные связи нарушаются (а произойти это может в результате заболеваний, таких как болезнь Альцгеймера, или же из-за физической травмы), определенные области головного мозга теряют способность взаимодействовать между собой. Вследствие этого становится невозможным выполнение какого-либо действия, как умственного (запоминание новой информации или планирование своих действий), так и физического.

Группа исследователей под руководством Стивена Смита из Центра функциональной магнитно-резонансной томографии головного мозга Оксфордского университета решила выяснить, способно ли общее число нейронных связей в мозге каким-то образом влиять на его работу в целом. В ходе исследования ученые использовали данные, полученные в рамках Human Connectome Project — проекта, запущенного в 2009 году. Его целью является составление своеобразной «карты» головного мозга, с помощью которой можно будет понять, какая область мозга отвечает за тот или иной процесс или заболевание, а также каким образом разные области мозга взаимодействуют друг с другом.

Уникальность работы исследовательской группы Стивена Смита заключалась в том, что ученые не концентрировали свое внимание на связях между конкретными областями мозга или на его определенных функциях, а изучали процессы в целом.

В исследовании были использованы результаты магнитно-резонансной томографии 461 человека. Для каждого из них была создана «карта», на которой показывалось общее количество нейронных связей между всеми областями мозга. Кроме того, каждый участник исследования заполнял анкету, где рассказывал о своем образовании, образе жизни, состоянии здоровья, семейном положении и эмоциональном состоянии. Всего вопросы затрагивали 280 аспектов жизни человека.

В результате работы удалось выяснить: чем большее количество нейронных связей присутствует в головном мозге человека, тем более «положительным» он является.

Люди, мозг которых был богат контактами между нейронами, как правило, получили высшее образование, не имели проблем с законом, стремились вести здоровый образ жизни, находились в хорошем психологическом состоянии и в целом демонстрировали высокий уровень удовлетворенности жизнью.

Отделу науки удалось связаться с ведущим автором работы Стивеном Смитом и поговорить с ним о деталях работы.

— Можно ли дать точное объяснение того, почему количество нейронных связей в головном мозге оказывает прямое воздействие на качество жизни человека: например, сказать, что число связей каким-то образом влияет на мозговую деятельность?

— Нет, говорить о таких причинно-следственных связях пока рано, так как все это — предмет сложного и многовариантного корреляционного анализа. Поэтому пока что мы не можем заявить, что мозг, в котором много нейронных связей, заставляет человека учиться на несколько лет дольше (или наоборот — что многолетнее обучение увеличивает количество нейронных связей).

Кстати, на данный момент действительно можно распространять причинно-следственные связи в оба направления — это можно назвать «заколдованным кругом».

— В таком случае каким образом вы собираетесь этот «заколдованный круг» разорвать?

— Та работа, которую мы проделали сейчас — сканирование головного мозга при помощи магнитно-резонансной томографии, — может показать лишь то, насколько тесно связаны между собой те или иные области мозга. Она также отражает множество других биологических факторов меньшей важности — например, демонстрирует точное количество нейронов, связывающих эти области. А вот понимание того, как эти связи влияют на поведение, умственные способности, образ жизни человека, — это основной вопрос, который стоит перед сотрудниками проекта Human Connectome Project.

— Стивен, а существует ли корреляция между числом нейронных связей в головном мозге родителей и детей?

— А вот тут я могу однозначно ответить — да. Существует множество доказательств того, что количество нейронных связей, скажем так, передается по наследству. В рамках нашего проекта мы собираемся изучить это явление более глубоко. Хотя, несомненно, существуют и другие важные факторы, которые влияют на функционирование мозга и формирование нейронных связей.

— А возможно ли — хотя бы теоретически — каким-то образом повлиять на количество нейронных связей и таким образом изменить качество жизни человека?

— Об этом очень сложно говорить в общих чертах. Впрочем, существует множество примеров, когда вмешательства в функционирование головного мозга изменяли поведение человека или улучшали какие-то отдельные показатели его работы. О подобном эксперименте можно прочесть, например, в журнале Current Biology : в статье говорится, что ученым при помощи микрополяризации (метода, позволяющего изменять состояние различных звеньев центральной нервной системы действием постоянного тока. — «Газета.Ru») удалось улучшить математические способности испытуемых.

