Домой Популярное Как решить линейное диофантово уравнение. Диофантово уравнение: методы решения с примерами

Как решить линейное диофантово уравнение. Диофантово уравнение: методы решения с примерами

Министерство образования и науки

Научное Общество Учащихся

Секция «Алгебра»

Работа по теме:

«Диофантовы уравнения»

Выполнила:

ученица 10 «А» классаМОУ СОШ № 43

Булавина Татьяна

Научный руководитель:Пестова

Надежда Ивановна

Нижний новгород2010


Введение

О диофантовых уравнениях

Способы решения диофантовых уравнений

Список литературы

Введение

Я выбрала тему: «Диофантовы уравнения» потому, что меня заинтересовало, как зарождалась арифметика.

Диофант Александрийский (3 век)-греческий математик. Его книгу «Арифметика» изучали математики всех поколений.

Необычайный расцвет древнегреческой науки в IV-III вв. до н. э. сменился к началу новой эры постепенным спадом в связи с завоеванием Греции Римом, а потом и начавшимся разложением Римской империи. Но на фоне этого угасания еще вспыхивает яркий факел. В 3-ем веке новой эры появляется сочинение александрийского математика Диофанта «Арифметика». О жизни самого Диофанта нам известно только из стихотворения, содержащегося в «Палатинской антологии». В этой антологии содержалось 48 задач в стихах, собранных греческим поэтом и математиком VI в. Метродором. Среди них были задачи о бассейне, о короне Герона, о жизненном пути Диофанта. Последняя оформлена в виде эпитафии - надгробной надписи.

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять, лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе.

Тут и увидел предел жизни печальной своей.

Трактат «Арифметика» занимает особое место в античной матиматике не только по времени своего появления, но и по содержанию. Большую часть его составляют разнообразные задачи по теории чисел и их решения. Но, главное, автор использует не геометрический подход, как это было принято у древних греков,-решения Диофанта предвосхищают алгебраические и теоретико- числовые методы. К сожалению, из 13 книг, составлявших «Арифметику», до нас дошли лишь первые 6, а остальные погибли в перипетиях тогдашнего бурного времени. Достаточно сказать, что через 100 лет после смерти Диофанта была сожжена знаменитая александрийская библиотека, содержавшая бесценные сокровища древнегреческой науки.


О диофантовых уравнениях.

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том, что эти задачи имеют специфические особенности.

Во-первых, они сводятся к уравнениям или к системам уравнений с целыми коэффициентами. Как правило, эти системы неопределённые,т.е. число уравнений в них меньше числа неизвестных.

Во-вторых, решения требуется найти только целые, часто натуральные.

Для выделения таких решений из всего бесконечного их множества приходится пользоваться свойствами целых чисел,а это уже относится к области арифметики.Дадим определение диофантовым уравнениям.

Диофантовы уравнения-алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвесных в уравнениях больше числа уравнений. Ни один крупный математик не прошёл мимо теории диофантовых уравнений.

Давайте рассмотрим современную простенькую задачу.

За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200р. и по 500 р. Какими способами он может расплатиться? Для ответа на этот вопрос достаточно решить уравнение 2x + 5y=17 с двумя неизвестными x и y. Такие уравнения имеют бесконечное множество решений. В частности, полученному уравнению отвечает любая пара чисел вида (x, 17-2x/5). Но для этой практической задачи годятся только целые неотрицательные значения x и y. Поэтому приходим к такой постановке задачи: найти все целые неотрицательные решения уравнения 2x+5y=17. Ответ содержит уже не бесконечно много,авсего лишь две пары чисел (1, 3) и (6, 1).Диофант сам находил решения своих задач. Вот несколько задач из его «Арифметики».

1. Найти два числа так, чтобы их произведение находилось в заданном отношении к их сумме.

2. Найти три квадрата так, чтобы сумма их квадратов тоже была квадратом.

3. Найти два числа так, чтобы их произведение делалось кубом как при прибавлении, так и при вычитании их суммы.

4. Для числа 13=2²+3² найти два других,сумма квадратов которых равна 13.

Приведём диофантово решение последней задачи. Он полагает первое число (обозначим его через А) равным x+2, а второе число B равным 2x-3 , указывая, что коэффициент перед xможно взять и другой. Решая уравнения

(x+2)²+(kx-3)²=13,

Диофант находит x=8/5, откуда A=18/5,B=1/5. Воспользуемся указанием Диофанта и возьмём произвольный коэффициент перед x в выражении для B. Пусть снова А=x+2,а В=kx-3, тогда из уравнения

(x+2)²+(kx-3)²=13

x=2(3k-2)/k²+1.

А=2(k²+3k-1)/k²+1,

В=3k²-4k-3/k²+1.

Теперь становятся понятными рассуждения Диофанта. Он вводит очень удобную подстановку А=x+2, В=2x-3, которая с учётом условия 2²+3²=13 позволяет понизить степень квадратного уравнения. Можно было бы с тем же успехом в качестве В взять 2x+3 , но тогда получаются отрицательные значения для В,чего Диофант не допускал. Очевидно, k=2- наименьшее натуральное число, при котором А и В положительны.

Исследование Диифантовых уравнений обычно связано с большими трудностями. Более того, можно указать многочлен F (x,y1,y2 ,…,yn) c целыми коэффициентами такой, что не существует алгоритма, позволяющего по любому целому числу x узнавать, разрешимо ли уравнение F (x,y1,y2 ,…,yn)=0 относительно y1,…,y. Примеры таких многочленов можно выписать явно. Для них невозможно дать исчерпывающего описания решений.

