Домой Оториноларингология Можно ли принимать ременс во время месячных. Ременс - форма выпуска препарата, инструкция по применению, показания, побочные эффекты, аналоги и цена

Можно ли принимать ременс во время месячных. Ременс - форма выпуска препарата, инструкция по применению, показания, побочные эффекты, аналоги и цена

Важнейший класс органических соединений, встречающийся в природе. Наиболее известны глюкоза, крахмал, целлюлоза, гликоген, гепарин и др., играющие важное значение в жизненных процессах человека и животных.

Углеводы – группа природных веществ, относящихся к полиоксикарбонильным соединениям, а также вещества, близкие им по строению.

В номенклатуре углеводов широко используется тривиальные названия: рибоза, фруктоза, лактоза, галактоза, глюкоза и т.д.

Классификация их основана на способности к гидролизу:

Моносахариды (МС) Олигосахариды(ОС) Полисахариды(ПС)

(простые сахара) (низкомолекулярные) (высокомолекулярные)

не гидролизуются гидролизуются гидролизуются

пентозы, гексозы сахароза целлюлоза

(альдозы, кетозы) мальтоза, лактоза крахмал, гликоген

Важнейшие УВ: из пентоз – рибоза, дезоксирибоза, ксилоза;

из гексоз – глюкоза, фруктоза, галактоза, манноза.

Моносахариды (МС)

Изомерия

    Наличие нескольких асимметрических атомов углерода обусловливает существование большого числа оптических изомеров. Это и энантиомеры (зеркальные изомеры, антиподы), и диастереомеры, и эпимеры. Понятие энантиомеров и диастереомеров Вам известны.

Эпимеры – это диастереомеры, отличающиеся друг от друга конфигурацией только одного асимметрического атома С. Все изомеры, кроме зеркальных, отличаются друг от друга свойствами и имеют свое название:

Ксилоза Рибоза

Принадлежность МС к D- или L-ряду определяется по конфигурации последнего (наиболее удаленного от
гр.) хирального атома С по аналогии со стандартом – глицериновым альдегидом:

Природные сахара – D-сахара, L-сахара поступают в организм извне.


Вновь образовавшийся гидроксил носит название полуацетального, или гликозидного и может по-разному располагаться в пространстве относительно цикла, образуя еще один асимметрический атом углерода в циклической форме. Если полуацетальный гидроксил располагается по одну сторону с гидроксилом, определяющим принадлежность к D- или L-ряду, то такой изомер называется -изомером, а другой – -изомером. Стереоизомеры, отличающиеся друг от друга расположением только полуацетального гидроксила в пространстве, называются аномерами . (-верх, -низ – выполняйте наш каприз! Для запоминания.)

Процесс образования циклических форм называется аномеризацией. Циклическая и открытая формы легко переходят друг в друга и находятся в динамическом равновесии. При комнатной температуре преобладает циклическая, при нагревании – открытая. Для альдогексоз более характерна пиранозная форма, для пентоз и фруктоз – фуранозная. Все это отражается в названии, например, -D-глюкопираноза. В кристаллическом состоянии циклические формы закреплены и -, и -изомеры стабильны и могут быть отделены друг от друга. При растворении часть молекул переходит в открытую форму, а из нее образуются все виды циклических форм. Так как каждая форма имеет свой угол вращения луча поляризованного света, то до установления динамического равновесия угол вращения будет постоянно меняться. Изменение во времени угла вращения плоскости поляризации света свежеприготовленного раствора углеводов называется мутаротацией .

В настоящее время вместо циклических формул Колли-Толленса чаще пользуются перспективными формулами Хеуорса.

Именно циклическая форма участвуют в образовании ди- и полисахаридов.

Химические свойства

Циклическая и открытая (альдегидная) формы находятся в равновесии. Поэтому возможны,р-ции, характерные для альдегидной и циклической форм.


Все моносахариды взаимодействуют с НСN, РС1 5 , NH 2 OH, NH 2 –NH 2 , NH 2 –NHC 6 H 5 , окисляются, восстанавливаются (Н 2).

