Домой Педиатрия Организм человека как биологическая система. Жизненные циклы и чередование поколений

Организм человека как биологическая система. Жизненные циклы и чередование поколений

По особенностям строения клеток выделяют два надцарства живых организмов - прокариоты и эукариоты. Клетки прокариот (бактерий) не имеют оформленного ядра, их генетический материал (кольцевая ДНК) находится в цитоплазме и ничем не защищена. В клетках прокариот отсутствует ряд органоидов: митохондрии, пластиды, комплекс Гольджи, вакуоли, лизосомы, эндоплазматическая сеть. Клетки эукариот имеют оформленное ядро, в котором располагаются линейные молекулы ДНК, связанные с белками и образующие хроматин. В цитоплазме этих клеток есть мембранные органоиды.

Размножение - присущее всем организмам свойство воспроизведения себе подобных.

Различают две формы размножения - бесполое и половое.

Задание 1. Заполните таблицу

Особенности бесполого размножения

способ размножения

особенности

примеры организмов

деление клетки надвое

тело родительской клетки делится митозом на две части, каждая из которых дает начало полноценным клеткам

прокариоты, одноклеточные эукариоты (амеба)

множественное деление клетки

Тело исходной клетки делится митотически на несколько частей, каждая из которых становится новой клеткой

Одноклеточные эукариоты (жгутиковые, споровики)

почкование

На материнской клетке сначала формируется бугорок, содержащий ядро. Почка растет, достигает размера материнской, отделяется

Одноклеточные эукариоты, некоторые инфузории, дрожжи

спорообразование

Спора - особая клетка, покрыта плотной оболочкой, защищающей от внешних воздействий

Споровые растения; некоторые простейшие

вегетативное размножение:

Увеличение числа особей данного вида происходит путем отделения жизнеспособных частей вегетативного тела организма

Растения, животные

У растений

Образование почек, стеблевых и корневых клубней, луковиц, корневищ

Лилейные, пасленовые, крыжовниковые и др.

У животных

Упорядоченное и неупорядоченное деление

Кишечнополостные, морские звезды, кольчатые черви

Половое размножение связано с образованием половых клеток (гамет) и их слиянием (оплодотворением).

Онтогенез (греч. «существо» и «происхождение, развитие») - полный цикл индивидуального развития особи, в основе которого лежит реализация наследственной информации на всех стадиях существования в определенных условиях внешней среды; начинается с образования зиготы и заканчивается смертью особи.

Термин «онтогенез» был введен Эрнстом Геккелем в 1866 г.

Периоды онтогенеза:

эмбриональный

постэмбриональный

Для высших животных и человека принято выделять пренатальный (до рождения) и постнатальный (после рождения) периоды. Принято также выделять предзиготный этап, предшествующий образования зиготы.

Периодизация онтогенеза

особенности

предзиготный

образование гамет (гаметогенез), накопление рибосомальной и информационной РНК, различные участки цитоплазмы приобретают отличия по химическому составу.

эмбриональный период

зигота (одноклеточная стадия развития многоклеточного организма)

содержит зерна желтка, митохондрии, пигменты, цитоплазма перемещается, ярко выраженная двусторонняя симметрия (билатеральная). У ряда видов животных начинается синтез белка и новой РНК

дробление

образуются борозды дробления, которые разделяют клетку пополам - на 2 бластомера (2,4,8,16,32,64 и т.д.). В результате ряда последовательных дроблений образуется группа тесно прилегающих друг к другу клеток. Зародыш напоминает ягоду малины. Он получил название морулы.

бластуляция

конечная стадия дробления яйца. У ланцетника бластула образуется по достижении зародышем 128 клеток. Бластула имеет форму пузырька со стенкой в один слой клеток, который называется бластодермой.

гаструляция

сложное перемещения эмбрионального материала с образованием 2 или 3 слоев тела зародыша (зародышевые листки): эктодерма, энтодерма и мезодерма. Развитие губок и кишечнополостных заканчивается на стадии двух зародышевых листков. У всех остальных организмов, стоящих на эволюционной лестнице выше, развиваются три зародышевых листка.

гистогенез и органогенез

происходит образование тканей и органов

Постэмбриональное развитие у животных может протекать по типу прямого и непрямого развития.

Прямое развитие имеет место у рыб, пресмыкающихся, птиц, а также беспозвоночных, яйца которых богаты питательными веществами, достаточными для завершения онтогенеза. Питание, дыхание и выделение у этих зародышей осуществляется также временными органами.

Особенности передачи наследственного материала от организма организму, и реализацию их в онтогенезе изучает генетика.

Генетика (от греч. «происходящий от кого-то») - наука о законах и механизмах наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин -- молекулярную генетику, экологическую генетику и другие.