Можно привести и другой, более простой и обыденный пример: мы же все знаем, что обучение и практика в каком-либо виде деятельности помогают улучшить выполнение этой самой деятельности.

Но ведь обучение — по определению — изменяет нейронные связи головного мозга, пусть иногда мы и не в состоянии это зафиксировать.

Что касается вашего вопроса, то проблема глобального изменения поведения или способностей человека остается масштабным и чрезвычайно интересным объектом исследования.

Компьютер – это аналог человеческого мозга, но увеличить «вычислительную мощность» мозга не так-то просто. Когда неврологи и нейрофизиологи говорят о скорости работы головного мозга, они имеют ввиду скорость, с которой человек получает новую информацию, обрабатывает ее и формулирует ответ. Исходя из этого определения, повысить скорость работы мозга можно посредством создания прочных связей в мозге, что приведет к увеличению скорости передачи сигналов. Большинство связей формируется еще в детском возрасте, но вы все-таки можете принять меры для поддержания и даже повышения скорости работы вашего мозга.

Шаги

Здоровый образ жизни

    Делайте больше аэробных упражнений. Скорость работы мозга зависит от скорости передачи сигналов по аксонам, которые по существу являются проводниками нервных импульсов внутри мозга. Белое вещество мозга состоит из аксонов и питается посредством кровеносных сосудов, а это означает, что проблемы с сосудами, например, при диабете и высоком кровяном давлении, приводят к снижению обеспечения аксонов кислородом и глюкозой. Таким образом, делайте побольше аэробных упражнений, чтобы насытить кровь кислородом и повысить скрость работы мозга.

    Ешьте необходимые продукты. Физическое здоровье связано со здоровьем мозга. Наряду с физическими упражнениями вы должны поддерживать сбалансированную диету. Ешьте определенные продукты, влияющие на здоровье мозга, например:

    • Черника. В ней много антиоксидантов, которые защищают мозг от чрезмерного числа окислительных процессов и уменьшают воздействие на мозг процессов, связанных со старением организма. Ежедневно ешьте по одному стакану черники. Гранатовый сок и темный шоколад также богаты антиоксидантами.
    • Лосось (сардины, сельдь). Богат жирными кислотами, необходимыми для правильного функционирования мозга. Ешьте по 100 г рыбы два-три раза в неделю.
    • Орехи и семена. Содержат витамин Е, который помогает бороться с негативным влиянием на мозг процессов, связанных со старением организма. Ешьте 100 г орехов ежедневно.
    • Авокадо. Помогает в предотвращении сосудистых заболеваний (например, высокого кровяного давления) и улучшает кровоток, что имеет большое значение для здоровья мозга. Но авокадо содержит немало жиров, поэтому ежедневно ешьте не более четверти или половины авокадо.
  1. Высыпайтесь. Врачи рекомендуют взрослым людям спать по 7-8 часов (а подросткам по 8-9 часов). Во время сна в мозгу формируются новые связи; более того, достаточный сон напрямую влияет на обучаемость и память. Сон также играет большую роль в восстановлении кровеносной системы организма, которая снабжает мозг кислородом и другими веществами.

    Продолжайте учиться. Мозг формирует новые соединения на протяжении всей жизни человека. Освоение новых навыков и изучение новых предметов позволяет формировать новые и укреплять старые связи в мозгу, что приводит к увеличению скорости передачи сигналов по аксонам. (Глиальные клетки окружают нервные волокна (аксоны), образуя миелиновую электроизолирующую оболочку.)

    Научитесь играть на музыкальном инструменте. Это также приводит к укреплению связей между различными областями мозга (так как во время игры на музыкальном инструменте вы одновременно читаете ноты, слушаете то, что играете, и двигаете пальцами и/или руками, что заставляет работать разные области мозга).

    Поддерживайте социальные связи. Здесь речь идет не столько о социальных сетях в интернете, сколько о живом общении с другими людьми, так как такое общение требует быстроты мышления, что поможет вам поддерживать скорость работы мозга на должном уровне.