Современной постановкой диофантовых задач мы обязанны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена.В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений,поиском способов их решений.Называется оно диофантовым анализом и диофантовой геометрией, поскольку использует геометрические способы доказательств.

Простейшее Диофантово уравнение ax+by=1,где a и b – цельные взаимопростые числа, имеет бесконечно много решений (если x0 и y0-решение, то числа x=x0+bn, y=y0-an, где n- любое целое, тоже будут решениями).

Другим примером Диофантовых уравнений является

x 2 + у 2 = z 2 . (5)


Это Диофантово уравнение 2-й степени. Сейчас мы займёмся поиском его решений. Удобно записывать их в виде троек чисел (x,y,z). Они называются пифагоровыми тройками. Вообще говоря, уравнению (5) удовлетворяет бесконечное множество решений. Но нас будут интересовать только натуральные. Целые, положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Наша задача состоит в том, чтобы найти все тройки пифагоровых чисел. Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагороау тройку. Значит от любой пифагоровой тройки можно перейти к другой пифагоровой тройке, числа которой попарно взаимо просты. Такую тройку называют примитивной. Очевидно, для поставленной нами задачи достаточно найти общий вид примитивних пифагоровых троек. Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в то же время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным числом. Предположим противное: z=2m, тогда x и y-нечётные числа. x=2k+1, y=2t+1. В этом случае сумма x²+y²=4(k²+k+t²+t)+2 не делится на 4, в то время как z²=4m² делится на 4. Итак, чётным числом является либо x, либо y. Пусть x=2u, y и z- нечётные числа. Обозначим z+y=2v, z-y=2w . Числа v и wвзаимно простые. На самом деле, если бы они имели общий делитель d>1, то он был бы делителем и для z=w+v, и для y=v-w, что противоречит взаимной простоте y и z. Кроме того, v и w разной чётности: иначе бы y и z были бы чётными. Из равенства x²=(z+y)(z-y) следует, что u²=vw. Поскольку v и w взаимно просты, а их произведение является квадратом, то каждый из множителей является квадратом. Значит найдутся такие натуральные числа p и q, что v=p², w= q² . Очевидно, числа p и q взаимно просты и имеют разную чётность. Теперь имеем


z=p²+q² , y=p²-q²,

x²=(p²+q²)²-(p²-q²)²=4 p² q².

В результате мы доказали, что для любой примитивной пифагоровой тройки (x,y,z) найдутся взаимо простые натуральные числа p и qразной чётности, p>q , такие, что

х =2pq, у =p²-q², z = p 2 + q 2 .(6)

Все тройки взаимно простых пифагоровых чисел можно получить по формулам

х =2pq, у = p²-q², z = p 2 + q 2 ,

где m и n - целые взаимо простые числа. Все остальные его натуральные решения имеют вид:

x=2kpq,y=k(p²-q²),z=k(p 2 + q 2 ),

где k-произвольное натуральное число. Теперь рассмотрим следующую задачу: дано произвольное натуральное число m>2; существует ли пифагоров треугольник, одна из сторон которого равна m? Если потребовать, чтобы заданную длину m имел катет, то для любого m ответ положительный. Докажем это. Пусть сначала m-нечётное число. Положим p=m+1/2, q=m-1/2. Получаем пифагорову тройку

Диофантовые уравнения

Способы решения диофантовых уравнений

Наиболее изучены диофантовы уравнения первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет интереса, то обратимся к уравнениям с двумя неизвестными.Мы рассмотрим два метода решения этих уравнений.

Первый способ решения таких уравнений- алгоритм Евклида. Можно найти наибольший делитель натуральных чисел a и b, не раскладывая эти числа на простые множители, применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот прицесс до тех пор, пока не произойдёт деление без остатка. Последний отличный от нуля остаток и есть искомый НОД(a,b). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств:если a>b ,то

Здесь r1,….,rn-положительные остатки, убывающие с возрастанием номера. Из первого равенства следует,что общий делитель чисел a и b делит r1 и общий дилитель b и r1 делит а,поэтому НОД (a,b) = НОД (r1 ,r2)=….= НОД (rn-1, rn) = НОД (rn,0)= rn.Обратимся снова к системе(1).Из первого равенства, выразив остаток r1 чирез а и b ,получим r1=а- bq0. Подставляя его во второе равенство,найдём r2=b(1+q0q1)-aq1. Продолжая этот процесс дальше,мы сможем выразить все остатки через а и b, в том числе и последний rn=Аа+Вb. В результате нами доказано предложение:если d-наибольший общий делитель натуральных чисел а и b,то найдутся такие целые числа А и В,что d= Аа+Вb. Заметим,что коэффициенты А и В имеют разные знаки; если НОД(a,b)=1,то Аа+Вb=1. Как найти числа А и В видно из алгоритма Евклида.