Наследственность - способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Ген - участок молекулы ДНК, несущий информацию о каком-либо признаке или свойстве организма

Генотип - совокупность всех генов, локализованных в хромосомах данного организма.

Аллели (аллельные гены) - состояния, формы данного гена, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом. Каждый ген может находиться в двух состояниях - доминантном (подавляющем, обозначается прописной буквой, например, А, D,W) или рецессивном (подавляемом, обозначается строчной буквой, например, а, н, d,w,x).

Гомозигота - диплоидная клетка или организм, гомологичные хромосомы которого несут одинаковые аллели данного гена (обозначается, например, АА, аа, нн,WW).

Гетерозигота - диплоидная клетка или организм, гомологичные хромосомы которого несут разные аллели данного гена (обозначается, например, Аа, Нн,Ww).

Фенотип - совокупность всех особенностей строения и жизнедеятельности организма.

Гибрид - половое потомство от скрещивания двух генотипически различающихся организмов.

Моногибридное скрещивание - скрещивание организмов, отличающихся друг от друга по одной паре альтернативных признаков (например, желтая и зеленая окраска семян у гороха).

Дигибридное скрещивание - скрещивание организмов, отличающихся друг от друга по двум парам альтернативных признаков (например, желтая и зеленая окраска семян у гороха и гладкая и морщинистая поверхность семян гороха).

Работы Г. Менделя, Т. Моргана и их последователей заложили основы теории гена и хромосомной теории наследственности.

Основу исследований Г. Менделя, которые проводились, когда еще не были известны хромосомы, составляют скрещивания и изучение гибридов садового гороха. Г. Мендель начал исследования, располагая 22 чистыми линиями садового гороха, которые имели хорошо выраженные альтернативные (контрастирующие) различия между собой по семи парам признаков, а именно: форма семян (круглые - шероховатые), окраска семядолей (желтые - зеленые), окраска кожуры семян (серая - белая), форма бобов (выполненные - морщинистые)

Законы Менделя:

I закон Менделя. Закон единообразия гибридов первого поколения: при скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное.

II закон Менделя. Закон расщепления: при моногибридном скрещивании во втором поколении гибридов наблюдается расщепление по фенотипу в соотношении 3:1: около 3/4 гибридов второго поколения имеют доминантный признак, около 1/4 -- рецессивный.

III закон Менделя. Закон независимого комбинирования: при дигибридном скрещивании расщепление по каждой паре признаков у гибридов F 2 идет независимо от других пар признаков и равно 3:1, как при моногибридном скрещивании.

Задание 2. Решите задачи.

При скрещивании 2-х черных кроликов появился белый крольчонок. Чем это можно объяснить?

У кошек черный ген окраски шерсти (В) доминирует над геном рыжей окраски (b), а ген короткой шерсти (S) доминирует над геном длинной шерсти (s). Какова ожидаемая доля котят с черной короткой шерстью среди потомков, если кот будет иметь черную короткую шерсть (ВbSs), а кошка - черная с длинной шерстью (Bbss)?

Изменчивость - это общее свойство живых организмов приобретать новые признаки.

Различают наследственную и ненаследственную (модификационная) изменчивость/

Формы изменчивости

причины проявления

значение

Ненаследственная (модификационная изменчивость)

изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом

адаптация - приспособление к данным условиям среды, выживание, сохранение потомства.

белокочанная капуста в условиях жаркого климата не образует кочана; породы лошадей и коров, завезенные в горы, становятся низкорослыми

Наследственная (генотипическая)

Мутационная

влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах

материал естественного и искусственного отборов, так как мутации могут быть полезными, вредными и безразличными, доминантные и рецессивные

репродуктивная изоляция > новые виды, рода > микроэволюция.

Комбинативная

возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов.

распространение новых наследственных изменений, которые служат материалом для отбора.

появление розовых цветков при скрещивании белоцветковых и красноветковых примул.

Соотносительная (коррелятивная)

возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков

постоянство взаимосвязанных признаков, целостность организма как системы

длинноногие животные имеют длинную шею.

Эволюция - необратимое и направленное развитие органического мира.

В основе современной теории эволюции лежит теория Ч. Дарвина. Но эволюционизм (теория эволюции или представление о развитии) существовал и до Дарвина.

Различают два направления эволюции.

Биологический прогресс - увеличение численности особей данной систематической группы (вида, рода, класса, семейства, отряда и др.), расширение ареала.

Биологический прогресс означает победу вида в борьбе за существование. Он является следствием хорошей приспособленности организмов к условиям окружающей среды. В настоящее время прогрессируют многие группы насекомых, цветковых растений и др.

Биологический регресс - уменьшение численности особей данной систематической группы, сужение ареала, сокращение видового разнообразия внутри группы.

