Домой Паразитология Эмг - электромиография. Игольчатая электронейромиография (энмг) Игольчатая электромиография

Эмг - электромиография. Игольчатая электронейромиография (энмг) Игольчатая электромиография

Вопрос о нарушении двигательных функций организма на современном этапе стоит очень остро, поскольку затрагивает помимо физиологии еще и социальную составную жизни человека. Поэтому необходимо правильно проводить исследования данной проблемы. Для этого существует простой, безболезненный и нетравматичный способ – электромиография.

Что такое электромиография?

Электромиография (ЭМГ) – это метод функциональной диагностики биоэлектрических потенциалов, возникающих в скелетных мышцах человека при их сокращении. Он отслеживает процесс сокращения мышцы в целом, как нервно-мышечной системы (НМС).

Структурно-функциональной единицей НМС является двигательная единица, которая состоит из:

  1. Мотонейрона – двигательной клетки спинного мозга.
  2. Периферического нерва – соединяет мотонейрон с мышечным волокном.
  3. Синапса – место контакта нервного окончания с мышцей, в котором происходит передача импульса.
  4. Мышечного волокна.

Исходя из структуры нервно-мышечной системы, различают основные группы заболеваний нервно-мышечной системы :

  1. Поражение мотонейронов (мотонейрональные). При данном повреждении необходимо определить нейрональй характер поражения и степень обездвижения мышц. Исследование начинают из наиболее пораженной мышцы, а затем регистрируют потенциалы такой же мышцы с противоположной стороны. Затем электроды накладывают наиболее отдаленное мышечное волокно с противоположной стороны.
  2. Невральные поражения делятся на: локальные – поражение одного нерва. При данных патологиях исследуют наиболее поврежденный и симметричный ему нервы, наиболее пораженную мышцу и самую отдаленную от нее на противоположной стороне. Распространенные – поражение функций нескольких нервов нижних или верхних конечностей. При это оценивают по одному нерву на руке и ноге, симметричные им. Дополнительно исследуют наиболее и наименее поврежденные мышцы. Генерализированные – вовлекаются в процесс большое количество нервов – полиневропатия. При этом регистрируют функциональность всех длинных нервов. Короткие оценивают при необходимости.
  3. Заболевания, связанные с нарушением нервно-мышечной передачи (синаптические). Основным проявлением их является патологически быстрая утомляемость. Для определения характера нарушения нервно-мышечной передачи используют стимуляционную ЭМГ, при которой на нерв поступает разряд частотой 3 Гц.
  4. Первично-мышечные поражения. Основой исследования является регистрация потенциалов из наиболее пораженных мышц. Также проверяют функции еще минимум трех: одну самую отдаленную от очага поражения на руке или ноге и две ближайших на противоположных конечностях.

Основными целями ЭМГ являются:

  • Выявление уровня поражения нервно-мышечной системы;
  • Определение места поражения;
  • Выявление масштаба процесса (локальный или распространенный);
  • Определение характера поражения, его динамики.

Какие процессы исследуются?

  1. Мышца в состоянии покоя (полного расслабления). Первый разряд появляется в ответ на введение иглы электрода – это слабое мышечное сокращение. Если биопотенциал от мышцы при этом не слишком выраженный, то это считается нормой. При отсутствии патологии в состоянии покоя никаких разрядов от нейронов быть не должно.
  2. Мышца в состоянии слабого мышечного сокращения. Пациент слегка напрягает мышцу и на электромиограмме появляются единичные потенциалы при сохранении изолинии.
  3. Мышца при максимальном сокращении. Во время такого сокращения в процесс вовлекаются и другие двигательные единицы. Это приводит к появлению многих потенциалов, и они накладываются друг на друга. На миограмме исчезает изолиния и данное явление называется нормальной интерференцией.

Виды ЭМГ

ЭМГ проводят с помощью специального аппарата – электромиографа . На сегодняшний день - это компьютерная система, которая записывает потенциалы, идущие от нервно-мышечной системы. Она усиливает их, высчитывает амплитуду, длительность и частоту колебаний, уменьшает помехи («шумы»), проводит стимуляцию мышц.

Электромиограф состоит из самого прибора и комплекта электродов. В зависимости от вида электромиографии используют разные методики проведения:

  1. Поверхностная – неинвазивный метод, который позволяет изучать много мышц одновременно, так как электроды накладывают на поверхность кожи. Недостатком является невысокая чувствительность. Его применяют для людей с повышенной кровоточивостью или детям.
  2. Игольчатая – инвазивный метод, при котором используют игольчатый электрод, что вводят непосредственно в мышцу. Он более информативный, так как происходит прямая связь электромиографа с мышечным волокном.
  3. Стимуляционная. Используют специальный стимулирующий электрод. Он вызывает непроизвольное сокращение мышцы. Это позволяет исследовать нервную составную нервно-мышечной системы. Часто его используют для диагностики при нейротравмах. Например, при параличах: стимуляция позволяет узнать степень поражения нерва. То есть может ли вообще данное нервное волокно передавать импульс при усилении напряжения.

Существует подвид стимуляционной ЭМГ, который используют в урологии, андрологии и проктологии. Это стимуляционная сфинктерография. Суть метода заключается в том, что биоэлектрические потенциалы мышц могут регистрироваться от сфинктера мочевого пузыря или анального отверстия, в связи с синхронностью их сокращения.

Стимуляционная сфинктерография может проводиться с помощью как поверхностных электродов, так и игольчатых, которые прикрепляют в области промежности. Данный метод, совместно с цистометрией (исследования тонуса мочевого пузыря с помощью манометра), широко используют как дополнительный метод диагностики аденомы предстательной железы.

В отличие от других стимуляторов, которые работают по принципу непрерывной подачи тока по нервным волокнам, ЭМГ не вызывает никаких болевых ощущений.