В зависимости от характера окислителя и реакции среды МС могут образовывать различные продукты окисления.

1. При действии слабых окислителей: Аg 2 O, NH 4 OH, t o или Cu(ОН) 2 , ОН – , t o идет разрушение углерод-углеродной цепи с образованием оксикислот с небольшим числом атомов С, а сами окислители при этом восстанавливаются до Аg и Сu 2 O (Cu) соответственно. Р-ция находит применение в биохимических анализах для количественного определения сахаров в биологических жидкостях.

Проба Толленса (реакция «серебряного зеркала»):

Глюкоза Глюконовая кислота

Проба Троммера (реакция медного зеркала). При окислении глюкозы Сu(OH) 2 выпадает осадок Сu 2 O красного цвета.

    При осторожном окислении в кислой водной среде, например, бромной водой, образуются к-ты за счет окисления альдегидной группы – альдоновые кислоты:

    При действии сильных окислителей (например азотной кислоты) идет окисление по первому и шестому атомам С с образованием глюкаровой кислоты:

Глюкаровая кислота

    При окислении только первичной спиртовой группы (по 6-ому атому С), если альдегидная группа защищена с образованием гликозида, получают уроновые к-ты. В организме этот процесс идет легко под действием ферментов. Уроновые к-ты способны к цикло-оксо-таутомерии. Они являются важной составной частью кислых гетерополисахаридов, например, гепарина, гиалуроновой к-ты.

    Р-ции по спиртовым гидроксилам протекают как в открытой, так и в циклических формах.

Моносахариды взаимодействуют с Ме, Ме(ОН) 2 , образуя сахараты, с Сu(OH) 2 , с СН 3 I с образованием простых эфиров, с минеральными и органическими к-тами образуются сложные эфиры, с NH 3 – аминосахара.

Наиболее важны фосфорные эфиры сахаров и аминосахара. Именно в виде фосфорных эфиров рибоза и дезоксирибоза входит в состав НК, соединения глюкозы и фруктозы участвуют в обмене веществ.

Фруктоза + 2Н 3 РО 4 →1,6-Дифосфат фруктозы.

Аминосахара в организме образуются довольно легко в процессе аммонолиза. Чаще всего по второму атому С:

Аминосахара являются составной частью гетерополисахаридов.

    Р-ции по полуацетальному гидроксилу

Эти р-ции характерны для циклической формы. При действии на моносахара спирта в присутствии газообразного НС1 происходит замещение атома Н полуацетального гидроксила на R с образованием особого типа простого эфира – гликозида. Р-ры гликозидов не мутаротируют. В зависимости от размера оксидного цикла гликозиды делятся на: пиранозиды и фуранозиды, как -, так и -форм.

Образование гликозидов служит доказательством существования циклических форм моносахаридов.

Превращение моносахарида в гликозид – сложный процесс, протекающий через ряд последовательных р-ций. Вследствие таутомерии и обратимости р-ции образования гликозида в р-ре, в равновесии в общем случае, могут находиться таутомерные формы исходного моносахарида и соответственно 4 диастереомерных гликозидов –  и -аномеры фуранозидов и пиранозидов.

Гликозиды могут также образовываться при взаимодействии с фенолами или NH-содержащими алифатическими и гетероциклическими аминами.

Молекулу гликозида формально можно представить состоящей из двух частей: углеводной и агликоновой. В роли гидроксилсодержащих агликонов могут выступать и сами моносахариды. Гликозиды, образованные с ОН–содержащими агликонами, называются О-гликозидами, с NH-содержащими соединениями (например, аминами), наз-ся N-гликозидами.

Гликозиды являются составными частями многих лекарственных растений. Например, сердечные гликозиды, выделенные из наперстянки. Антибиотик стрептомицин – гликозид, ванилин – гликозид. Все ди- и полисахариды являются О-гликозидами.

С биологической точки зрения особое значение имеют N-гликозиды рибозы и дезоксирибозы, как продукты соединения с азотистыми пуриновы

ми и пиримидиновыми основаниями. Их общее название – нуклеозиды, т.к. вместе с Н 3 РО 4 они являются нуклеиновыми к-тами – ДНК и РНК.