Биологический регресс означает отставание в темпах эволюции о скорости изменения условий окружающей среды. Он может привести к вымиранию группы. Исчезли древовидные плауны и хвощи, древние папоротники, большинство древних земноводных и пресмыкающихся. Регрессивными сейчас являются род выхухолей, семейство гинкговых и др.

Существует 4 основных пути эволюции: ароморфоз, идиоадаптация, общая дегенерация, гипергенез.

Ароморфоз - крупные эволюционные изменения, ведущие к подъему уровня биологической организации, к развитию приспособлений широкого значения, расширению среды обитания. Это развитие принципиально новых признаков и свойств, позволяющих группе организмов перейти на другую ступень эволюции. Пример: дифференциация органов пищеварения, усложнение зубной системы, появление теплокровности - все это снизило зависимость организма к окружающей среды. У млекопитающих и птиц появилась возможность переносить снижения температуры среды значительно легче, чем, например, рептилиям, которые теряют свою активность с наступлением холодной ночи или холодного периода года.

Ароморфозы сыграли важную роль в эволюции всех классов животных. Например, в эволюции насекомых большое значение имело появление трахейной системы дыхания и преобразование ротового аппарата (выход на сушу и разнообразное питание).

Идиоадаптация - частное приспособление организмов к определенному образу жизни без повышения общего уровня организации.

Организмы эволюционируют путем частных приспособлений к конкретным условиям среды. Такой тип эволюции ведет к быстрому повышению численности. Благодаря формированию различных идиоадаптаций животные близких видов могут жить в самых разных географических зонах. Например, представителей семейства волчьих можно встретить на всей территории от Арктики до тропиков. Идиоадаптация обеспечила расширение ареала семейства и увеличение числа видов.

Общая дегенерация - это процесс, который ведет к упрощению организмов, к регрессу.

Гипергенез - путь эволюции, связанный с увеличением размеров тела и непропорциональным переразвитием органов тела. В различные периоды в разных классах организмов появлялись гигантские формы. Но, как правило, они довольно быстро вымирали и наступало господство более мелких форм. Вымирание гигантов чаще всего связывают с нехваткой пищи, хотя некоторое время такие организмы могут иметь преимущество из-за своей огромной силы и отсутствия по этой причине врагов.

Приведите примеры основных путей эволюции

ароморфоз

идиоадаптация

общая дегенерация

гипергенез

Появление электрон-транспортных цепей (что обеспечило возможность фотосинтеза и аэробного дыхания)

Галапагосские вьюрки (различные типы клювов)

У двустворчатых моллюсков исчезновение головы

Появление белков-гистонов и ядерной оболочки (что обеспечило возможность митоза, мейоза и полового размножения)

У собак невтяжные когти для ускорения бега, наличие хищных зубов, снижение температуры тела через усиленное ротовое дыхание (потовые железы отсутствуют)

У свинного цепеня-солитёра - "потеря" пищеварительной системы.

Появление зародышевых листков у животных и дифференцированных тканей у растений (что привело к образованию систем органов) .

У божьих коровок, саламандр - предостерегающая окраска

Потеря зрения у кротов, протей, глубоководных

Появление осевого скелета - хорды

Биология [Полный справочник для подготовки к ЕГЭ] Лернер Георгий Исаакович

Раздел 3 Организм как биологическая система

Организм как биологическая система

Из книги 100 великих научных открытий автора Самин Дмитрий

БИОЛОГИЧЕСКАЯ ТЕОРИЯ БРОЖЕНИЙ В 1680 году голландец Антони Ван-Левенгук впервые увидел пивные дрожжи в свой самодельный микроскоп. Он описал их в письме, адресованном в Королевское общество, и дал рисунок, на котором видны почкующиеся круглые клетки, образующие скопления.

Из книги Большая Советская Энциклопедия (БИ) автора БСЭ

Из книги Большая Советская Энциклопедия (КИ) автора БСЭ

Из книги Большая Советская Энциклопедия (МЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ОТ) автора БСЭ

Из книги Политология: хрестоматия автора Исаев Борис Акимович

Из книги Как повысить плодородие почвы автора Хворостухина Светлана Александровна

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Почему одних любят, а на других женятся? Секреты успешного замужества автора Сябитова Роза Раифовна

Раздел IV Политическая система Системный подход получил широкое распространение в политической науке в 60-е гг. XX в. Использование его методологии стало основой создания и разработки теорий политической системы. Родоначальником системного подхода в политической науке

Из книги Женское здоровье. Большая медицинская энциклопедия автора Автор неизвестен

Биологическая поглотительная способность Основой биологической поглотительной способности почвы является деятельность населяющих ее микроорганизмов. Они усваивают и сохраняют содержащиеся в грунте вещества, а при отмирании – возвращают их, обогащая таким образом