Перейдём теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид:

Возможны два случая: либо c делится на d= НОД(a,b), либо нет. В первом случае можно разделить обе части на d и свести задачу к решению в целых числах уравнения a1x+b1y=c1, коэффициенты которого а1=а/d и b1=b/d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число аx+by делится на d и поэтому не может равнятся числу с,которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты взаимно просты. На основании предыдущего предложения найдутся такие целые числа x0 и y0,что ax0+by0=1, откуда пара (сx0,cy0) удовлетворяет уравнению (2) Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (x,y) целых чисел, которые можно найти по формулам

x=cx0+bt,y=cy0-at. (3)

Здесь t-любое целое число. Нетрудно показать,что других целочисленных решений нет уравнение ax+by=c не имеет. Решение, записанное в виде (3), называется общим решением уравнеия (2). Подставив вместо t конкретное целое число, получим его частное решение. Найдём, например, целочисленные решения уже встречавшегося нам уравнения 2x+5y=17. Применив к числам 2 и 5 алгоритм Евклида, получим 2*3-5=1. Значит пара cx0=3*17,cy0=-1*17 удовлетворяет уравнению 2x+5y=17. Поэтому общее решение исходного уравнения таково x=51+5t, y=-17-2t,где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t , для которых выполняются неравенства

Отсюда найдем -51 ?t? -17 . Этим неравенствам удовлетворяют числа -10, -9. 52

Соответствующие частные решения запишутся в виде пар (1,3), (6,1).

Применим этот же метод к решению одной из древних китайских задач о птицах.

Задача: Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причем петух стоит 5 монет, курица - 4, а 4 цыпленка - 1 монету?

Для решения этой задачи обозначим искомое число петухов через х, кур - через y, а цыплят через 4z (из условия видно, что число цыплят должно делится на 4). Составим систему уравнений:

которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4, а второе -- на (-- 1) и сложив результаты, придем к уравнению -- х+15z=300 с целочисленными решениями х= -- 300+ 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 -- 19t. Значит, целочисленные решения системы имеют вид х= --300+15t, y = 400--19t, z = t. Из условия задачи вытекает, что

откуда 20?t?21 1/19, т.е. t = 20 или t = 21. Итак, на 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыпленка

Второй метод решения диофантовых уравнений первой степени по своей сути не слишком отличается от рассмотренного в предыдущем пункте, но он связан с ещё одим интересным математическим понятием. Речь идёт о непрерывных или цепных дробях. Чтобы определить их вновь обратимся к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь а/b можно записать в виде суммы целой части и правильной дроби: a/b=q0+r1/b . Но r1/b=1/b, и на основании второго равенства той же системы имем b/r1=q1+r2/r1. Значит, a/b=q0+1/q1+r2/r1. Далее получим a/b=q0+1/q1+1/q2+r3/r2. Продолжим этот процесс до тех пор, пока не придём к знаменателю qn. В результате мы представим обыкновенную дробь a/b в следующем виде: a/b=q0+1/q1+1/q2+1/…1/qn. Эйлер назвал дроби такого вида непрерывными. Приблизительно в то же время в Германии появился другой термин- цепная дробь. Так за этими дробями и сохранились оба названия. В качестве примера представим дробь 40/3t в виде цепной: 40/3t=1+9/3t=1/3t/9=1+1/3+4/9=1+1/3+1/9/4=1+1/3+1/2+1/4 .

Цепные дроби обладают следующим важным свойством: если действительное число а записать в виде непрерывной дроби, то подходящая дробь Pk/Qk даёт наилучщее приближение числа a среди всех дробей, знаменатели которых не превосходят Qk . Именно в процессе поиска наилучшего приблежения значений квадратных корней итальянский математик Пиетро Антонио Катальди (1552-1626) пришёл в 1623году к цепным дробям, с чего и началось их изучение. В заключение вернёмся к цепным дробям и отметим их преимущество и недостаток по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой исчисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Рассмотрим Диофантовы уравнения и решим их.

1 Решить в целых числах уравнение 3x+5y=7.

x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

y=1-3(1-2t)/2=-1+3t,

x=7-5(-1+3t)/3=4-5t

(t-любое число).

2 Решить в целых числах уравнение 6xІ+5yІ=74.

6xІ-24=50-5yІ, или 6(xІ-4)=5(10-yІ), откуда xІ-4=5u,т.е. 4+5u?0, откуда u?-4/5.

Аналогично:

10-yІ=6u, т.е. 10-6u?0, u?5/3.

Целое число u удовлетворяет неравенству

4/5?u?5/3, значит. u=0 и u=1.

При u=0, получим 10=yІ, где y-не целое, что неверно. Пусть u=1, тогда xІ=9, yІ=4.

Ответ: {x1=3, {x2=3, {x3=-3, {x4=-3,

{y1=2, {y2=-2, {y3=2, {y4=-2 .

3 Решить в целых числах уравнение xі+yі-3xy=2.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2m и y=2n, то 8mі+8nі-12mn=2, т.е. 2(2mі+2nі-3mn)=1, что невозможно ни при каких целых m и n.

4 Доказать, что уравнение 2xІ+5yІ=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2xІ-20zІ-20z-5=7, или xІ-10zІ-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2uІ-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5 Доказать, что при любом целом положительном значении а уравнение xІ+yІ=аі разрешимо в целых числах.

Доказательство.

Положим x+y=аІ, x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6 Решите в целых числах уравнение (x+1)(xІ+10=yі.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как

xі<(x+1)(xІ+1)<(x+1)(x+1)І=(x+1) і, то (x+1)(xІ+1)?yі

ни для какого целого y (распологающегося между кубами последовательных целых чисел).

10 и еще один способ решения квадратных уравнений

1. СПОСОБ: Разложение левой части уравнения на множители. 2. СПОСОБ: Метод выделения полного квадрата. 3. СПОСОБ: Решение квадратных уравнений по формуле. 4. СПОСОБ: Графическое решение квадратного уравнения...

10 способов решения квадратных уравнений

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических...

Диофантовые уравнения

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том...

Линейные диофантовы уравнения

Диофант (Diophantos) представляет одну из занимательных загадок в истории математики. Мы не знаем, кем был Диофант, точные года его жизни, нам не известны его предшественники, которые работали бы в той же области, что и он...