Все гликозиды, в том числе и нуклеозиды, легко подвергаются гидролизу в кислой среде с образованием исходных продуктов.

Гликозиды не способны к цикло-оксо-таутомерии и проявляют р-ции, характерные для спиртов.

IV. Специфические р-ции

    Действие разбавленных. растворов- щелочей

Эпимеры: глюкоза, фруктоза и манноза легко превращаются друг в друга, образуя равновесные системы. Этот процесс наз-ся эпимеризацией.

    Действие конц. р-ров кислот

Конц. р-ры НС1 и Н 2 SО 4 вызывают дегидратацию моносахаридов: из пентоз образуется фурфурол, из фруктозы – 5-гидроксиметилфурфурол.

3. Брожение

Это распад моносахаридов под действием ферментов микроорганизмов, приводящий к образованию различных продуктов. В зависимости от конечного продукта различают:

а) спиртовое брожение

б) молочнокислое

в) масляное

Л и т е р а т у р а

1. Тюкавкина С. 377 – 406.

Олигосахариды

Это углеводы, содержащие в молекуле 2-10 моносахаридных остатков. Наиболее важны дисахариды, то есть сахариды, содержащие два моносахаридных остатка. К ним относятся сахароза, мальтоза, лактоза и целлобиоза. При гидролизе их образуется два моносахарида. Сахароза – невосстанавли

вающий дисахарид, остальные – восстанавливающие. Все дисахариды являются гликозидами и содержат в своем составе a–D–глюкозу.

Молекула сахарозы состоит из a–D–глюкозы и b–D–фруктозы:

При образовании сахарозы оба моносахарида участвуют своими полуацетальными гидроксилами. Поэтому циклическая форма будет закреплена и оксо-форма (открытая) не образуется. Такой сахар обладает свойствами многоатомного спирта и гликозида. Восстанавливающие свойства отсутствуют: проба Троммера и реакция Толленса отрицательны. Подобно моносахаридам сахароза вступает в р-ции с Ме (активным), образует простые и сложные эфиры, дает качественную р-цию с Сu(ОН) 2 – синее окрашивание:

Сахароза, как гликозид, легко гидролизуется в кислой среде с образованием a–D–глюкозы и b–D–фруктозы. При этом происходит изменение угла вращения поляризованного света. Сахароза обладает правым вращением (+66,5 0), образующаяся фруктоза – левым (-92 0), глюкоза – правым (+52,5 0). Разница – -40 0 .

Это явление называется инверсией сахара. Смесь глюкозы и фруктозы – инвертным сахаром. Природный инвертный сахар – мед.

Сладость сахарозы принята за 1, тогда фруктоза имеет сладость 1,73, глюкоза – 0,74, сорбит – 0,6, маннит – 0,4.

Специфические реакции

    Сахароза после гидролиза дает положительную реакцию Селиванова, так как при гидролизе образуется фруктоза.

    Проба Троммера и реакция Толленса отрицательны, так как в щелочной среде сахароза не гидролизуется.

Сахароза применяется в медицине для приготовления порошков, таблеток, сиропов, микстур и пр.

Важнейшими представителями восстанавливающих дисахаридов являются мальтоза, лактоза и целлобиоза.

В растворе мальтоза существует в виде циклической и открытой формах (3 формы) за счет мутаротации:

Химические свойства

Мальтоза – это альдегидо-спирто-гликозид.

I. Реакции открытой формы. Мальтоза дает все реакции по альдегидной группе с HCN, NH 2 OH, NH 2 –NH 2 , восстановления, окисления.

Проба Троммера и реакция Толленса положительны:

Углеводы, дающие положительную пробу Троммера, называются восстанавливающими.

II. Реакции по – ОН гр. аналогичны реакциям для сахарозы.

III. Мальтоза гидролизуется в кислой среде с образованием 2-х молекул глюкозы.

Лактоза существует в растворе в виде трех форм: двух циклических и одной открытой. Лактоза восстанавливающий дисахарид и обладает всеми

свойствами, характерными для мальтозы. Лактоза содержится в женском молоке и способна подавлять рост бактерий.