Из книги Справочник настоящего мужчины автора Кашкаров Андрей Петрович

Раздел 2 Клетка как биологическая система 2.1. Клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира. Развитие знаний о клетке. Клеточное строение организмов, сходство строения клеток всех организмов – основа единства

Из книги автора

Биологическая совместимость Наверное, самый запутанный во всех отношениях уровень совместимости партнеров – это биологический уровень. Он связан с вашими сексуальными отношениями и вашим приятием или неприятием физической ипостаси вашего партнера. То есть, когда мы

Из книги автора

Раздел I. Женский организм в период детства

Из книги автора

Раздел II. Женский организм в период полового развития

организм биологическая система

В биологии организм рассматривается как самостоятельно существующая единица мира, функционирование которой возможно лишь при постоянном взаимодействии с окружающей его внешней средой и самообновлении в результате такого взаимодействия.

Основной функцией организма является обмен веществ (метаболизм), который обеспечивается одновременно и непрерывно протекающими процессами во всех органах и тканях - ассимиляция и диссимиляция.

Ассимиляция (анаболизм) сводится к образованию из поступающих в организм извне веществ и накоплению новых химических соединений, идущих на формирование различных тканей (массы тела) и создание энергетического потенциала, необходимого для осуществления жизнедеятельности, в том числе движений.

Диссимиляция (катаболизм) - это расщепление химических веществ в организм, разрушение старых, отмерших или поврежденных тканевых элементов тела, а также освобождение энергии из веществ, накопленных в процессе ассимиляции.

С обменом веществ связаны такие функции организма, как рост, развитие, размножение, питание, пищеварение, дыхание и выделение продуктов жизнедеятельности, движения, реакции на изменение внешней среды и др.

Многообразно влияние на организм окружающей среды, которая является для него не только поставщиком жизненно необходимых веществ, но и источником возмущающих воздействий (раздражителей). Постоянные колебания внешних условий стимулируют соответствующие приспособительные реакции в организме, которые предотвращают возможное появление отклонений в его внутренней среде (кровь, лимфа, тканевая жидкость) и большинстве клеточных структур.

В процессе эволюции, при формировании взаимоотношений организма с внешней средой, в нем выработалось важнейшее свойство сохранять постоянство состава внутренней среды - гомеостаз (от греч. «гомойос» - одинаковый, «стасис» - состояние). Выражением гомеостаза является наличие ряда биологических констант - устойчивых количественных показателей, характеризующих нормальное состояние организма. К ним относятся температура тела, содержание в крови и тканевой жидкости белков, сахара, ионов натрия, калия и др. Константы определяют физиологические границы гомеостаза, поэтому при длительном пребывании организма в условиях, значительно отличающихся от тех, к которым он приспособлен, гомеостаз нарушается и могут произойти сдвиги, не совместимые с нормальной жизнью.

Однако адаптивные механизмы организма не исчерпываются сохранением гомеостатического состояния, поддержанием постоянства регулируемых функций. Например, при разного рода физических нагрузках направленность регуляции ориентирована на обеспечение оптимальных условий функционирования организма в связи с возросшими требованиями (учащение сердцебиения, дыхательных движений, активизации обменных процессов и др.).

Современная наука рассматривает организм как саморегулирующуюся биологическую систему, в которой все клетки, ткани, органы находятся в тесной взаимосвязи и взаимодействии, образуя единое целое с высокой функциональной эффективность. Еще И.П. Павлов подчеркивал «человек есть... система в высочайшей степени саморегулирующаяся, сама себя поддерживающая, восстанавливающая, поправляющая и даже совершенствующая».

Взаимосвязь функций и процессов обеспечивается двумя механизмами регуляции - гуморальным и нервным, которые в процессе биологического приспособления в животном мире являлись доминирующими, а затем постепенно трансформировались в регуляторы функций организма.

Гуморальный механизм(от лат. «хумор» - жидкость) регулирования осуществляется за счет химических веществ, которые содержатся в циркулирующих в организме жидкостях (крови, лимфе, тканевой жидкости). Важнейшими из них являются гормоны (от греч. «хормон» - движущий), которые выделяются железами внутренней секреции. Попадая в кровоток, они поступают ко всем органам и тканям, независимо от того участвуют они в регуляции функций или нет. Только избирательное отношение тканей к конкретному веществу обуславливает включение гормона в процесс регуляции. Движутся гормоны со скоростью кровотока без определенного «адресата». Между различными химическими регуляторами, особенно гормонами, четко проявляется принцип саморегуляции. Например, если становится избыточным количество инсулина (гормона поджелудочной железы) в крови, это служит пусковым сигналом к усилению продукции адреналина (гормона мозгового слоя надпочечников). Динамическое равновесие уровня концентрации этих гормонов обеспечивает оптимальное содержание сахара в крови.