    Бросайте курить. Если вы не курите, то и не начинайте; в противном случае бросайте курить. Помимо того, что курение приводит к возникновению рака и эмфиземе легких, оно также ответственно за уменьшение связей в головном мозгу. Курильщики теряют нервные клетки намного быстрее, чем некурящие люди, что негативно сказывается на их когнитивных способностях.

    Игры для мозга

    1. Увеличьте картинку, открыв ее в новом окне. Исследования показали, что игры для мозга иногда оказывают влияние на когнитивные способности, а иногда и нет. Популярность игр для мозга растет, но до сих пор не было проведено ни одного серьезного (долгосрочного) исследования, которое подтвердило или опровергло их влияние на работу мозга. Многие люди верят, что игры для мозга помогают им познавать что-то новое. В этом разделе описана требовательная игра для мозга.

      Двигаясь слева направо и сверху вниз, назовите направление глаз – вниз, влево, вверх, вправо. Попросите кого-либо засечь время. Сделайте это без ошибок за 30 секунд. Продолжайте практиковаться, пока не сможете сделать это всего за 15 секунд.

    2. Теперь проделайте то же самое, но при этом смотрите на картинку снизу, или справа, или сверху, или слева. Это труднее, не правда ли? Вы увеличили сложность задачи, так как изменили перспективу.

      • Сделайте это без ошибок за 30 секунд. Продолжайте практиковаться, пока не сможете сделать это всего за 15 секунд.

Нервная система представляется наиболее сложной частью человеческого организма. В ее состав включаются около 85 миллиардов нервных и глиальных клеток. На сегодняшний день ученым удалось исследовать всего лишь 5 % нейронов. Другие 95% до сих пор остаются загадкой, поэтому проводятся многочисленные исследования данных компонентов мозга человека.

Рассмотрим, как устроен мозг человека, а именно его клеточную структуру.

Строение нейрона составляют 3 основные составляющие части:

1. Клеточное тело

Данная часть нервной клетки является ключевой, в состав которой входит цитоплазма и ядра, в совокупности создающие протоплазму, на поверхности которого образуется мембранная граница, состоящая из двух слое липидов. На мембранной поверхности находятся белки, представляющие форму глобул.

Нервные клетки коры состоят из тел, содержащих в себе ядро, а также ряд органелл, включая интенсивно и эффективно развивающуюся площадь рассеивания шероховатой формы, которая обладает активными рибосомами.

2. Дендриты и аксон

Аксон представляется продолжительным отростком, который эффективно приспосабливается к возбуждающим процессам от тела человека.

Дендриты имеют совсем иную анатомическую структуру. Их главное отличие от аксона то, что они имеют значительно меньшую длину, а также характеризуются наличием аномально развитых отростков, которые выполняют функции основного участка. В этом участке начинают возникать тормозящие синапсы, благодаря чему существует способность непосредственно влиять на сам нейрон.

Значительная часть нейронов в больше степени состоит из дендритов, при этом имеется всего один аксон. Одна нервная клетка имеет множество связей с другими клетками. В некоторых случаях количество данных связей превышает 25000.

Синапс – это место, где формируется контактный процесс между двумя клетками. Основной функцией является передача импульсов между различными клетками, при этом частота сигнала может изменяться в зависимости от скорости и типов передачи этого сигнала.

Как правило, чтобы начался возбуждающий процесс нервной клетки, в роли раздражителей могут выступить несколько возбуждающих синапсов.

Что собой представляет тройной мозг человека

Еще в 1962 году ученый-нейробиолог Пол Маклин выделил три мозга человека, а именно:

  1. Рептильный

Этот рептильный тип мозга человека существует более чем 100 млн. лет. Он оказывает значительное влияние на поведенческие качества человека. Его главной функцией является управление базовым поведением, которое включает в себя такие функции как:

  • Размножение на основе человеческих инстинктов
  • Агрессия
  • Желание все контролировать
  • Следовать определенным шаблонам
  • Имитировать, обманывать
  • Бороться за влияние над другими

Также рептильный головной мозг человека характеризуется такими особенностями как хладнокровие по отношению к другим, отсутствием сопереживания, полное безразличие к последствиям своих действий, в отношении к другим. Также данный тип не способен распознавать воображаемую угрозу с реальной опасностью. Вследствие этого, в некоторых ситуациях, данный мозг полностью подчиняет разум и тело человека.