Показания к проведению электромиографии:

  1. Боль или слабость в мышцах.
  2. Болезнь Паркинсона – это неврологическое заболевание, которое проявляется характерным тремором, скованностью движений, нарушением позы и движений.
  3. Судороги – непроизвольное сокращение мышцы или группы мышц, которое сопровождается резкой, длительной болью.
  4. Миастения – нервно-мышечное заболевание, основным проявлением которого является патологически быстрая утомляемость мышц.
  5. Дистония – нарушение тонуса мышц.
  6. Травмы периферических нервов или центральной нервной системы – головного или спинного мозга
  7. Невропатии – дегенеративно-дистрофические изменения нервов.
  8. Синдром запястного канала (или туннельный синдром) – неврологическое заболевание, которое характеризуется болью и онемением кисти. Связано со сдавлением срединного нерва костями и сухожилиями кисти.
  9. Рассеянный склероз – хроническое заболевание оболочки нервных волокон головного и спинного мозга. При этом на оболочках образовываются множественные рубцы.
  10. Ботулизм – тяжелое токсикологическое заболевание нервной системы, которое чаще всего поражает продолговатый и спинной мозг.
  11. Остаточные явления полиомиелита.
  12. Микроинсульт.
  13. Боли при травмах или заболеваниях позвоночника (остеохондроз).
  14. В косметологии (для определения места для укола ботокса).

К основным противопоказаниям относятся:

  • Эпилепсия или другие патологии ЦНС;
  • Психические нарушения, при которых пациент не может вести себя адекватно;
  • Наличие кардиостимулятора;
  • Острые патологии сердечно-сосудистой системы – приступы стенокардии, гипертонический криз

Противопоказаниями для проведения игольчатой электромиографии являются – инфекционные заболевания, что передаются через кровь, повышенная кровоточивость, низкий болевой порог.

И вот уже 7 неделя пошла, как суставы спины ни капельки не беспокоят, через день на дачу езжу работать, а с автобуса идти 3 км, так вот вообще легко хожу! Всё благодаря этой статье. Всем у кого болит спина - читать обязательно!"

Подготовка к процедуре

Подготовка не требует каких-либо сложных усилий . Достаточно соблюсти несколько деталей.

Пациент обязательно должен предупредить о наличии у него заболеваний системы крови и кардиостимулятора. Нужно перечислить доктору все лекарства, которые употребляет пациент. Особенное внимание уделить средствам, влияющим на нервную систему и антикоагулянты.

Перед электромиографией необходимо за 3-4 дня прекратить применение лекарственных средств , влияющих на нервную систему, и могут изменять результаты ЭМГ (например, или холинолитики). За 4-5 часов не рекомендуется курить и употреблять продукты, в которых содержится кофеин.

Методика проведения

Исследование может проводиться как амбулаторно, так и в стационаре. Пациент принимает необходимую позу: сидя, полусидя или лежа. Дальше медсестра обрабатывает электроды и поверхность тела, куда они будут накладываться, антисептическим раствором.

Сначала исследуются биопотенциалы мышц в расслабленном состоянии, потом пациент медленно их напрягает и в это время фиксируют новые импульсы. Далее сигнал усиливается, обрабатывается и передается на пишущее устройство.

Боли и хруст в спине со временем могут привести к страшным последствиям - локальное или полное ограничение движений, вплоть до инвалидности.

Люди, наученные горьким опытом, чтобы вылечить спину и суставы пользуются натуральным средством, которые рекомендуют ортопеды...

Расшифровка ЭМГ

Электромиограмма являет собой кривую, записанную на бумаге с помощью электромиографа и похожа на кардиограмму. На ней изображены колебания с разной амплитудой и частотой. В начале мышечного сокращения амплитуда колебаний составляет 100-150 мкВ , при максимальном сокращении мышцы – 1000-3000 мкВ. В норме эти показатели могут изменяться под влиянием возраста и степени развития мышц.

Изменения электромиограммы при различных патологиях:

  1. Первичные мышечные заболевания проявляются снижением амплитуды колебаний при максимальном сокращении: в начальных стадиях до 500 мкВ, а в тяжелых случаях – до 150 мкВ. Это может возникать при прогрессирующих мышечных дистрофиях, .
  2. При поражениях периферических нервов изменяется частота и амплитуда колебаний: они уряжаются, появляются одиночные потенциалы.
  3. При сниженном тонусе мышц на ЭМГ после произвольного сокращения мышц появляются низкоамплитудные, высокочастотные, постепенно угасающие колебания.
  4. При болезни Паркинсона (треморе) появляются характерные высокоамплитудные залпы веретенообразных колебаний.
  5. При заболеваниях спинного мозга с мышечной слабостью и подергиванием регистрируются спонтанное волнообразные колебания, увеличение амплитуды. В состоянии покоя также проявляется спонтанная биоэлектрическая активность, а при максимальном сокращении – высокоамплитудный ритмичный потенциал.
  6. При миастениях (нарушениях нервно-мышечной передачи) при стимуляционной электромиографии наблюдается нарастающее снижение амплитуды колебаний.

На результаты ЭМГ может повлиять:

  1. Прием лекарственных средств: миорелаксанты или холинолитики.
  2. Нарушение в системе свертывания крови.
  3. Большая жировая прослойка в месте прикрепления электродов.
  4. Желание или нежелание пациента напрягать мышцу.
  5. Расстояние между электродами.
  6. Направление электродов относительно мышечных волокон.
  7. Сопротивление под электродами.
  8. Точность установки.
  9. Влияние сокращений других групп мышц на исследуемые.

Возможные осложнения

Процедура полностью безопасна во всех смыслах. Единственным последствием от процедуры может быть гематома (синяк) в местах прокола иглой. Она сама по себе проходит в течение 7 дней. Гематома возникает тогда, когда прокол осуществляется в месте тонкой, чувствительной кожи.

Возможность возникновения инфекций крайне мала, так как все исследование проводится при соблюдении всех правил стерильности.

Заключение

Электромиография очень распространённый метод, который нашел широкое применение во многих областях медицины. Много врачей разной специализации используют его в своей практике.

ЭМГ помогает в диагностике невропатологам, нейрохирургам, эндокринологам, травматологам и ортопедам, реаниматологам, профпатологам, проктологам, урологам и андрологам, а также генетикам. На сегодняшний день электромиография уже представлена как отдельный диагностический процесс.