Нервный механизм регулирования осуществляется через нервные импульсы, идущие по определенным нервным волокнам к строго определенным органам или тканям организма. Нервная регуляция совершенней гуморальной, поскольку, во-первых, распространение нервных импульсов идет быстрее (от 0,5 до 120 м/с) и, во-вторых, они имеют адресную направленность, т.е. по нейронным путям импульсы идут к конкретным клеткам или группам клеток.

Основным нервным механизмом регуляции функций является рефлекс ответная реакция тканей или органов на раздражение, поступающее из внешней и внутренней среды. Он реализуется по рефлекторной дуге - пути, по которому идет возбуждение от рецепторов до исполнительных органов (мышц, желез), осуществляющих ответную реакцию на раздражение. Различают два вида рефлексов: безусловные или врожденные и условные или приобретенные. Нервная регуляция функций организма складывается из сложнейших взаимоотношений этих двух видов рефлексов.

Нервная и гуморальная регуляция функций тесно взаимосвязаны и образуют единую нейрогуморальную регуляцию. Например, передатчиком нервного возбуждения является гуморальный (химический) компонент - медиатор, а деятельность многих желез внутренней секреции стимулируется нервными импульсами. Соотношение нервных и гуморальных звеньев в механизме управления функциями организма сводится к тому, что преобладание нервного компонента имеет место, если управляемая функция больше связана с раздражителями внешней среды, а возрастание роли гуморального механизма происходит по мере ослабления этих связей.

В процессе двигательной деятельности сокращаются мышцы, изменяет свою работу сердце, железы выделяют в кровь гормоны, которые, в свою очередь, оказывают усиливающее или ослабляющее воздействие на те же мышцы, сердце и другие органы. Иначе говоря, рефлекторная реакция сопровождается гуморальными сдвигами, а гуморальный сдвиг сопровождается изменением рефлекторной регуляции.

Функционирование нервной системы и химическое взаимодействие клеток и органов обеспечивают важнейшую способность организма - саморегуляциюфизиологических функций, приводящую к автоматическому поддержанию необходимых организму условий его существования. Всякий сдвиг во внешней или внутренней среде организма вызывает его деятельность, направленную на восстановление нарушенного постоянства условий его жизнедеятельности, т.е. восстановление гомеостаза. Чем выше развит организм, тем совершеннее и устойчивее гомеостаз.

Суть саморегулирования состоит в направленном на достижение конкретного результата управления органами и процессами их функционирования в организме на основе информации об этом, которая циркулирует в каналах прямой и обратной связи по замкнутому циклу, например, терморегуляция, боль и др.). Функцию каналов связи могут выполнять рецепторы, нервные клетки, циркулирующие в организме жидкости и др. Осуществляется саморегуляция по определенным закономерностям. Выделяют ряд принципов саморегулирования. Принцип неравновесности выражает способность живого организма сохранять свой гомеостаз на основе поддержания динамического неравновесного, асимметричного состояния относительно окружающей среды. При этом организм как биологическая система не только противодействует не благоприятным воздействиям и облегчает действие на него положительных влияний, но в отсутствие тех и других может проявлять спонтанную активность, отражающую громадный объем деятельности по созданию основных структур. Закрепление результатов спонтанной активности во вновь возникающих структурах формирует основу явлениям развития. Принцип замкнутого контура регулирования заключается в том, что в живой системе информация о реакции на поступившее раздражение определенным образом анализируется и в случае необходимости корректируется. Информация циркулирует по замкнутому контуру с прямыми и обратными связями пока не будет достигнут заданный результат. Примером может служить регуляция работы скелетных мышц. Из центральной нервной системы (ЦНС) к мышце поступает раздражение по каналам прямой связи, мышца отвечает на него сокращением (или напряжением). Информация о степени сокращения мышцы по каналам обратной связи поступает в ЦНС, где происходит сравнение и оценка полученного результат относительно должного. В случае их несовпадения из ЦНС к мышце посылается новый корректирующий импульс. Информация будет циркулировать по замкнутому контуру пока мышечная реакция не достигнет нужного уровня. Принцип прогнозирования состоит в том, что биологическая система как бы определяет свое поведение (реакции, процессы) в будущем на основе оценки вероятности повторения прошлого опыта. Вследствие такого прогноза в ней формируется основа предупредительной регуляции как настройки на ожидаемое событие, встреча с которым оптимизирует механизмы коррегирующей деятельности. Например, прогнозирующая сигнальная функция условного рефлекса; использование элементов сформированных прежде двигательных действий при освоении новых.

ТЕМА 2. СОЦИАЛЬНО-БИОЛОГИЧЕСКИЕ ОСНОВЫ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

Введение

1.Организм как биологическая система.

2.Анатомо – морфологические особенности организма.