  1. Эмоциональный (лимбическая система)

Представляется мозгом млекопитающего, возраст которого составляет около 50 млн. лет.

Отвечает за такие функциональные особенности особи как:

  • Выживание, самосохранение и самозащита
  • Управляет социальным поведением, включая материнскую заботу и воспитание
  • Учавствует в регулировании функций органов, обоняния, инстинктивного поведения, памяти, состояния сна и бодрствования и ряда других

Данный мозг практически полностью идентичен мозгу животных.

  1. Визуальный

Является мозгом, выполняющим функции нашего мышления. Другими словами это рациональный разум. Является наиболее молодой структурой, возраст которой не превышает 3 млн. лет.

Представляется тем, что мы именуем рассудком, который включает в себя такие способности как;

  • Размышлять
  • Проводить умозаключения
  • Способность анализировать

Выделяется наличием пространственного мышления, где возникают свойственные визуальные изображения.

Классификация нейронов

На сегодняшний день выделяется ряд классификация нейронных клеток. Одна из распространенных классификаций нейронов выделяется по числу отростков и месту их локализации, а именно:

  1. Мультиполярные. Данные клетки характеризуются большим скоплением в ЦНС. Представляются с одним аксоном и несколькими дендритами.
  2. Биполярные. Характеризуются одним аксоном и одним дендритом и располагаются в сетчатке глаза, обонятельной ткани, а также в слуховом и вестибулярном центре.

Также в зависимости выполняемых функций, нейроны подразделяются на 3 большие группы:

1. Афферентные

Отвечают за процесс передачи сигналов от рецепторов в отдел ЦНС. Различаются как:

  • Первичные. Первичные располагаются в спинальных ядрах, которые связываются с рецепторами.
  • Вторичные. Находятся в зрительных буграх и выполняют функции передачи сигналов в вышележащие отделы. Данный тип клеток не вступает в связь с рецепторами, а принимают сигналы от клеток-нейроцитов.

2. Эфферентные или двигательные

Этот тип формирует передачу импульса к остальным центрам и органам человеческого организма. Например, нейроны двигательной зоны больших полушарий – пирамидные, которые передают сигнал моторным нейронам спинномозгового отдела. Ключевая особенность моторных эфферентных нейронов – это наличие аксон значительной протяженности, обладающий высокой скоростью передачи сигнала возбуждения.

Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы. Эти нейронные связи головного мозга обеспечивают отношения внутри полушарий и между ними, следовательно, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.

3. Вставочные или ассоциативные

Данный тип осуществляет взаимодействие между нейронами, а также обрабатывает данные, которые были переданы от чувствительных клеток и затем передают ее другим вставочным или моторным нервным клеткам. Эти клетки представляются меньшим размером, в сравнении с афферентными и эфферентными клетками. Аксоны представлены небольшой протяженностью, однако сеть дендритов довольно обширна.

Специалисты сделали вывод, что непосредственными нервными клетками, которые локализованы в головном мозге, являются ассоциативные нейроны мозга, а остальные регулируют деятельность мозга вне его самого.

Восстанавливаются ли нервные клетки

Современная наука уделяет достаточно внимания процессам гибели и восстановления нервных клеток. Весь организм человека имеет возможность восстанавливаться, но имеют ли такую возможность нервные клетки мозга?

Еще в процессе зачатия организм настраивается на отмирание нервных клеток.

Ряд ученых утверждает, что количество отираемых клеток составляет около 1% в год. Исходя из этого утверждения, получается, что головной мозг уже износился бы вплоть до потери способностей выполнять элементарные вещи. Однако такого процесса не происходит, и мозг продолжает функционировать до самой своей смерти.

Каждая ткань организма самостоятельно восстанавливает себя путем деления «живых» клеток. Однако после ряда исследований нервной клетки люди установили, что клетка не делится. Утверждается, что новые клетки головного мозга образуются вследствие нейрогенеза, который запускается еще во внутриутробном периоде и продолжается на протяжении всей жизни.

Нейрогенез – это синтез новые нейронов с предшественников – стволовых клеток, которые впоследствии дифференцируются и формируются в зрелые нейроны.

Такой процесс был впервые описан в 1960 году, однако в то время данный процесс ничем подкреплялся.