Электромиография - это метод изучения биоэлектрических процессов, развивающихся в мышцах людей и животных во время различных двигательных реакций. Метод основан на записи биопотенциалов скелетных мышц. Запись колебаний мышечных потенциалов (рис.) производится специальными приборами - электромиографами различных типов.

Хотя электромиограммы отражают только колебания потенциалов, которые развиваются непосредственно в мышце, все же по их качественным и количественным особенностям можно судить также о нормальном или патологическом состоянии ЦНС, регулирующей все виды двигательной активности человека. При различных заболеваниях возникают разнообразные нарушения нормальной картины электромиограммы (рис.).

Электромиограмма при сокращении общих разгибателей пальцев: А - в норме; Б - при тяжелом парезе мышц после ; В - при паркинсоническом дрожании и ригидном повышении .

При миогенных нарушениях (миозиты, ) отмечаются асинхронные колебания с высокой частотой, укорочение длительности колебаний. В случаях далеко зашедших миогенных атрофии имеется снижение амплитуды колебаний.

При денервации мышцы появляются патологические виды колебаний:
низковольтные (чаще двух- и трехфазные) потенциалы фибрилляций.

При сегментарных ядерных парезах и амиотрофиях (поражение двигательных клеток ствола головного и ) наблюдается снижение электрической активности, иногда до «биоэлектрического молчания», появление редких колебаний потенциалов фибрилляций.

При надсегментарных расстройствах (центральные параличи, гиперкинезы) выявляется снижение амплитуды колебаний в ЭМГ пораженных мышц, асинхронность возбуждения двигательных клеток и мышечных волокон.

Сопоставление электромиографических и клинических данных позволяет уточнить место (локализацию) и тяжесть повреждения нервной системы и мышц. Сравнение повторно записанных в одной и той же мышце электромиограмм помогает обнаружить улучшение (при выздоровлении) ее функционального состояния или ухудшение (при прогрессирующем заболевании), а также служит одним из оснований для объективной оценки результатов проводимого лечения.

Электромиографические данные могут оказать существенную помощь при диагностике ранних стадий заболевания и при легких повреждениях нейромоторной системы: возникающие в таких случаях двигательные расстройства иногда бывают столь незначительны, что клиническое обследование их еще не обнаруживает, тогда как электромиограммы, зарегистрированные высокочувствительным аппаратом, уже отражают патологически измененную электрическую активность мышц.

Электромиографию широко используют не только в неврологической клинике, но и при других заболеваниях человека (сердечно-сосудистых, онкологических, инфекционных и др.).

Электромиография (от греч. mys, myos - мышца, grapho - записываю) - регистрация электрических потенциалов; скелетных мышц. Электромиографию используют как метод исследования нормальной и нарушенной функции двигательного аппарата человека и животных. Электромиография включает методики по изучению электрической активности мышц в состоянии покоя, при произвольных, непроизвольных и вызванных искусственными раздражениями сокращениях.

С помощью электромиографии изучают функциональное состояние и функциональные особенности мышечных волокон, двигательных единиц, нервно-мышечной передачи, нервных стволов, сегментарного аппарата спинного мозга, а также надсегментарных структур; изучают координацию движений, выработку двигательного навыка при различных видах работы и спортивных упражнениях, перестройку работы пересаженных мышц, утомление. На основании электромиографии создан метод управления биотоками мышц, который нашел практическое применение при управлении так называемыми биоэлектрическими протезами (см. Протезирование).

Электромиограмма - кривая, получаемая на фотобумаге, фотопленке или на бумаге при регистрации электрических потенциалов скелетных мышц. Она может быть записана с помощью специального прибора, получившего название электромиограф, или других приборов, используемых для регистрации биопотенциалов. Прибор, как правило, имеет не менее двух каналов записи. Каждый канал включает в себя отводящие электроды, усилитель биопотенциалов и регистрирующее устройство. В большинство электромиографов предусматривается устройство для зрительного и слухового контроля (рис. 1).


Рис. 1. Схема устройства прибора для электромиографии.

Основным источником колебаний электрического потенциала мышц является распространяющийся по мышечным волокнам процесс возбуждения. Однако, поскольку электромиограмма регистрируется в области двигательных точек (см. Электродиагностика), часть электрического потенциала составляет потенциал, возникающий при возбуждении концевых пластин. Электрические потенциалы скелетных мышц можно отводить внутриклеточно или внеклеточно.

Внутриклеточное отведение электрических потенциалов отдельных мышечных волокон у человека позволяет определять те характеристики, которые раньше изучались при микроэлектродных исследованиях на животных или препаратах: величины мембранных потенциалов мышечных волокон, деполяризацию и гиперполяризацию мембран и т. п. (см. Биоэлектрические явления). Регистрацию внутриклеточных потенциалов скелетных мышц ряд авторов называет внутриклеточной электромиографией.

Внеклеточное отведение электрических потенциалов проводят двумя методами:
1) при помощи электродов с относительно малой отводящей поверхностью (сотые доли квадратного миллиметра), погружаемых в мышцу посредством игл (рис. 2, 1-3); при этом во всех случаях, кроме униполярного отведения, оба отводящих электрода находятся на небольшом расстоянии друг от друга (как правило, менее 0,5 мм); 2) при помощи электродов с относительно большой отводящей поверхностью (30- 100 мм 2), обычно помещенных на кожу над мышцей на сравнительно большом расстоянии друг от друга (1-2 см) (рис. 2, 4-6). В первом случае принято говорить о «локальном», во втором - о «глобальном» отведении. «Локальное» отведение позволяет изучать электрические потенциалы, возникающие в небольшом объеме мышечной ткани: потенциалы отдельных двигательных единиц, суммарные потенциалы небольшого количества двигательных единиц, в условиях патологии - потенциалы отдельных мышечных волокон. Основным объектом изучения является двигательная единица. Это понятие первоначально означало совокупность мышечных волокон, иннервируемых одним мотоневроном.


Рис. 2. Игольчатые и накожные электроды для регистрации электромиограмм: 1 - концентрический; 2 - биполярный; 3 - мультиэлектрод (по Бухталу); 4 - 6 - накожные электроды различных типов.