3. Костная система и её функции.

4. Мышечная система и её функции.

5. Органы пищеварения и выделения.

6.Физиологические системы организма.

7.Двигательная активность человека и взаимосвязь физической и умственной деятельности.

8.Средства физической культуры, обеспечивающие устойчивость к умственной и физической работоспособности.

9.Функциональные показатели тренированности организма в покое и при выполнении предельно напряжённой работы.

10.Обмен веществ и энергии.

11. Контрольные вопросы.

Введение

Социально – биологические основы физической культуры - это принципы взаимодействия социальных и биологических закономерностей в процессе овладения человеком ценностями физической культуры.

Человек подчиняется биологическим закономерностям, присущим всем живым существам. Однако от представителей животного мира он отличается не только строением, но развитым мышлением, интеллектом, речью, особенностями социально-бытовых условий жизни и общественных взаимоотношений. Труд и влияние социальной среды в процессе развития человечества повлияли на биологические особенности организма современного человека и его окружение. Организм- слаженная единая саморегулирующаяся и саморазвивающаяся биологическая система, функциональная деятельность которой обусловлена взаимодействием психических, двигательных и вегетативных реакций на воздействия окружающей среды, которые могут быть как полезными, так и пагубными для здоровья. Отличительная особенность человека - сознательное и активное воздействие на внешние природные и социально-бытовые условия, определяющие состояние здоровья людей, их работоспособность, продолжительность жизни и рождаемость (репродуктивность). Без знаний о строении человеческого тела, о закономерностях функционирования отдельных органов и систем организма, об особенностях протекания сложных процессов его жизнедеятельности нельзя организовать процесс формирования здорового образа жизни и физической подготовки населения, в том числе и учащейся молодежи. Достижения медико-биологических наук лежат в основе педагогических принципов и методов учебно-тренировочного процесса, теории и методики физического воспитания и спортивной тренировки.

Организм как биологическая система

В биологии организм рассматривается как самостоятельно существующая единица мира, функционирование которой возможно лишь при постоянном взаимодействии с окружающей его внешней средой.

Каждый родившийся человек наследует от родителей врожденные, генетически обусловленные черты и особенности, которые во многом определяют индивидуальное развитие в процессе его дальнейшей жизни. Оказавшись после рождения в условиях автономного режима, ребенок быстро растет, увеличивается масса, длина и площадь поверхности его тела. Рост человека продолжается приблизительно до 20 лет. Причем у девочек наибольшая интенсивность роста наблюдается в период от 10 до 13, а у мальчиков от 12 до 16 лет. Увеличение массы тела происходит практически параллельно с увели­чением его длины и стабилизируется к 20-25 годам.

Необходимо отметить, что за последние 100-150 лет в ряде стран наблюдается раннее морфофункциональное развитие организма у детей и подростков. Это явление называют акселерацией (лат. accelera-tio- ускорение).

Пожилому возрасту (61-74 года) и старческому (75 лет и более) свойственны физиологические процессы перестройки: сниже­ние активных возможностей организма и его систем - иммунной, нерв­ной, кровеносной и др. Здоровый образ жизни, активная двигательная де­ятельность в процессе жизни существенно замедляют процесс старения.

В основе жизнедеятельности организма лежит процесс автоматическогоподдержания жизненно важных факторов на необходимом уровне, всякое отклонение от которого ведет к немедленной мобили­зации механизмов, восстанавливающих этот уровень.

В связи с социализацией человека его биологическая роль постепенно теряет значимость. Происходит это не из-за достижения людьми высочайших уровней развития, а по причине осознанного отдаления от своего фактического «фундамента» (биосферы), давшей человеку возможность развиваться и построить современное общество. Но организм как биологическая система не может существовать вне биосферы, и потому должен рассматриваться только вместе с ней.

Популяция и общество

Любое общество - это самостоятельно регулируемая популяция, современный аналог разумной биологической системы (БС) в рамках биосферы. И человек - это, прежде всего, продукт эволюции БС, а не результат развития социального общества, что вторично. Строго говоря, общество - это некий частный которая также является БС, расположенная лишь на один уровень выше живого организма.

С точки зрения биологии этот термин характеризует встроенную в живую оболочку планеты систему из органов и тканей, имеющую свои механизмы влияния на места обитания и защитные реакции. Рассматривая организм как биологическую систему, легко выделить основные механизмы его жизнедеятельности, адаптации и регуляции своих функций. И в рамках данной публикации организм человека будет рассмотрен как цельная система с точки зрении ее критериев.

Терминология

Система - крупная совокупность некоторых взаимозависимых элементов, образующих определенную целостность (структуру), претерпевшую длительную эволюцию в ходе своего формирования.