Логические задачи и методы их решения

Математическая модель системы слежения РЛС

В производстве всегда существовала проблема, сущность которой заключалась в переводе системы из некоторого начального фазового состояния в некоторое заранее заданное конечное состояние. Причем точность перехода должна быть максимальной...

Математические уравнения и их использование в решении задач

Уравнением с одним неизвестным называется запись вида А (х)=В (х) - выражения от неизвестного х. В эти выражения помимо чисел, знаков арифметических операций и обозначений функций могут входить и другие буквы, которые обозначают переменные...

Методические особенности обучения решению текстовых задач учащихся начальной школы

Решить задачу - это значит через логически верную последовательность действий и операций с имеющимися в задаче явно или косвенно числами, величинами, отношениями выполнить требование задачи (ответить на ее вопрос)...

Методы геометрии чисел для решения диофантовых уравнений

Теорема Лагранжа о четырех квадратах. Теорема: Всякое натуральное может быть представлено в виде суммы четырех квадратов целых чисел (*) Ясно, что достаточно доказать существование представления (*) лишь для бесквадратных чисел...

Нестандартные методы решения задач по математике

К числу наиболее сложных задач на вступительных конкурсных экзаменах по математике относятся задачи, решение которых сводится к рассмотрению функциональных уравнений вида или где, --- некоторые функции и...

Нестандартные методы решения уравнений и неравенств

Существуют и другие нестандартные методы решения уравнений и неравенств, помимо использования свойств функции. Данная глава посвящена дополнительным методам решения...

Диофант Александрийский - древнегреческий математик, который жил еще в III веке н. э. О нем говорят как об «отце алгебры». Это автор «Арифметики» - книги, которая посвящена нахождению положительных рациональных решений неопределённых уравнений. Диофант - первый греческий математик, который рассматривал дроби наравне с другими числами. Он первым среди античных учёных предложил развитую математическую символику, которая позволяла формулировать полученные им результаты в достаточно компактном виде. В честь Диофанта назван кратер на видимой стороне Луны.

Диофантово уравнение представляет собой алгебраическое уравнение с налагаемым дополнительным условием, состоящем в том, что все его решения должны представлять собой целые числа. В большинстве случаев данного рода уравнения решаются довольно сложно. Теорема Ферма - это прекрасный пример диофантового уравнения, которое так и не решено спустя 350 лет.

Допустим, нам необходимо решить в целых числах \[(x,y)\] уравнение:

Чтобы решить данного вида задание применим алгоритм Евклида, которое говорит, что для любых двух натуральных чисел \ таких, что \[Н.О.Д.(а,b) = 1\] существуют целые числа \ такие, что \[ах + bу = 1.\]

Этапы решения:

1. Найдем решение уравнения \ применив алгоритм Евклида.

2. Найдем частное решение уравнения (1) по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: \ Для решения применим алгоритм Евклида.

Из этого равенства выразим

\[ 1 = 3 - 2^1=3-(5-3)^1=3-5^1+3\cdot 1=3^2-5\cdot1=(8-5^1)^2 -5^1=8^2-5\cdot2-5^1=5^x(-3)-8\cdot(-2) \]

Итак, \

2. Частное решение уравнения \[(1): x_о = 19m; y_о =19n.\]

Отсюда получим: \[ x_о =19^x(-3)=57; у_о =19^x(-2)=-38 \]

Пара (-57; -38) - частное решение (1).

3.Общее решение уравнения (1):

\[\left\{\begin{matrix} x=-57+8n\\ y=-3+n, n \in Z \end{matrix}\right.\]

Где взять решение диофантова уравнения?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Пункт 5. Линейные диофантовы уравнения с двумя неизвестными.

Обычно, произвольное уравнение (но, как правило, все-таки с целыми коэффициентами) получает титул "диофантово", если хотят подчеркнуть, что его требуется решить в целых числах, т.е. найти все его решения, являющиеся целыми. Имя Диофанта - выдающегося Александрийского математика - появляется здесь не случайно. Диофант интересовался решением уравнений в целых числах еще в третьем веке нашей эры и, надо сказать, делал это весьма успешно.

Отступление про Диофанта и его исторический след.

Третий и последний период античного общества - период господства Рима. Рим завоевал Сиракузы в 212 году, Карфаген - в 146 году, Грецию - в 146, Месопотамию - в 46, Египет - в 30 году до нашей эры. Огромные территории оказались на положении колоний, но римляне не трогали их культуры и экономического устройства пока те исправно платили налоги и поборы. Установленный римлянами на столетия мир, в отличие от всех последующих великих миров и рейхов, принес всей завоеванной территории самый длинный период безвоенного существования, торговли и культурного обмена.

Александрия оказалась центром античной математики. Велись оригинальные исследования, хотя компилирование, пересказ и комментирование становились и стали основным видом научной деятельности. Александрийские ученые, если угодно, приводили науку в порядок, собирая разрозненные результаты в единое целое, и многие труды античных математиков и астрономов дошли до нас только благодаря их деятельности. Греческая наука с ее неуклюжим геометрическим способом выражения при систематическом отказе от алгебраических обозначений угасала, алгебру и вычисления (прикладную математику) александрийцы почерпнули с востока, из Вавилона, из Египта.