Рис. 3. Колебания потенциала мышцы при «локальном» отведении:1 - потенциал двигательной единицы; 2 - потенциал мышечного волокна (потенциал фибрилляции); 3 - положительный денервационный потенциал; 4 и 5- полифазные потенциалы (по Бухталу); в - ритмические разряды двух двигательных единиц.

В настоящее время многие авторы под двигательной единицей понимают совокупность функционально объединенных мышечных волокон, работающих как единое целое. Почти одновременное возникновение возбуждения в мышечных волокнах двигательной единицы приводит к тому, что возникают колебания потенциала, отражающие возбуждение двигательной единицы в целом (потенциалы двигательной единицы). Для исследования потенциалов двигательных единиц обычно используют концентрический электрод (рис. 2, 1). Биполярные электроды (рис. 2, 2) значительно искажают начальную и конечную часть потенциала двигательной единицы.

При «локальном» отведении учитывают форму, длительность и амплитуду потенциала отдельной двигательной единицы и тип электромиограммы (рис. 3). Форма потенциала двигательной единицы двухфазная или трехфазная с преимущественно выраженной отрицательной фазой; примерно в 3% случаев встречаются полифазные потенциалы. Длительность потенциала двигательных единиц зависит от их структуры. Она, как правило, больше в мышцах с крупными двигательными единицами и меньше в мышцах с мелкими двигательными единицами. Например, в четырехглавой мышце бедра и передней большеберцовой мышце, где имеются крупные двигательные единицы, включающие до 1500-2000, а иногда и более мышечных волокон, средняя длительность потенциала двигательной единицы у взрослых составляет 10-15 мсек, а в мышцах глаза, двигательные единицы которых имеют 5-10 мышечных волокон,- всего 1 - 3 мсек. Длительность потенциала двигательной единицы увеличивается с возрастом, например в возрасте 10 лет для передней большеберцовой мышцы она равна 9,7 мсек, 30 лет - 12,3 мсек, 60 лет - 15,2 мсек. Амплитуда колебаний потенциала двигательной единицы зависит от большего или меньшего удаления электрода от активных мышечных волокон и может достигать 3-5 мВ, однако средние величины значительно меньше - порядка 200 мкв. В расслабленной мышце биопотенциалы не регистрируются. При слабом сокращении мышцы потенциалы двигательной единицы следуют друг за другом в виде не строго ритмического ряда примерно одинаковых по амплитуде колебаний. Для мышц конечностей количество разрядов двигательных единиц в одну секунду принимается равным 5-10 при слабом сокращении, 20-30 при среднем по силе сокращении и 50-60 при сильном сокращении. Частота разрядов двигательных единиц в мелких мышцах обычно выше, чем в крупных (в мышцах глаза достигает 150-200 в 1 сек).

Увеличение силы сокращения мышц происходит как за счет увеличения частоты повторных возбуждений отдельных двигательных единиц, так и за счет вовлечения в работу новых двигательных единиц. Соответственно меняется тип «локально» отведенной электромиограммы. Различают три основных ее типа: потенциалы отдельной двигательной единицы, смешанный и интерференционный. При слабом сокращении регистрируются или потенциалы отдельной двигательной единицы (1-й тип), или потенциалы многих двигательных единиц, среди которых обычно можно выделить потенциалы отдельной двигательной единицы (2-й тип). При среднем по силе и сильном сокращениях регистрируется интерференционная электромиограмма, в которой практически невозможно выделить потенциалы отдельных двигательных единиц (3-й тип). О синхронности разрядов двигательных единиц наиболее точно получают сведения, используя мультиэлектроды. По данным «локального» отведения, степень синхронизации разрядов двигательных единиц при слабых сокращениях мышц у здоровых незначительна; она стойко повышается при некоторых поражениях спинного мозга (см. ниже электромиография в клинике). Данные «глобального» отведения, позволяющего изучать электромиограмму при длительных и максимальных по силе сокращениях мышц, говорят о значительном повышении у здоровых синхронизации разрядов двигательных единиц при утомлении и некоторых режимах работы мышц.

Потенциалы отдельных мышечных волокон можно зарегистрировать только при денервации мышцы, когда двигательные единицы перестают существовать как функциональное целое и отдельные мышечные волокна начинают «спонтанно» возбуждаться. Это так называемые потенциалы фибрилляций, которые имеют длительность 0,5 - 3 мсек и амплитуду 50-200 мкв.

«Глобальное» отведение позволяет изучать колебания электрических потенциалов, возникающих в большом объеме мышечной ткани, содержащей обычно сотни двигательных единиц. Как правило, эти потенциалы отражают сумму потенциалов многих двигательных единиц; поэтому электромиограмму при «глобальном» отведении часто называют суммарной, хотя при некоторых обстоятельствах при «глобальном» отведении могут регистрироваться и потенциалы отдельных двигательных единиц. Для «глобального» отведения, помимо накожных электродов, можно применять обычные иглы; в условиях эксперимента используют вживленные электроды в виде серебряных пластинок, подшитых к мышце. В большинстве случаев применяют биполярное или униполярное отведение накожными электродами. Униполярный способ отведения оправдывает себя в физиологии спорта. В клинике в настоящее время используют почти исключительно биполярное отведение. При нем отводящие электроды располагаются на расстоянии 1-2 см друг от друга так, чтобы один находился над двигательной точкой, а другой - дистальнее или оба над двигательной точкой. Обычно отводящие электроды постоянно фиксированы на изолирующей пластинке. В соответствии с запросами клинической электромиографии разработана специальная схема обследования здоровых испытуемых и больных (Ю. С. Юсевич). Эта схема предусматривает обязательную регистрацию биопотенциалов симметричных мышц в покое, т. е. во время максимального произвольного расслабления мышц, при различных пробах, ведущих к непроизвольному изменению напряжения мышц, и при произвольных их сокращениях. У здоровых испытуемых в хорошо расслабленных мышцах или не выявляется никаких колебаний потенциала, или выявляются низкоамплитудные колебания, которые рядом авторов считаются проявлением тонуса мышцы. При позно-тонических и произвольных сокращениях мышц электромиограмма представлена нерегулярными колебаниями различной амплитуды, формы и длительности. При слабом сокращении регистрируются более редкие и неравномерные по амплитуде колебания потенциала, при сильном сокращении возрастают частота следования и амплитуда колебаний. Увеличение амплитуды колебаний при увеличении статического напряжения показано на рис. 4. Частота следования колебаний может быть разной в различных мышцах, а также в одних и тех же мышечных группах у разных испытуемых. В среднем частота следования колебаний при максимальном по силе сокращении составляет 100-150 в 1 сек. Амплитуда колебаний зависит от многих условий: развития мышц, их состояния, выраженности подкожного жирового слоя (особенно при выраженных случаях ожирения) и в большой степени от выбора электродов. Амплитуда колебаний при максимальном по силе сокращении может достигать 4-6 мВ. Однако обычно регистрируются меньшие величины (рис. 5). Частота следования колебаний потенциала и амплитуда колебаний изменяются при изменении синхронизации разрядов двигательных единиц. Увеличение синхронизации при утомлении и некоторых режимах работы мышц ведет к уменьшению частоты следования колебаний и увеличению амплитуды.