Дальнейшие исследования подтвердили, что нейрогенез может происходить в определенных мозговых областях. Одной из таких областей выступает пространство вокруг мозговых желудочков. Ко второму участку можно отнести гиппокамп, который располагается непосредственно возле желудочков. Гиппокамп, выполняет функции нашей памяти, мышления и эмоций.

Вследствие этого способности к запоминанию и размышлению формируются в процессе жизнедеятельность под влиянием различных факторов. Как можно отметить из вышесказанного, наш головного мозг, определение структур которого, хоть и было выполнено всего на 5%, все же выделяется ряд фактов, которые подтверждают способность нервных клеток восстанавливаться.

Заключение

Не стоит забывать, что для полноценного функционирования нервных клеток следует знать, как улучшить нейронные связи головного мозга. Многие специалисты отмечают, что главный залог здоровых нейронов – это здоровое питание и образ жизни и только затем может использоваться дополнительная фармакологическая поддержка.

Организуйте свой сон, откажитесь от алкоголя, курения и в конечном итоге ваши нервные клетки скажут вам спасибо.

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Дендриты

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза , где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.

Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.

Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – , а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга. Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга. Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток. В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».

О неисчерпаемых возможностях нашего написаны горы литературы. Он способен перерабатывать огромное количество информации, которое не под силу даже современным компьютерам. Более того, мозг в нормальных условиях работает без перебоев в течение 70-80 и более лет. И с каждым годом продолжительность его жизни, а значит, и жизни человека все увеличивается.

Эффективную работу этого важнейшего и во многом таинственного органа обеспечивают в основном два вида клеток: нейроны и глиальные. Именно нейроны отвечают за получение и обработку информации, и .

Часто можно слышать, что умственные человека гарантирует наличие серого вещества. Что это за вещество и почему оно серое? Такой цвет имеет кора головного мозга, состоящая из микроскопических клеток. Это нейроны или нервные клетки, которые обеспечивают работу нашего мозга и управление всем организмом человека.

Как устроена нервная клетка

Нейрон, как и любая живая клетка, состоит из ядра и клеточного тела, которое называют сома. Размер самой клетки микроскопический – от 3 до 100 мкм. Однако это не мешает нейрону быть настоящим хранилищем разнообразной информации. Каждая нервная клетка содержит в себе полный набор генов – инструкций по производству белков. Одни из белков участвуют в передаче информации, другие создают защитную оболочку вокруг самой клетки, третьи участвуют в процессах памяти, четвертые обеспечивают смену настроения и т. д.

Даже небольшой сбой в одной из программ по производству какого-то белка может привести к тяжелым последствиям, заболеванию, нарушению психической деятельности, слабоумию и т. д.

Каждый нейрон окружен защитной оболочкой из глиальных клеток, они буквально заполняют все межклеточное пространство и составляют 40 % от вещества головного мозга. Глия или совокупность глиальных клеток выполняет очень важные функции: защищает нейроны от неблагополучных внешних воздействий, поставляет нервным клеткам питательные вещества и выводит продукты их жизнедеятельности.

Глиальные клетки стоят на страже здоровья и целостности нейронов, поэтому не допускают проникновение в нервные клетки многих посторонних химических веществ. В том числе и лекарственных препаратов. Поэтому эффективность различных лекарств, призванных усилить деятельность мозга, совершенно непредсказуема, и действуют они по-разному на каждого человека.

Дендриты и аксоны

Несмотря на сложность устройства нейрона, сам по себе он не играет существенной роли в работе мозга. Наша нервная деятельность, в том числе мыслительная активность – это результат взаимодействия множества нейронов, обменивающихся сигналами. Прием и передача этих сигналов, точнее, слабых электрических импульсов происходит с помощью нервных волокон.

Нейрон имеет несколько коротких (около 1 мм) разветвленных нервных волокон – дендритов, названных так из-за схожести с деревом. Дендриты отвечают за прием сигналов от других нервных клеток. А в качестве передатчика сигналов выступает аксон. Это волокно у нейрона только одно, зато оно может достигать в длину до 1,5 метров. Соединяясь с помощью аксонов и дендритов, нервные клетки образуют целые нейронные сети. И чем сложнее система взаимосвязей, тем сложнее наша психическая деятельность.