Основной труд Диофанта (ок. 250 г.) - "Арифметика". Уцелели только шесть книг оригинала, общее их число - предмет догадок. Мы не знаем, кем был Диофант, - возможно, что он был эллинизированный вавилонянин. Его книга - один из наиболее увлекательных трактатов, сохранившихся от греко-римской древности. В ней впервые встречается систематическое использование алгебраических символов, есть особые знаки для обозначения неизвестного, минуса, обратной величины, возведения в степень. Папирус N 620 Мичиганского университета, купленный в 1921 году, принадлежит эпохе Диофанта и наглядно это подтверждает. Среди уравнений, решаемых Диофантом, мы обнаруживаем такие, как x 2 - 26 y 2 = 1 и x 2 - 30 y 2 = 1, теперь известные нам как частные случаи "уравнения Пелля", причем Диофант интересуется их решениями именно в целых числах.

Книга Диофанта неожиданно оказала еще и огромное косвенное влияние на развитие математической науки последних трех столетий. Дело в том, что юрист из Тулузы Пьер Ферма (1601 - 1665), изучая "Арифметику" Диофанта, сделал на полях этой книги знаменитую пометку: "Я нашел воистину удивительное доказательство того, что уравнение x n + y n = z n при n > 2, не имеет решений в целых числах, однако поля этой книги слишком малы, чтобы здесь его уместить". Это одно из самых бесполезных математических утверждений получило название "Великой теоремы Ферма" и, почему-то, вызвало настоящий ажиотаж среди математиков и любителей (особенно после назначения в 1908 году за его доказательство премии в 100 000 немецких марок). Попытки добить эту бесполезную теорему породили целые разделы современной алгебры, алгебраической теории чисел, теории функций комплексного переменного и алгебраической геометрии, практическая польза от которых уже не подлежит никакому сомнению. Сама теорема, кажется, благополучно доказана в 1995 году; Пьер Ферма, конечно, погорячился на полях "Арифметики", ибо он физически не мог придумать подобного доказательства, требующего колоссальной совокупности математических знаний. Элементарного доказательства великой теоремы Ферма пока никто из жителей нашей планеты найти не смог, хотя над его поиском бились лучшие умы последних трех столетий. Однако, до сих пор тысячи психически нездоровых любителей-"ферматистов" в жажде славы и денег бомбят своими письмами академические институты и университеты и почти ежегодно один из сотрудников кафедры алгебры и дискретной математики Уральского госуниверситета, где я работаю, вынужден вести с таким психом дипломатическую переписку на заранее заготовленном бланке:

"Уважаемый.............................! В Вашем доказательстве на странице №......, в строке №........, содержится ошибка..............................................................".

Пусть требуется решить линейное диофантово уравнение:

ax + by = c ,

где a , b , c О Z ; a и b - не нули.

Попробуем порассуждать, глядя на это уравнение.

Пусть (a , b ) = d . Тогда a = a 1 d ; b = b 1 d и уравнение выглядит так:

a 1 d· x + b 1 d· y = c , т.е. (a 1 x + b 1 y ) = c .

Теперь и ежику ясно, что у такого уравнения имеется решение (пара целых чисел x и y ) только тогда, когда d | c . Поскольку очень хочется решать это уравнение дальше, то пусть d | c . Поделим обе части уравнения на d , успокоимся, и всюду далее будем считать, что (a , b ) = 1. Так можно.

Рассмотрим несколько случаев.

Случай 1. Пусть c = 0, уравнение имеет вид ax + by = 0 - " однородное линейное диофантово уравнение". Немножко потрудившись, находим, что

x = - b a y .

Так как x должен быть целым числом, то y = at , где t - произвольное целое число (параметр). Значит x = - bt и решениями однородного диофантова уравнения ax + by = 0 являются все пары вида {- bt , at }, где t = 0; ±1; ±2;... Множество всех таких пар называется общим решением линейного однородного диофантова уравнения, любая же конкретная пара из этого множества называется частным решением.

Дорогие читатели, не правда ли, что все названия уже до боли знакомы? "Однородное уравнение", "общее решение" - все это мы уже слышали и в курсе линейной алгебры и в лекциях по дифференциальным уравнениям. При разборе следующего случая эта аналогия буквально выпирает на первый план, что, конечно, не случайно, но исследование единства великого государства линейности на материке математики выходит за рамки этой скромной книжки.

Случай 2. Пусть теперь c 0. Этот случай закрывается следующей теоремой.

Теорема. Пусть (a , b ) = 1, { x 0 , y 0 } - частное решение диофантова уравнения ax + by = c . Тогда его общее решение задается формулами:

м
н
о
x = x 0 - bt
y = y 0 + at .

Таким образом, и в теории линейных диофантовых уравнений общее решение неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и некоторого (любого) частного решения неоднородного уравнения. Вот оно - проявление единства линейного мира! (Однажды, перед экзаменом по дифференциальным уравнениям, мне снился кошмар, будто все линейные пространства решений сговорились между собой и требовали от меня прибавить к ним частное решение, так как они не хотели содержать нулевой вектор, а хотели быть линейными многообразиями. Я отказался, а наутро, на экзамене, мне досталась однородная система!)

Доказательство. То, что правые части указанных в формулировке теоремы равенств действительно являются решениями, проверяется их непосредственной подстановкой в исходное уравнение. Покажем, что любое решение уравнения ax + by = c имеет именно такой вид, какой указан в формулировке теоремы. Пусть { x * , y *} - какое-нибудь решение уравнения ax + by = c . Тогда ax * + by * = c , но ведь и ax 0 + by 0 = c . Следуя многолетней традиции доказательства подобных теорем, вычтем из первого равенства второе и получим:

a (x *- x 0) + b (y *- y 0) = 0

Однородное уравнение. Далее, глядя на случай 1, рассмотрение которого завершилось несколькими строками выше, пишем сразу общее решение: x *- x 0 = - bt , y *- y 0 = at , откуда моментально, используя навыки третьего класса средней школы, получаем:

м
н
о
x * = x 0- bt ,
y * = y 0 + at.