Рис. 4. Электромиограмма двуглавой мышцы плеча при статическом напряжении различной силы (разная нагрузка).


Рис. 5. Электромиограммы, записанные при максимальном по силе сокращении правого (верхняя кривая) и левого (нижняя кривая) поверхностного сгибателя пальцев (биполярное отведение накожными электродами площадью 0,5 см 2 с расстоянием между центрами электродов 20 мм).

Большое количество ценных сведений о состоянии различных звеньев двигательного аппарата позволяет получить регистрация биопотенциалов мышцы при электрическом раздражении нервных стволов и мышечных волокон. Регистрация электромиограммы при раздражении мышечных волокон электрическим током позволила определить в норме и патологии скорость распространения возбуждения по мышечным волокнам, а при раздражении нервных стволов - состояние нервно-мышечной передачи, скорость распространения возбуждения по двигательным нервным волокнам, а также изучить моно- и полисинаптические рефлексы.

Помимо общей визуальной оценки, применяется и математическая обработка электромиограмм. Более широкое распространение получила оценка общей площади электромиограммы за единицу времени при помощи интеграторов и машинная обработка для проведения аутокорреляционного и особенно кросскорреляционного анализа.

Электромиография – регистрация электрических потенциалов скелетных мышц. Ее используют как метод исследования нормальной и нарушенной функции двигательного аппарата человека и животных. Электромиография включает методики по изучению электрической активности мышц в состоянии покоя, при произвольных, непроизвольных и вызванных искусственными раздражениями сокращениях.

С помощью электромиографии изучают функциональное состояние и функциональные особенности мышечных волокон, двигательных единиц, нервно-мышечной передачи, нервных стволов, сегментарного аппарата спинного мозга, изучают координацию движений, выработку двигательного навыка при различных видах работы и спортивных упражнениях, при утомлении.

Электромиограмма (ЭМГ) – кривая, получаемая на бумаге при регистрации электрических потенциалов скелетных мышц. На ней определяют форму, длительность и амплитуду потенциала.

При слабом сокращении мышц регистрируются или потенциалы отдельной двигательной единицы или потенциал многих двигательных единиц. При среднем по силе и сильном сокращениях регистрируется интерференционная ЭМГ, в которой практически невозможно выделить потенциалы отдельных двигательных единиц.

У здоровых людей в хорошо расслабленных мышцах или не выявляется никаких колебаний потенциала, или выявляются низкоамплитудные колебания. При слабом сокращении регистрируются более редкие и неравномерные по амплитуде колебания потенциала, при сильном сокращении возрастают частота и амплитуда колебаний. Частота колебаний может быть разной в различных мышцах, а также в одних и тех же группах мышц у различных испытуемых. В среднем частота колебаний составляет 100 Гц. Амплитуда колебаний зависит от многих условий – развития мышц, их состояния, выраженности подкожного жирового слоя. В норме при максимальном по силе сокращении амплитуда может достигать 300-1200 мкВ.

б

Рис. 3. "Частокольная” форма ЭМГ в круговой мышце глаза при его зажмуривании у больного с парезом лицевого нерва после перенесенного полиомиелита:а - ЭМГ здоровой стороны; 6 - ЭМГ пораженной стороны.

В стоматологической практике регистрируютинтерференционную ЭМГ (через кожу, применяя электроды большой площади),локальную ЭМГ (от отдельной двигательной единицы, применяя игольчатые электорды) истимуляционную ЭМГ (регистрация потенциалов сокращающейся мышцы при раздражении её или нерва электрическим током). Анализируя ЭМГ изучают амплитуду, частоту и продолжительность электрической активности. Например, в норме потенциалы действия двигательных единиц жевательных мышц имеют продолжительность 9-10 мс, мимических – 5-7 мс. Амплитуда потенциалов не превышает 300 мкВ.

В норме наблюдается симметричная активность мышц и четкая смена фаз биоэлектрической активности мышц и периодов покоя. А при утрате, например, зубов с одной стороны, биоэлектрическая активность жевательных мышц на этой стороне резко падает. При значительной потере зубов возникает ослабление биотоков жевательных мышц.

Тема: Физиологические свойства скелетных мышц.

Скелетные мышцы обладают возбудимостью, проводимостью, лабильностью, сократимостью, эластичностью.

В зависимости от частоты раздражителя могут быть одиночные и тетанические сокращения мышцы. При раздражении мышцы одиночным стимулом возникаетодиночное мышечное сокращение. В нем различаютлатентный период (от начала раздражения до начала ответной реакции), периодукорочения (собственно сокращение) и периодрасслабления. Длительность одиночного сокращения от нескольких сотых секунды до 0,1-0,2 сек. Это значит, что одиночные сокращения мышцы будут при частоте импульсов менее 10 Гц. В таком режиме мышца способна работать длительное время без утомления. Однако развиваемое мышечное напряжение не достигает максимально возможных величин.

В ответ на более частое ритмическое раздражение (а именно такое получают наши мышцы) мышца длительно сокращается. Такое сокращение получило название тетаническое. Если каждый последующий импульс подходит к мышце в период, когда она начала расслабляться, возникаетзубчатый тетанус. Если интервал между раздражениями уменьшается так, что каждый последующий импульс приходит к мышце, в тот момент, когда она находится в фазе сокращения, возникаетгладкий тетанус.