Полисахариды

Это высокомолекулярные углеводы, содержащие сотни и даже тысячи моносахаридных остатков.

Из полисахаридов широко известны целлюлоза, крахмал и гликоген. Они построены из одного и того же моносахарида – D-глюкозы. Общая формула (С 6 Н 10 О 5)n.

Целлюлоза (клетчатка) – самый распространенный не только полисахарид, но и органическое вещество в природе. Древесина примерно на 50% состоит из целлюлозы, а хлопок и лен представляют практически чистую целлюлозу.

В целлюлозе остатки D–глюкопиранозы связаны между собой b–(1®4) – гликозидной связью:

Цепь, построенная из тысячи остатков D–глюкозы, имеет линейное строение. Линейные цепи закреплены Н–связями между моносахаридными звеньями внутри одной цепи. Между параллельно уложенными цепями полисахарида также возникают Н-связи, придающие жесткость всей структуре. Отсюда высокая механическая прочность целлюлозы.

С химической позиции целлюлоза – многоатомный спирт, содержащий три гидроксильные группы в каждом моносахаридном звене, и способный образовывать с участием этих групп простые и сложные эфиры:

В эфирные группы могут быть превращены либо все, либо часть гидроксильных групп фрагмента полисахарида, где R–алкил или остаток органической или неоранической кислоты (в сложных эфирах). Целлюлоза не проявляет восстанавливающих свойств.

Простые эфиры целлюлозы – метилцеллюлоза R=CH 3 и натрийкарбоксиметилцеллюлоза R=СН 2 СООNa – образуют вязкие водные р-ры или гели и применяются в фармации в качестве загустителей, эмульгаторов и стабилизаторов мазей и эмульсий. Карбоксиметилцеллюлоза R=СН 2 СООН и диэтиламиноэтилцеллюлоза (сокращенно ДЭАЭ-целлюлоза) R=СН 2 СН 2 N (C 2 H 5) 2 обладают способностью ионитов и применяются в биохимических исследованиях.

Эфир уксусной к-ты (триацетат) применяют в производстве кинопленки и электроизоляционной пленки. Из этого полиэфира вырабатывают также ацетатное волокно. Из целлюлозы получают и другие искусственные волокна: вискозное и медноаммиачное.

Широко применяются эфиры целлюлозы с азотной к-той. Тринитрат целлюлозы – взрывчатое вещество, применяется в производстве пороха. Смесь моно-и динитратов целлюлозы используют в производстве целлулоида, лаков, взрывчатых вещ-в.

Гидролизом целлюлозы в промышленности вырабатывают глюкозу, брожением которой получают этиловый спирт. Другие области применения целлюлозы: строительный материал, производство бумаги, картона.

Крахмал – другой распространенный растительный полисахарид, состоящий из двух фракций: амилопектина (основной компонент – 80-90%) и амилозы. Амилоза, как и целлюлоза, построена из (1®4) – связанных остатков D–глюкопиранозы.

Однако в отличие от целлюлозы, гликозидная связь в амилозе имеет -конфигурацию, в результате чего полисахаридная цепь приобретает иное пространственное строение, напоминающее спираль.

А

Гликозидные связи

милоза + I 2 ® синее окрашивание

Фрагмент цепи амилозы

Амилопектин имеет разветвленное строение. В основной цепи остатки D-глюкопиранозы связаны a-(1®4) – гликозидной связью, а в местах ветвления – a-(1®6)-связью:

Амилопектин +I 2 ® фиолетовое окрашивание

В организме крахмал подвергается гидролизу:

Амилаза слюны Желудочный сок

Крахмал Декстрины крупные

Амилаза панкреотического сока Мальтаза кишечника

Декстрины мелкие Мальтоза α-D-глюкоза

a–D-Глюкоза поглощается ворсинками кишечника, попадает в кровеносное русло и используется как источник энергии. Избыток глюкозы полимеризуется в гликоген и откладывается в печени про запас.