"Все это, конечно, интересно", - скажет читатель, - "Но как же искать то самое частное решение { x 0 , y 0 }, ради которого и затеяна вся возня этого пункта и которое, как теперь выясняется, нам так нужно?". Ответ до глупости прост. Мы договорились, что (a , b ) = 1. Это означает, что найдутся такие u и v из Z , что au + bv = 1 (если вы это забыли, вернитесь в пункт 4), причем эти u и v мы легко умеем находить с помощью алгоритма Евклида. Умножим теперь равенство au + bv = 1 на c и получим: a (uc ) + b (vc ) = c , т.е. x 0 = uc , y 0 = vc . Вот и все!

Пример. Вы - хроноп, придуманный Хулио Кортасаром в книжке "Из жизни хронопов и фамов". Вам нужно расплатиться в магазине за синюю пожарную кишку, ибо красная в хозяйстве уже давно есть. У вас в кармане монеты достоинством только в 7 и 12 копеек, а вам надо уплатить 43 копейки. Как это сделать? Решаем уравнение:

7 x + 12 y = 43

Включаем алгоритм Евклида:

12 = 7· 1 + 5
7 = 5· 1 + 2
5 = 2· 2 + 1
2 = 1· 2

Значит, наибольший общий делитель чисел 7 и 12 равен 1 , а его линейное выражение таково:

1 = 5 - 2· 2 = 5 - (7 - 5) · 2 = (12 - 7) - (7 - (12 - 7) · 2) = 12· 3 + 7· (- 5),

т.е. u = - 5, v = 3. Частное решение:

x 0 = uc = (- 5) · 43 = - 215
y 0 = vc = 3 · 43 = 129.

Итак, вы должны отобрать у кассира 215 семикопеечных монет и дать ему 129 двенадцатикопеечных. Однако процедуру можно упростить, если записать общее решение неоднородного диофантова уравнения:

x = -215 - 12 t
y = 129 + 7 t

и, легко видеть, что при t = - 18, получаются вполне разумные x = 1, y = 3, поэтому дубасить кассира необязательно.

Международная научно-практическая конференция

«Первые шаги в науку»

Исследовательская работа по математике по теме:

“Диофантовы уравнения, типы и способы решения»

Предметная область: математика

Работу выполнила:Хомякова Ольга, ученица 10 класса

Учитель:, учитель математики

Образовательное учреждение:

Брянск 2014

1. Введение-3

2.Основная часть.---5

1.Историческая справка-----5

2.Виды диофантовых уравнений и их классификация

3. Диофантовые уравнения в части С ЕГЭ-13

4. Практическое применение теории диофантовых ур-ний -16

Заключение

5. Литература

Введение

Актуальность исследования:

В школьном курсе математики диофантовы уравнения практически не изучаются, но, например, в заданиях группы С6 в ЕГЭ встречаются уравнения 2-ой степени. Также с этими заданиями я сталкивалась в математических олимпиадах. Я заинтересовалась этой темой для того, чтобы успешно сдать Единый Государственный Экзамен и принимать участие в олимпиадах и конкурсах. Помимо этого, меня заинтересовала практическая направленность области этой темы.

Предметная областью моего исследования является математика.

Объект работы - диофантовы уравнения, типы и способы их решения.

Цель работы:

1. Повысить уровень математической культуры ;

2. Развить в себе навыки исследовательской деятельности в области математики;

3. Научиться самой и научить других решать диофантовы уравнения эффективными методами;

4. Применять эти методы решения к задачам из повседневной жизни человека, а также к задачам, предлагаемым на вступительных экзаменах в ВУЗы и в олимпиадных заданиях;

5. Классифицировать методы решений дифференциальных уравнений;

6. Составить сборник задач с решениями в помощь ученикам нашей школы.

Задачи:

1. изучить исторические корни ;

2. научиться пользоваться научной литературой , строить графики в современных компьютерных программах, быстро и грамотно находить информацию в интернете;

3. исследовать методы решения задач, приводимых к уравнениям первой степени с двумя переменными, выбрав самые удобные и простые;

4. научиться решать задачи из повседневной жизни, вступительных экзаменов в ВУЗы экономического направления и олимпиадных заданий, применив изученные ранее методы;

5. разработать методическое пособие для всех интересующихся (подобрать или самим составить задачи с экономическим содержанием, приводящие к решению уравнений с двумя переменными).

Методы исследования : анализ, синтез, сравнение, противопоставление, ранжирование, прогнозирование, наблюдение.

Гипотеза: изучив типы, классифицировав диофантовы уравнения по способам решения можно успешно справиться с решением текстовых задач, задач с практическим содержанием и с частью заданий С6 ЕГЭ.

Этапы работы :

1. Изучение истории появления диофантовых уравнений, основной литературы по этой теме;

2. Изучение способов и методов решения диофантовых уравнений;

3. Попытка их классификации ;

4. Поиск практической значимости данной темы.

Основая часть.

1.Историческая справка.

Диофант(вероятно 3 в. н. э. – древнегреческий математик из Александрии)

Диофантовы уравнения – алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, у которых отыскиваются целые или рациональные решения.