Биологические системы - неделимые совокупности взаимосвязанных элементов, создающие живую оболочку планеты и входящие в ее состав, играющие критически важную роль в ее существовании. Примеры биологических систем: клетка, организм, макромолекулы, органеллы, ткани, органы, популяции.

Организм - сложно организованная самостоятельно регулируемая и активно функционирующая система, состоящая из органов и тканей или представленная одной биологической системой, образующая один объект живой природы. Организм активно взаимодействует с биологическими системами вышестоящего порядка (с популяцией и биосферой).

Регуляция - это упорядочивание, подчинение строгим правилам, создание условий для их выполнения и осуществления контроля. В контексте человеческого организма термин следует рассмотреть как процесс нормализации организменных функций.

Универсальное строение

Чтобы рассмотреть организм человека как биологическую систему (БС), следует выделить ее основные свойства и соотнести их. Итак, главное свойство БС - это их строение: все они состоят из органических молекул и биополимеров. Примечательно, что в БС представлены также неорганические вещества, которые являются атрибутами неживой природы. Однако они не являются формообразующими для биологической молекулы, органеллы, клетки или организма, а лишь встраиваются в эти системы.

Упорядоченность

Высокая степень упорядоченности - второе Так называемая иерархичность очень важна для функционирования биосферы по той причине, что вся ее структура построена по принципу усложнения простого и комбинирования элементарного. То есть более сложные компоненты живой оболочки земли (биологические системы) состоят из более мелких, расположенных ниже в иерархии.

Частным примером является эволюция жизни от макромолекулы до органического полимера, а затем до органеллы и субклеточной структуры, из которых позднее формируется ткань, орган и организм. Как целостная биологическая система такая иерархическая структура позволяет формировать все уровни живой природы и отслеживать взаимодействие между ними.

Целостность и дискретность

Одним из важнейших свойств любой БС является ее одновременная целостность и дискретность (частичность, компонентность). Это означает, что любой живой организм - биологическая система, целостная совокупность, сформированная из автономных компонентов. Сами автономные компоненты - это также живые системы, только лишь расположенные ниже в иерархии. Они могут существовать автономно, но в рамках организма подчиняются его регуляторным механизмам и образуют целостную структуру.

Примеры одновременной целостности и дискретности можно найти в любых системах разных уровней. Например, цитоплазматическая мембрана как целостная структура обладает гидрофобностью и липофильностью, текучестью и Она состоит из макромолекул липопротеидов, которые обеспечивают только липофильность и гидрофобность, и из гликопротеидов, отвечающих за избирательную проницаемость.

Это является демонстрацией того, как совокупность дискретных свойств компонентов биологической системы обеспечивает функции более сложной вышестоящей структуры. Примером также служит целостная органелла, состоящая из мембраны и группы ферментов, унаследовавшая их дискретные качества. Или клетка, которая способна реализовывать все функции своих составных компонентов (органелл). Организм человека как единая биологическая система также подчиняется такой зависимости, так как демонстрирует общие качества, являющиеся частными для дискретных элементов.

Обмен энергией

Данное свойство биологической системы также универсально и прослеживается на каждом ее иерархическом уровне, начиная от макромолекулы и оканчивая биосферой. На каждом конкретном уровне оно имеет различные проявления. Например, на уровне макромолекул и доклеточных структур обмен энергией означает изменение пространственного строения и электронной плотности под действием рН, электрического поля или температуры. На уровне клетки обмен энергией следует рассматривать как метаболизм, совокупность процессов клеточного дыхания, окисления жиров и углеводов, синтеза и запасания макроэргических соединений, удаления продуктов обмена наружу клетки.

Обмен веществ организма

Организм человека, как биологическая система, также обменивается энергией с окружающим миром и трансформирует ее. К примеру, энергия химических связей углеводных и жировых молекул эффективно используется в клетках организма для синтеза макроэргов, из которых органеллам легче извлечь энергию для своей жизнедеятельности. В данной демонстрации имеет место трансформация энергии и ее накопление в макроэргах, а также реализация путем гидролиза фосфатных химических связей АТФ.

Самостоятельная регуляция

Данная характеристика означает способность увеличивать или уменьшать свою функциональную активность в зависимости от достижения каких-либо состояний. Например, если бактериальная клетка испытывает голодание, то она либо движется в сторону источника питания, либо формирует спору (форму, которая позволит поддерживать жизнедеятельность до улучшения условий обитания). Если говорить кратко, организм как биологическая система имеет сложнейшую многоуровневую систему регуляции своих функций. Она состоит из:

  • доклеточной (регуляция функций отдельных клеточных органелл, к примеру, рибосом, ядра, лизосом, митохондрий);
  • клеточной (регулирование функций клетки в зависимости от внешних и внутренних факторов);
  • тканевая регуляция (контроль скорости роста и размножения клеток ткани под действием внешних факторов);
  • органная регуляция (формирование механизмов активации и ингибирования функций отдельных органов);
  • системная (нервная или гуморальная регуляция функций вышестоящими органами).