Проблема ожирения возникает потому, что количество гликогена в тканях ограничено. После синтеза 50-60г гликогена на 1кг ткани из глюкозы начинает вырабатываться жир.

Гликоген (животный крахмал) имеет сходное строение с амилопектином, однако разветвленность его больше, чем амилопектина.

Гетерополисахариды – это углеводы, при гидролизе которых образуются молекулы различных моносахаридов и их производных. К последним относятся гепарин, гиалуроновая к-та, хондроитинсерная к-та. В их состав входят аминосахара, уроновые кислоты и остатки серной и уксусной кислот.

Соединительная ткань распределена по всему организму (кожа, хрящи, сухожилия, суставная жидкость, роговица, стенки крупных кровеносных сосудов, кости) и обусловливает прочность и упругость органов, эластичность их соединения, стойкость к проникновению инфекции. Полисахариды соединительной ткани связаны с белками.

Полисахариды соединительной ткани иногда называют кислыми мукополисахаридами, т.к. они содержат уроновые к-ты, остатки серной и уксусной кислот.

Функции углеводов: 1) энергетическая; 2) строительная; 3) наследственная; 4) защитная; 5) поддержание постоянного осмотического давления и свертываемости крови; 6) лекарственные препараты и компоненты к ним.

Энергетическая функция. Потребность человеческого организма удовлетворяется за счет углеводов. При нормальной трудовой деятельности энергетические затраты человека покрываются за счет углеводов на 55-60%, жиров на 20-25%, белков на 15-20%.

Калорийность углеводов, то есть энергия, выделяемая в процессе их диссимиляции с образованием СО 2 и Н 2 О, составляет 16-17 кДж/г. Источником глюкозы является гликоген и крахмал, поступающий с пищей. Глюкоза – обязательный компонент крови (3,3 –3,5 ммоль/л цельной крови).

Особенно чувствительны к снабжению глюкозой нервные клетки. При недостатке глюкозы возникают судороги, потеря сознания. Постоянная концентрация глюкозы зависит от двух гормонов адреналина (гормон надпочечников), регулирующего расщепление глюкозы, и инсулина (гормон поджелудочной железы), регулирующего синтез гликогена из глюкозы. При уменьшении инсулина уровень глюкозы повышается примерно в 2 раза, увеличивается давление, образуется большое количество "ацетоновых тел", изменяется рН крови. Это наблюдается при сахарном диабете.

Контрольные вопросы к теме: «Углеводы»

    Какие соединения называются моносахаридами.

    Классификация моносахаридов.

    Оптическая изомерия. По какому хиральному атому углерода идет отнесение к D- и L- изомерам.

    Что такое мутаротация.

    Какие соединения относятся к дисахаридам.

    Какие дисахариды называются восстанавливающими, а какие невосстанавливающими. Объясните почему?

    Какие углеводы называются полисахаридами.

    Перечислите функции углеводов в организме.

Упражнения:

    Напишите с помощью проекционных формул Фишера энантиомеры глюкозы, галактозы и маннозы. Укажите диастереомеры и эпимеры. Какие формы моносахаридов входят в организм?

    Напишите циклические формы D- глюкопиранозы.

    Напишите реакции глюкозы по альдегидной группе.

    Напишите реакции «серебряного и медного зеркала» для глюкозы.

    Напишите реакции для глюкозы по группам ОН.

    Напишите реакции брожения глюкозы.

    Напишите реакции образования мальтозы и лактозы. Какими дисахаридами они являются?

    Напишите схему образования невосстанавливающего дисахарида.

    Напишите компоненты, содержащиеся в крахмале.

10. Напишите формулы целлюлозы и гликогена

Одной из разновидностей органических соединений, необходимых для полноценного функционирования человеческого организма, являются углеводы.

Они разделяются на несколько типов согласно своему строению — моносахариды, дисахариды и полисахариды. Следует разобраться, для чего они нужны и каковы их химические и физические свойства.