Механизм образования тетануса объясняется суперпозицией и изменением возбудимости в процессе возбуждения. Раздражители, вызывающие тетанус, застают мышцу в фазу медленной деполяризации. Начало же быстрой деполяризации приводит к тому, что ткань теряет способность реагировать на раздражение. Эта фаза называетсяабсолютной рефрактерностью (невозбудимостью). Во время реполяризации возбудимость восстанавливается. Этот период называетсяотносительной рефрактерностью. Возбудимость в этот момент ниже исходной величины, во время же следовой реполяризации она возрастает и становится выше исходной. Эта фаза называетсяэкзальтацией (повышенной возбудимости). Именно в этот момент и действуют раздражители, вызывающие тетанус.

В зависимости от нагрузки различают следующие типы мышечного сокращения:

- изотонический – это сокращение мышцы, при котором ее волокна укорачиваются при постоянной внешней нагрузке;

- изометрический - это тип активации мышцы, при котором она развивает напряжение без изменения длины (лежит в основестатической работы);

- ауксотонический – это режим, в котором мышцы развивают напряжение и укорачиваются (лежит в основединамической работы).

Сила мышц – это наибольшая величина груза, который она может поднять.

Абсолютная сила мышц – это максимальный груз, который мышца поднимает на 1 см поперечного физиологического сечения.

Относительная сила мышц – это способность мышцы к подъему груза на единицу анатомического сечения мышцы.

КПД (коэффициент полезного действия) всех мышц человека равен 15-25%, у тренированных он выше – до 35%.

Закон средних нагрузок – мышца длительно и эффективно работает при средних нагрузках (оптимальном режим сокращения).

Рабочая гипертрофия – увеличение массы мускулатуры при длительных физических нагрузках (при гиподинамии наступает атрофия мышц).

Усталость – субъективное состояние, когда к нему присоединяются объективные признаки (падение силы, выносливости, скорости движений) и развиваетсяутомление.

В стоматологической практике определяют силу жевательных мышц. Сумма поперечного сечения жевательных мышц, поднимающих нижнюю челюсть на одной стороне лица равна 19,5 см 2 , а на обеих сторонах – 39 см 2 . Следовательно, абсолютная сила жевательных мышц равна – 390 кг. При развитии утомления жевательных мышц может наступить их замедленное расслабление –контракутура жевательных мышц.

Прием-прием, есть кто? Азбука Бодибилдинга на связи! И в этот пятничный денек мы разберем необычную тему под названием электрическая активность мышц.

По прочтении Вы узнаете что такое ЭМГ как явление, для чего и в каких целях используется данный процесс, почему большинство исследований по “лучшести” упражнений оперируют именно данными электрической активности.

Итак, рассаживайтесь поудобней, будет интересно.

Электрическая активность мышц: вопросы и ответы

Эта уже вторая по счету статья в цикле “Muscle inside”, в первой мы говорили про , а в целом цикл посвящен явлениям и мероприятиям, которые протекают (могут протекать) внутри мускулов. Данные заметки позволят Вам лучше понимать накачательные процессы и быстрее прогрессировать в улучшении телосложения. Почему мы, собственно, решили рассказать именно про электрическую активность мышц? Все очень просто. В наших технических (и не только) статьях мы постоянно приводим списки из лучших упражнений, которые формируются именно на основании данных исследований по ЭМГ.

Вот уже на протяжении практически пяти лет, мы сообщаем Вам эту информацию, но ни разу за это время не раскрыли саму суть явления. Что же, сегодня мы восполним этот пробел.

Примечание:
Все дальнейшее повествование по теме электрическая активность мышц, будет разбито на подглавы.

Что такое электромиография? Замер активности мышц

ЭМГ представляет собой метод электродиагностической медицины для оценки и регистрации электрической активности, создаваемой скелетными мышцами. Процедура ЭМГ выполняется с использованием прибора, называемого электромиографом, для создания записи, называемой электромиограммой. Электромиограф обнаруживает электрический потенциал, генерируемый мышечными клетками, когда они электрически или неврологически активированы. Для понимания сути явления ЭМГ необходимо иметь представление о структуре мышц и протекающих внутри процессах.

Мышца представляет собой организованную “коллекцию” мышечных волокон (м.в.) , которые, в свою очередь, состоят из групп компонентов, известных как миофибриллы. В костно-скелетной системе нервные волокна инициируют электрические импульсы в м.в., известные как потенциалы действия мышц. Они создают химические взаимодействия, которые активируют сокращение миофибрилл. Чем больше активированных волокон в мышечной части, тем сильнее сокращение, которое может произвести мускул. Мышцы могут только создавать усилие при своем сокращении/укорочении. Тяговое и толкающее усилие в костно-мышечной системе генерируется сопряжением мышц, которые действуют в антагонистической модели: одна мышца сокращается, а другая расслабляется. Например, при подъеме гантели на бицепс, двуглавая мышца плеча при подъеме снаряда сокращается/укорачивается, а трицепс (антагонист) находится в расслабленном состоянии.

ЭМГ в различных видах спорта

Метод оценки основной мышечной активности, возникающей при физическом движении, получил широкое распространение во многих видах спорта, особенно фитнесе и бодибилдинге. Измеряя количество и величину импульсов, возникающих во время мышечной активации, можно оценить, насколько стимулируется мышечная единица, чтобы придать особую силу. Электромиограмма представляет собой визуальную иллюстрацию сигналов, генерируемых во время мышечной активности. И далее по тексту мы рассмотрим некоторые “портреты” ЭМГ.

Процедура ЭМГ. Из чего она состоит и где проводится?

В большинстве своем замерить электрическую активность мышц возможно только в специальных научно-исследовательских спортивных лабораториях, т.е. профильных учреждениях. Современные фитнес-клубы не предоставляют такой возможности ввиду отсутствия квалифицированных специалистов и низкой востребованности со стороны аудитории клуба.