Работа нейрона

В основе сложнейшей деятельности нашей нервной системы – обмен слабыми электрическими импульсами между нейронами. Но проблема в том, что изначально аксон одной нервной клетки и дендриты другой не соединены, между ними находится пространство, заполненное межклеточным веществом. Это так называемая синаптическая щель, и преодолеть ее сигнал не может. Представьте, что два человека тянут друг к другу руки и совсем чуть-чуть не дотягиваются.

Эта проблема решается нейроном просто. Под воздействием слабого электрического тока возникает электрохимическая реакция и формируется белковая молекула – нейротрансмиттер. Эта молекула и перекрывает синаптическую щель, став своеобразным мостиком для прохождения сигнала. Нейротрансмиттеры выполняют и еще одну функцию – они связывают нейроны, и чем чаще проходит сигнал по этой нервной цепи, тем сильнее эта связь. Представьте брод через реку. Проходя по нему, человек бросает в воду камень, и затем каждый следующий путник поступает так же. В результате возникает прочный, надежный переход.

Такое соединение между нейронами называют синапсом, и оно играет важную роль в деятельности мозга. Считается, что даже наша память – это результат работы . Эти связи обеспечивают большую скорость прохождения нервных импульсов – сигнал по цепи нейронов движется со скоростью 360 км/час или 100 м/сек. Можно посчитать, за какое время в головной мозг попадет сигнал от пальца, который вы случайно укололи иголкой. Есть старая загадка: «Что быстрее всего на свете?». Ответ: «Мысль». И это очень было точно подмечено.

Виды нейронов

Нейроны находятся не только в головном мозге, где они, взаимодействуя, образуют центральную нервную систему. Нейроны расположены во всех органах нашего тела, в мышцах и связках на поверхности кожи. Особенно много их в рецепторах, то есть органах чувств. Разветвленная сеть нервных клеток, которая пронизывает все тело человека – это периферическая нервная система, которая выполняет не менее важные функции, чем центральная. Все разнообразие нейронов разделяют на три основных группы:

  • Аффекторные нейроны получают информацию от органов чувств и в виде импульсов по нервным волокнам поставляют ее к головному мозгу. Эти нервные клетки имеют самые длинные аксоны, так как их тело находится в соответствующем отделе головного мозга. Существует строгая специализация, и звуковые сигналы поступают исключительно в слуховой отдел мозга, запахи – в обонятельный, световые – в зрительный и т. д.
  • Промежуточные или вставочные нейроны занимаются обработкой информации, поступившей от аффекторов. После того как информация оценена, промежуточные нейроны подают команду расположенным на периферии нашего тела органам чувств и мышцам.
  • Эфферентные или эффекторные нейроны передают эту команду от промежуточных в виде нервного импульса к органам, мышцам и т. д.

Самой сложной и наименее понятной является работа промежуточных нейронов. Они отвечают не только за рефлекторные реакции, такие, например, как отдергивание руки от горячей сковородки или моргание при вспышке света. Эти нервные клетки обеспечивают такие сложнейшие психические процессы, как мышление, воображение, творчество. И как мгновенный обмен нервными импульсами между нейронами превращается в яркие образы, фантастические сюжеты, гениальные открытия, да и просто в размышления о тяжелом понедельнике? Это главная тайна головного мозга, к разгадке которой ученые даже пока не приблизились.

Единственное, что удалось выяснить, что разные виды мыслительной деятельности связаны с активностью разных групп нейронов. Мечты о будущем, заучивание стихотворения, восприятие близкого человека, обдумывание покупок – все это отражается в нашем мозге как вспышки активности нервных клеток в различных точках коры головного мозга.

Функции нейронов

Учитывая, что нейроны обеспечивают работу всех систем организма, функции нервных клеток должны быть очень разнообразны. К тому же все они пока еще даже до конца и не выяснены. Среди множества различных классификаций этих функций мы выберем одну, наиболее понятную и близкую к проблемам психологической науки.

Функция передачи информации

Это основная функция нейронов, с которой связаны и другие, хоть и не менее значимые. Эта же функция является и наиболее изученной. Все внешние сигналы, поступающие на органы, попадают в головной мозг, где обрабатываются. А затем в результате обратной связи в виде импульсов-команд переносятся по эфферентным нервным волокнам обратно к органам чувств, мышцам и т. д.