Человеческий организм как саморегулирующаяся биологическая система имеет два главных регуляторных механизма. Это более древний в эволюционном плане гуморальный механизм и более современный - нервный. Это многоуровневые комплексы, способные регулировать скорость обмена веществ, температуру, рН биологических жидкостей и гомеостаз, способность защищаться от опасностей или обеспечивать агрессию, реализуют эмоции и высшую нервную деятельность.

Уровни гуморальной регуляции

Гуморальная регуляция - это процесс ускорения (или замедления) биологических процессов в органеллах, клетках, тканях или органах под действием химических веществ. И в зависимости от расположения их «мишени» выделяют клеточную, местную (тканевую), органную и организменную регуляцию. Примером клеточной регуляции является влияние ядра на скорость биосинтеза белка.

Тканевая регуляция - это выделение клеткой химических веществ (местных медиаторов), направленных на подавление или усиление функций окружающих клеток. К примеру, клеточная популяция, испытывающая кислородное голодание, выделяет факторы ангиогенеза, которые вызывают рост кровеносных сосудов по направлению к ним (в обедненные участки). Также примером тканевой регуляции является выделение веществ (кейлонов), способных подавлять скорость размножения клеток в определенном месте.

Этот механизм, в отличие от предыдущего, является примером отрицательной обратной связи. Он характеризуется как активное действие клеточной популяции, призванное подавлять какой-либо процесс в биологической ткани.

Высшая гуморальная регуляция

Человеческий организм как единая саморазвивающаяся биологическая система является эволюционным венцом, реализовавшим высшую гуморальную регуляцию. Она стала возможной благодаря развитию желез внутренней секреции, способных выделять гормональные субстанции. Гормонами называются специфические химические вещества, которые выделяются железами внутренней секреции непосредственно в кровь и воздействуют на органы-мишени, расположенные на большом удалении от места синтеза.

Высшая гуморальная регуляция также является иерархической системой, главным органом которой является гипофиз. Его функции регулируются неврологической структурой (гипоталамусом), располагающейся выше прочих в регуляторной иерархии организма. Под действием нервных импульсов гипоталамуса, гипофиз секретирует три группы гормонов. Они попадают в кровь и переносятся ею к органам мишеням.

У тропных гормонов гипофиза мишенью является нижестоящая гормональная железа, которая под действием этих веществ выделяет свои медиаторы, непосредственно влияющие на функции органов и тканей.

Нервная регуляция

Регуляция функций организма человека главным образом реализуется посредством нервной системы. Она управляет также и гуморальной системой, делая ее как бы своим структурным компонентом, способным более гибко влиять на функции организма. При этом нервная система также является многоуровневой. У человека она имеет самое сложное развитие, хотя и дальше чрезвычайно медленно совершенствуется и видоизменяется.

На данном этапе она характеризуется наличием функций, ответственных за высшую нервную деятельность: память, внимание, эмоциональность, интеллект. И, пожалуй, одним из главных свойств нервной системы является способность работать с анализаторами: зрительным, слуховым, обонятельным и прочими. Она позволяет запомнить их сигналы, воспроизводить их в памяти и синтезировать на их основе новую информацию, формируя также и чувственный опыт на уровне лимбической системы.

Уровни нервной регуляции

Человеческий организм как единая биологическая система имеет несколько уровней нервной регуляции. Их удобнее рассматривать по градационной схеме от низших уровней к высшим. Ниже прочих располагается осуществляющая регуляцию своих функций независимо от высших центров нервной деятельности.

Она функционирует за счет ядра блуждающего нерва и мозгового слоя надпочечников. Примечательно, что самый низкий уровень нервной регуляции расположен максимально близко к гуморальной системе. Это снова демонстрирует одновременную и дискретность, и целостность организма как биологической системы. Строго говоря, нервная система, передает свои сигналы под действием ацетилхолина и электрического тока. То есть она на половину состоит из гуморальной системы передачи информации, что наблюдается в синапсах.

Высшая нервная деятельность

Выше вегетативной нервной системы располагается соматическая, которая состоит из спинного мозга, нервов, ствола, белого и серого вещества головного мозга, его базальных ядер, лимбической системы и других важных структур. Именно она отвечает за высшую нервную деятельность, работу с анализаторами органов чувств, систематизацию информации в коре, ее синтез и развитие речевой коммуникации. В конечном итоге, именно этот комплекс биологических структур организма ответственен за возможную социализацию человека и достижение его нынешнего уровня развития. Но без низкоуровневых структур их появление было бы невозможным, как исключается и существование человека вне привычной среды обитания.



Новое на сайте

>

Самое популярное