Сама процедура состоит из:

  • размещения на теле человека в определенной области (на или рядом с исследуемой мышечной группой) специальных электродов, подсоединенных к блоку, измеряющему электрические импульсы;
  • запись и передача сигналов в компьютер через блок беспроводной передачи данных ЭМГ от расположенных поверхностных электродов для последующего отображения и анализа.

В картинном варианте процедура ЭМГ выглядит следующим образом.


Мышечная ткань в состоянии покоя электрически неактивна. Когда мышца добровольно сжимается, начинают появляться потенциалы действия. По мере увеличения силы сокращения мышц все больше и больше мышечных волокон вырабатывают потенциалы действия. Когда мышца полностью сжимается, должна появиться беспорядочная группа потенциалов действия с различными скоростями и амплитудами (полный набор и интерференционная картина) .

Таким образом, процесс получения картинки сводится к тому, что испытуемый выполняет конкретное упражнение по конкретной схеме (сеты/повторения/отдых) , а приборы фиксируют генерируемые мышцами электрические импульсы. В конечном итоге результаты отображаются на экране ПК в виде определенного графика импульсов.

Чистота результатов ЭМГ и понятие MVC

Как Вы, наверное, помните из наших технических заметок, иногда мы приводили разные значения по электрической активности мышц даже для одного и того же упражнения. Это связано с тонкостями проведения самой процедуры. В целом на конечные результаты оказывает влияние ряд факторов:

  • выбор конкретной мышцы;
  • размер самой мышцы (у мужчин и женщин разные объемы) ;
  • правильное размещение электрода (в конкретном месте поверхностной мышцы – брюшко мышцы, продольная средняя линия) ;
  • процент жира в организме человека (чем больше жира, тем слабее сигнал ЭМГ) ;
  • толщина – насколько сильно ЦНС генерирует сигнал, насколько быстро он поступает в мускул;
  • стаж тренировок – насколько у человека хорошо развита .

Таким образом, ввиду указанных начальных условий разные исследования могут давать разные результаты.

Примечание:

Более точные результаты активности мышц в конкретном движении дает внутримышечный метод оценки. Это когда игольчатый электрод вводят через кожу в мышечную ткань. Игла затем перемещается в несколько точек в расслабленной мышце, чтобы оценить как активность вставки, так и активность покоя в мышцах. Оценивая активность покоя и вставки, электромиограф оценивает активность мышц во время добровольного сокращения. По форме, размеру и частоте результирующих электрических сигналов судят о степени активности конкретной мышцы.

В процедуре электромиографии одной из основных ее функций является то, как хорошо можно активировать мышцу. Наиболее распространенный способ это выполнение максимального добровольного сокращения (MVC) тестируемой мышцы. Именно MVC, в большинстве исследований, принимается как наиболее достоверное средство анализа пиковой силы и силы, создаваемой мышцами.

Однако наиболее полную картину по активности мышц способно дать предоставление обоих наборов данных (MVC и ARV – средние) значений ЭМГ.

Собственно, с теоретической частью заметки разобрались, теперь окунемся в практику.

Электрическая активность мышц: лучшие упражнения для каждой мышечной группы, результаты исследований

Сейчас мы начнем собирать шишки:) от нашей многоуважаемой аудитории, и все потому, что займемся неблагодарным занятием – доказыванием того, что конкретное упражнение является лучшим для конкретной мышечной группы.

А почему оно неблагодарное, Вы поймете по ходу повествования.

Итак, принимая показания ЭМГ во время различных упражнений, мы можем нарисовать иллюстративную картину уровня активности и возбуждения внутри мышцы. Это может указывать, насколько эффективным является конкретное упражнение при стимуляции конкретного мускула.

I. Результаты исследований (профессор Tudor Bompa, Mauro Di Pasquale, Италия 2014)

Данные представлены по шаблону, мышечная группа-упражнение-процент активации м.в.:

Примечание:

Процентное значение указывает пропорцию активированных волокон, значение 100% означает полную активацию.

№1. Широчайшие мышцы спины:

  • 91 ;
  • 89 ;
  • 86 ;
  • 83 .

№2. Грудные мышцы (большая пекторальная) :

  • 93 ;
  • 87 ;
  • 85 ;
  • 84 .

№3. Передняя дельта:

  • жим гантелей стоя – 79 ;
  • 73 .

№4. Средняя/боковая дельта:

  • подъемы прямых рук через стороны с гантелями – 63 ;
  • подъемы прямых рук через стороны на верхнем блоке кроссовера – 47 .

№5. Задняя дельта:

  • разведение рук в наклоне стоя с гантелями - 85 ;
  • разведение рук в наклоне стоя с нижнего блока кроссовера – 77 .

№6. Бицепс (длинная головка) :

  • сгибание рук на скамье Скотта с гантелями – 90 ;
  • сгибание рук с гантелями сидя на скамье под углом вверх - 88 ;
  • (узкий хват) – 86 ;
  • 84 ;
  • 80 .

№7. Квадрицепс (прямая мышца бедра) :

  • 88 ;
  • 86 ;
  • 78 ;
  • 76 .

№8. Задняя поверхность (бицепс) бедра:

  • 82 ;
  • 56 .

№9. Задняя поверхность (полусухожильная мышца) бедра:

  • 88 ;
  • становая тяга на прямых ногах – 63 .

С уважением и признательностью, Протасов Дмитрий .


Диагностические возможности современной медицины впечатляют. И, если такие методы исследования, как рентгенография или компьютерная томография у большинства на слуху, то аббревиатуры ЭМГ или ЭНМГ вызывают недоумение. Что такое электромиография?

Электромиография

Классическая электромиография – это регистрация биопотенциалов мышц. При ее проведении электроактивность мышечных волокон записывается в виде электромиограммы.

Впервые метод был опробован еще в 1907 году, однако практическое распространение он получил лишь в тридцатых годах прошлого столетия. Как работает ЭМГ?

Если мышца находится в покое, с нее невозможно отвести потенциал действия. Однако даже при незначительном ее сокращении прибор регистрирует биоэлектрические волны.

Их частота колебания составляет в среднем от 5 до 19 в секунду, а амплитуда – порядка 100 мкВ. При сильном же сокращении потенциалы действия могут достигать 3000 мкВ. Кроме того, они становятся значительно интенсивнее и продолжительнее.