Эти уравнения названы по имени Диофанта (вероятно 3 в. н. э. – древнегреческий математик из Александрии), изучавшего такие уравнения.

Диофант представляет одну из наиболее трудных загадок в истории науки. Нам неизвестно ни время, когда он жил, ни предшественники, которые работали бы в той же области. Достаточно решить уравнение первой степени с одним неизвестным – и мы узнаем, что Диофант прожил 84 года.

Наиболее загадочным представляется творчество Диофанта. До нас дошло шесть из тринадцати книг, которые были объединены в “Арифметику”, стиль и содержание этих книг резко отличается от классических античных сочинений по теории чисел и алгебры, образцы которых мы знаем по “Началам” Евклида, его “Данным”, леммам из сочинений Архимеда и Аполлония. “Арифметика”, несомненно, явилась результатом многочисленных исследований, которые остались совершенно неизвестными. Число неизвестных диофантовых уравнениях превосходит число уравнений, и поэтому иногда их называют неопределенными.

Диофантовы уравнения впервые обстоятельно исследовались в книге Диофанта “Арифметика”. Такие уравнения имеют некоторые особенности:

1. Они сводятся к уравнениям или системам уравнений с целочисленными коэффициентами.

2. Требуется найти только целые, часто натуральные решения.

2. Определение, виды диофантовых уравнений и способы их решений.

Итак, диофантовым уравнением для целочисленных переменных х 1 , х 2 , …, х n называется уравнение, которое может быть приведено к виду

P ( x 1 , x 2 , …, x n ) =0

Где Р - некоторый многочлен от указанных переменных с целыми коэффициентами.

Простейшим диофантовым уравнением является уравнение вида ax + by = c , где a и b – целые взаимно простые числа. Такое диофантово уравнение имеет бесконечное число решений: если x 0 и y 0 – одно решение, то числа x = x 0 + bn и y = y 0 - an (где n - любое целое число ) также будут решениями, которыми исчерпывается вся совокупность решений.

Виды диофантовых уравнений:

1.Однородные уравнения:

Пример 1:

Итак, я предлагаю рассмотреть решение следующего уравнения:

8 x +9 y =43

Так как 8 и 9 взаимно простые числа, т. е. наибольший общий делитель 8 и 9 равен 1 то решение существует. Одно из решений найдем подбором:

x 0 =2, y 0 =3. Остальные решения вычисляются по формулам:

x = x 0 + bn

y = y 0 - an

Отсюда х =2+9 n , y =3-8 n , n принадлежит Z .

Если наибольший общий делитель d коэффициентов а и b больше 1, асвободный член с не делится на d , то уравнение ах + by = c не имеет решений в целых числах.

Пример 2:

А теперь рассмотрим линейное диофантово уравнение, которое не имеет целых решений:

5 x+35y=17

Для доказательства того, что это уравнение не имеет целых решений, необходимо вынести за скобки общий множитель 5, получим 5( x +7 y )=17 . Тогда левая часть уравнения делится на 5, а правая часть на 5 не делится. Значит, уравнение не имеет решений в целых числах.

Любое уравнение ах + by = с , где НОД(а, b ) = 1, имеет хотя бы одно решение в целых числах.

Задача 1:

К диофантовому уравнению приводит и такая задача:

На покупку нескольких открыток по 11 рублей и конвертов по 13 рублей потратили всего 61 рубль. Сколько купили открыток?

Давайте обозначим число открыток через х , а число конвертов через y , то задача сводится к уравнению 11 x +13 y =61 . Очевидно, что по условию задачи здесь пригодны лишь целые положительные числа. Методом подбора найдем такие числа. Данное уравнение имеет только одно такое решение: x =2, y =3 .

Еще в Древнем Вавилоне родилась задача о построении прямоугольного треугольника с попарно соизмеримыми сторонами. Соизмеримость сторон означает, что найдется такой масштаб, в котором катеты и гипотенуза будут выражаться натуральными числами x и y , но тогда:

x^2+y^2=z^2 .

Таким образом, вавилонская задача сводится к задаче построения всех троек натуральных чисел x , y , z удовлетворяющих предыдущему уравнению. Пифагорейцы нашли способ построения всех его решений. Но, возможно, этот способ был найден еще раньше в Вавилоне и Индии. Так или иначе, решения (x , y , z ) уравнения x ^2+ y ^2= z ^2 принято называть пифагоровыми тройками: x =2 n +1; y =2 n ( n +1) ; z =2 n ^2+2 n +1 , n принадлежит Z . Примеры пифагорейских троек: 3, 4, 5 ; 6, 8, 10 ; 5, 12, 13 .

Однако эти формулы не дают возможности найти все пифагорейские тройки чисел, имеющие выбранное исходное число. Формулы Пифагора и Платона и их различные модификации дают только частные решения. Приведем еще примеры пифагорейских троек чисел, которые нельзя получить по указанным формулам: 72, 65, 97 ; 72, 320, 328 .

Эти и другие пифагорейские тройки чисел дает вавилонская клинописная табличка, относимая к эпохе гг. до н. э. Метод вавилонян дает возможность найти все пифагорейские тройки, содержащие выбранные исходные числа.

Известный в теории диофантовых уравнений является проблема Ферма (Пьер Ферма () – французский математик). Эта проблема носит название великой теоремы Ферма.

Теорема:

Для любого натурального числа n >2 уравнение x ^ n + y ^ n = z ^ n не имеет решений в целых положительных числах x , y , z .

Она была сформулирована Ферма примерно в 1630 году на полях книги Диофанта “Арифметика”. Общее доказательство получил английский математик Уайлс в 1995 году.