Такая постоянная циркуляция информации происходит не только на уровне периферической нервной системы, но и в головном мозге. Связи между нейронами, обменивающимися информацией, образуют необычайно сложные нейронные сети. Представьте только: в головном мозге насчитывается не менее 30 млрд нейронов, и каждый из них может иметь до 10 тысяч связей. В середине XX века кибернетики пытались создать электронную вычислительную машину, работающую по принципу головного мозга человека. Но это им не удалось – процессы, происходящие в центральной нервной системе, оказались слишком сложными.

Функция сохранения опыта

Нейроны отвечают за то, что мы называем памятью. Точнее, как выяснили нейрофизиологи, сохранение следов проходивших по нейронным цепям сигналов является своеобразным побочным эффектом деятельности мозга. Основа памяти – это те самые белковые молекулы – нейротрансмиттеры, которые возникают в качестве связующих мостиков между нервными клетками. Поэтому специального отдела мозга, отвечающего за хранение информации, нет. А если вследствие травмы или болезни происходит разрушение нервных связей, то человек может частично утратить память.

Интегративная функция

Это обеспечение взаимодействия между разными отделами головного мозга. Мгновенные «вспышки» передающихся и принимающихся сигналов, очаги повышенного возбуждения в коре головного мозга – это и есть рождение образов, и мыслей. Сложные нервные связи, объединяющие между собой различные участки коры больших полушарий и проникающие в подкорковую зону, являются продуктом нашей психической деятельности. И чем больше возникает таких связей, тем лучше память и продуктивнее мышление. То есть, по сути, чем больше мы думаем, тем умнее становимся.

Функция производства белков

Деятельность нервных клеток не ограничивается информационными процессами. Нейроны – это настоящие фабрики белков. Это те самые нейротрансмиттеры, которые не только выполняют функцию «мостика» между нейронами, но и играют огромную роль в регуляции работы нашего организма в целом. В настоящее время насчитывается около 80 видов этих белковых соединений, выполняющих разнообразные функции:

  • Норадреналин, иногда его называют гормоном ярости или . Он тонизирует организм, повышает работоспособность, заставляет чаще биться сердце и готовит организм к немедленным действиям по отражению опасности.
  • Допамин – это главный тоник нашего организма. Он участвует в активизации деятельности всех систем, в том числе во время пробуждения, при физических нагрузках и создает положительный эмоциональный настрой вплоть до эйфории.
  • Серотонин – это тоже вещество «хорошего настроения», хоть на физическую активность оно и не влияет.
  • Глутамат – трансмиттер, необходимый для работы памяти, без него невозможно долгосрочное хранение информации.
  • Ацетилхолин управляет процессами сна и пробуждения, а также необходим для активизации внимания.

Нейротрансмиттеры, точнее их количество, влияют на здоровье организма. И если возникают какие-то проблемы с выработкой этих белковых молекул, то могут развиться серьезные заболевания. Например, недостаток допамина – это одна из причин болезни Паркинсона, а если этого вещества вырабатывается слишком много, то может развиться шизофрения. Если же недостаточно вырабатывается ацетилхолина, то может возникнуть весьма неприятная болезнь Альцгеймера, которая сопровождается слабоумием.

Формирование нейронов головного мозга начинается еще до рождения человека, и в течение всего периода взросления происходит активное формирование и усложнение нервных связей. Долгое время считалось, что у взрослого человека новые нервные клетки появляться не могут, а вот процесс их отмирания неизбежен. Поэтому умственное возможно только за счет усложнения нервных связей. Да и то в все обречены на снижение умственных способностей.

Но недавние исследования опровергли этот пессимистический прогноз. Швейцарские ученые доказали, что есть отдел головного мозга, который отвечает за рождение новых нейронов. Это гиппокамп, он ежедневно продуцирует до 1400 новых нервных клеток. А нам с вами остается только активнее включать их в работу головного мозга, получать и осмысливать новую информацию, тем самым создавая новые нервные связи и усложняя нейронную сеть.



Новое на сайте

>

Самое популярное