Следует учитывать, что отводимые потенциалы относятся не к одному мышечному волокну, а к двигательной единице (ДЕ) – их группе, которая иннервируется нейроном спинного мозга или черепно-мозговым нервом.

Именно эти биоэлектрические токи, отводимые от мускулатуры, отражают ее функцию, а также состояние нервных волокон. Выделяют несколько типов ЭМГ.

Типы ЭМГ

ЭМГ, при которой записываются биопотенциалы множества ДЕ, называют суммарной. Современная классификация выделяет 4 ее типа:

  1. Электромиография с быстрыми колебаниями биоэлектрического потенциала и меняющейся амплитудой. Такой тип ЭМГ можно зарегистрировать у здоровых людей, а также при различных миопатиях, парезах и . Но при патологии амплитуда колебаний уменьшится.
  2. ЭМГ с уменьшенной частотой колебаний, когда можно хорошо проследить отдельные колебания. Такое встречается при воспалительных процессах и поражениях нейронов.
  3. Запись частых осцилляций – в виде залпов, частота колебаний при этом будет от 5 до 10 Гц, но продолжительность 80–100мс. Характерно для экстрапирамидного гипертонуса и гиперкинезов (насильственных движений).
  4. Отсутствие вызванных потенциалов – так называемое биоэлектрическое молчание мускулатуры. Это результат поражения двигательных нейронов, встречается при вялом параличе.

Биоэлектрические потенциалы могут вызываться при помощи различных видов стимуляции мускулатуры.

Виды стимуляции

Чтобы в мышце возник биоэлектрический потенциал, ее необходимо стимулировать. Бывают различные варианты стимуляции – от прямой до рефлекторной.

Наиболее часто исследуется реакция мускулатуры в ответ на раздражение нерва. В соответствии с этим выделяют следующие типы электрических ответов – M, H и F. Они различаются по тому, на какие именно волокна нерва – двигательные или чувствительные – действует стимулятор.

Так как практическое значение электромиографии достаточно велико, со временем ее возможности расширялись и появлялись комбинированные методы исследования.

Современные направления

Собственно ЭМГ – в покое и при движении – носит название глобальной электромиографии. Более современными являются электронейрография и стимуляционная ЭМГ. Очень часто эти два направления объединяют в одно, которое получило название электронейромиографии, или ЭНМГ.

Включает в себя стимуляцию нервных волокон, получение ответа в виде вызванных потенциалов и его запись на бумажный или другой носитель.

Впрочем, классическая ЭМГ и по сегодняшний день считается наиболее информативным методом исследования. Она обладает большими диагностическими возможностями.

Диагностические возможности

В современной неврологии и нейрохирургии именно электромиография вносит огромный вклад в диагностику множества заболеваний нервной системы. С ее помощью можно дифференцировать патологии:

  • нервов;
  • мышц;
  • мотонейронов;
  • нервно-мышечной передачи.

Электромиография облегчает врачам проведение дифференциального диагноза, так как она позволяет разграничить основные причинные и патогенетические факторы. ЭМГ при обследовании больного способна выявить следующие проблемы:

  1. Повреждение чувствительных волокон нерва.
  2. Нейрогенную природу снижения мышечной силы.
  3. Первичную миопатию (поражение собственно мускулатуры).
  4. Нарушение нейро-мышечной передачи.
  5. Перерождение нервных волокон.
  6. Денервацию.
  7. Повреждение миелиновой оболочки нервов и их осевых цилиндров.

Показания

Перечень показаний для проведения этого исследования достаточно велик. ЭМГ информативна при следующих болезнях нервной системы:

  • Травматическом поражении мышц и нервов.
  • Травмах головного и спинного мозга, особенно при их сдавлении или ушибе.
  • Невритах.
  • Дегенеративных процессах позвоночника – , межпозвонковых грыжах, спинальном стенозе.
  • Рассеянном склерозе.
  • Вибрационной болезни.
  • Патологии мускулатуры (миастении, миопатии и миозиты).
  • Болезни Паркинсона.

Так как в последние годы растет количество поражений периферической нервной системы, на помощь приходит электронейромиография. Она часто используется при исследовании работы мускулатуры рук и ног.

ЭНМГ позволяет подтвердить следующие заболевания:

  • Периферическую .
  • Туннельный синдром.
  • Сдавление нервных корешков и окончаний.
  • Воспалительный процесс.

Методика проведения

Хотя описание этого метода исследования иногда звучит устрашающее, на практике электромиография проводится проще.

Как правило, используется классический вариант с игольчатыми электродами. В этом и заключается основной недостаток исследования – оно может вызвать неприятные ощущения у пациента.

Поскольку для проведения стимуляции и получения биопотенциалов игольчатый электрод необходимо ввести в мышцу, иногда это причиняет человеку боль.

Однако сама игла имеет небольшие размеры и не способна нанести каких-либо значимых повреждений. Но очень важно перед процедурой объяснить пациенту методику проведения и успокоить его.

Иногда для регистрации биопотенциалов используются электроды, которые крепятся на кожу, однако информативность этого исследования ниже.

Противопоказания

У любой процедуры существуют определенные противопоказания. У электромиографии список ограничений небольшой. Ее сложно провести в следующих случаях:

  1. Выраженное ожирение. Из-за развитой подкожно-жировой клетчатки доступ игольчатого электрода к мышце будет затруднен.
  2. Проблемы со свертываемостью крови, гемофилия.
  3. Сильное угнетение иммунитета – в связи с хоть и минимальным, но все же существующим риском попадания инфекции в организм.
  4. Кахексия, тяжелая онкопатология.
  5. Психические заболевания, фобии, связанные с иглами.

Специальной подготовки пациента проведение ЭМГ не требует. Единственное, что должен проконтролировать врач – прием определенных лекарств, влияющих на нервно-мышечную передачу. Перед электромиографией их нужно отменить.

ЭМГ – высокоинформативный и перспективный метод исследования, который позволяет провести диагностику многих заболеваний нервной и мышечной систем.



Новое на сайте

>

Самое популярное