2уравнения второй степени:

Следующим типом диофантовых уравнений являются уравнения второй степени ax ^2+ bxy + cy ^2+ dx + ey + f =0 , где a , b , c , d , e , f – целые числа. Такие уравнения могут иметь бесконечно много решений, например, уравнение Пелля (Джон Пелль: английский математик): x ^2- Ay ^2=1 (A >0, A - неполный квадрат).

Пример 3, 4 , 5, 6:

Я предлагаю вам решить 4 уравнения:

1. x(x + y)=11

2. x(x – 3y)=2

3. (x + 2y)(2x – y)= -2

4. xy - 3y + x =5

Итак, попробуем найти решение для первого уравнения :

Так как число 11 имеет делители только 1 и 11, то возможны следующие сочетания сомножителей:

1. x =1,

x + y=11

Тогда x=1, y=10.

2. x=11,

x + y=1

Тогда x=11, y= -10

3. x= -1,

x + y= -11

Тогда x= -1, y= -10

4. x= -11

x = y= -1

Тогда x= -11, y= 10

Ответ запишем в следующем виде: (1;10), (11;-10), (-1;-10), (-11;10).

Задачу №2 я предлагаю решить аналогичным способом, при помощи 4 систем.

1. х=2,

Х – 3у=1

Тогда х=2, у=1/3 (т. е. система не имеет решения в целых числах).

2. х=1,

Х – 3у=2

Тогда х=1, у=-1/3 (т. е. система не имеет решения в целых числах).

3. х=-1,

Х – 3у=-2

Тогда х=-1, у=1/3 (т. е. система не имеет решения в целых числах).

4. х=-2,

Х - 3у=-1

Тогда х=-2, у=-1/3 (т. е. система не имеет решения в целых числах).

Из этих пар чисел видно, что уравнение не имеет решений в целых числах.

Задачу № 3 тоже можно решить при помощи 4 систем. Решив системы, получим следующие пары чисел: (0;-1), (0;1), ( y =4/5), (y = -4/5)

Последние две системы не имеют целых решений, следовательно, ответ: (0;-1),(0;1).

Последнее уравнение не похоже на 3 предыдущих.

Преобразуем заданное уравнение (вынесем за скобки y и вычтем и прибавим число 3):

y ( x – 3) + x – 3=5 -3 ;

В результате преобразований получаем уравнение:

(x – 3)(y + 1)=2

Так как число 2 может быть представлено 4 способами в виде произведения целых чисел 2= (-2) * (-1); 2=(-1) * (-2); 2=1 * 2; 2= 2*1, то возможны четыре системы. Из них получаем четыре пары чисел (1; -2), (2; -3), (4;1), (5;0). Ответом этого уравнения будут являться все 4 пары.

Пример 7:

9 x^2 – y^2= 14

Запишем данное уравнение в виде (3 x y ) * (3 x + y )=14 . Так как число 14 с учетом порядка следования множителей может быть представлено в виде произведения целых чисел следующим образом: 14=(-2) * (-7); 14=(-7) *(-2); 14=(-1) * ; 14= (-14) * (-1); 14= 2 * 7; 14= 7 * 2; 14= 1* 14; 14= 14* 1, то будет 8 случаев.

Решив все 8 систем, мы получаем дробные значения, а значит, что это уравнение не имеет решений в целых числах.

Пример 8:

3 x ^2 + 5 xy + 2 y ^2=7

Разложим левую часть заданного уравнения на линейные множители: Уравнение примет вид: (3 x + 2 y )( x + y )=7

Так как 7 число простое, то оно равно произведению двух целых чисел в четырех случаях. Решив все 4 системы, получим пары чисел (-5;4), (5; -4), (-13;20), (13;-20) . Эти числа и будут ответом.

Пример 9:

x^2 + y^2 – 2x + 4y=-5

В левой части уравнения выделим полный квадрат:

x^2 – 2x + 1 + y^2 + 4y + 4=0

(x – 1)^2 + (y + 2)^2=0

Сумма квадратов равна 0 лишь в одном случае

(x – 1) ^ 2=0 ,

(y + 2)^2=0

Решив систему, получим, что x = 1, y = -2

Ответ: (1 ; -2).

Пример 10:

x^2 – 6x + y^2 + 6y + 18=0

Докажем, что это уравнение имеет единственное целочисленное решение.

В левой части уравнения выделим полные квадраты:

(x – 3)^2 + (y + 3)^2=0

Данное уравнение имеет решение, когда

x – 3=0,

y + 3=0

Т. е. при x=3, y= -3.

Теперь я предлагаю рассмотреть графический метод решения диофантовых уравнений.

Алгоритм построения графика уравнения ах + by + с = 0:

1. Придать переменной х конкретное значение х= х1; найти из уравнения ах1 + by + c = 0 соответствующее значение y = y 1.

2. Придать переменной х другое значение х=х2; найти из уравнения ах2 + by + c = 0 соответствующее значение y = y 2.

3. Построить на координатной плоскости х Oy две точки (х1;у1) и (х2;у2).

4. Провести через эти две точки прямую – она и будет графиком уравнения ах + by + с = 0.

Пример 11:

Так, например, уравнение 5 x + 7 y =17 можно решить графическим методом, изобразив прямую 5 x + 7 y = 17, и определив на этой прямой точки, обе координаты которых будут в данном случае натуральными числами.

Целые решения: (2 ;1),(9;-4), (16;-9),(-5;6),(-12;11)



Новое на сайте

>

Самое популярное