Углеводами называют соединения, в составе которых находятся углерод, водород и кислород. Чаще всего они имеют природное происхождение, хотя некоторые создаются промышленным путем. Их роль в жизнедеятельности живых организмов огромна.

Основными их функциями называют следующие:

  1. Энергетическая . Эти соединения – главный источник энергии. Большая часть органов может полноценно работать за счет энергии, полученной при окислении глюкозы.
  2. Структурная . Углеводы необходимы для формирования почти всех клеток организма. Клетчатка играет роль опорного материала, а в костях и хрящевой ткани находятся углеводы сложного типа. Одним из компонентов клеточных мембран является гиалуроновая кислота. Также углеводистые соединения требуются в процессе выработки ферментов.
  3. Защитная . При функционировании организма осуществляется работа желез, выделяющих секреторные жидкости, нужные для защиты внутренних органов от патогенного воздействия. Значительная часть этих жидкостей представлена углеводами.
  4. Регуляторная . Эта функция проявляется во влиянии на человеческий организм глюкозы (поддерживает гомеостаз, контролирует осмотическое давление) и клетчатки (воздействует на желудочно-кишечную перистальтику).
  5. Особые функции . Они свойственны отдельным видам углеводов. К таким особым функциям относятся: участие в процессе передачи нервных импульсов, формирование разных групп крови и пр.

Исходя из того, что функции углеводов достаточно разнообразны, можно предположить, что эти соединения должны различаться по своему строению и особенностям.

Это действительно так, и основная классификация их включает в себя такие разновидности, как:

  1. . Они считаются наиболее простыми. Остальные типы углеводов вступают в процесс гидролиза и распадаются на более мелкие составляющие. У моносахаридов такой способности нет, они являются конечным продуктом.
  2. Дисахариды . В некоторых классификациях их относят к олигосахаридам. В их составе находится две молекулы моносахарида. Именно на них делится дисахарид при гидролизе.
  3. Олигосахариды . В составе этого соединения находится от 2 до 10 молекул моносахаридов.
  4. Полисахариды . Эти соединения являются самой крупной разновидностью. В их состав входит больше 10 молекул моносахаридов.

У каждого вида углеводов есть свои особенности. Нужно рассмотреть их, чтобы понять, как каждый из них влияет на человеческий организм и в чем его польза.

Эти соединения являются самой простой формой углеводов. В их составе находится одна молекула, поэтому в ходе гидролиза не происходит их деление на мелкие блоки. При объединении моносахаридов формируются дисахариды, олигосахариды и полисахариды.

Они отличаются твердым агрегатным состоянием и сладким вкусом. У них есть способность растворяться в воде. Также они могут растворяться в спиртах (реакция слабее, чем с водой). Моносахариды почти не реагируют на смешение с эфирами.

Чаще всего упоминают природные моносахариды. Некоторые из них люди потребляют вместе с продуктами питания. К ним относят глюкозу, фруктозу и галактозу.

  • шоколад;
  • фрукты;
  • некоторые виды вина;
  • сиропы и пр.

Основной функцией углеводов такого типа является энергетическая. Нельзя сказать, что организм не может без них обойтись, но у них есть свойства, важные для полноценной работы организма, например, участие в обменных процессах.

Моносахариды организм усваивает быстрее всего, что происходит в ЖКТ. Процесс усвоения сложных углеводов, в отличие от простых соединений, не так прост. Сначала сложные соединения должны разделиться до моносахаридов, лишь после этого они усваиваются.

Это один из распространенных видов моносахаридов. Он представляет собой белое кристаллическое вещество, которое формируется естественным путем – в ходе фотосинтеза либо при гидролизе. Формула соединения — С6Н12О6. Вещество хорошо растворимо в воде, обладает сладким вкусом.

Глюкоза обеспечивает клетки мышечной и мозговой тканей энергией. При попадании в организм вещество усваивается, попадает в кровь и распространяется по всему телу. Там происходит ее окисление с высвобождением энергии. Это основной источник энергетической подпитки для мозга.

При нехватке глюкозы в организме развивается гипогликемия, которая в первую очередь отражается на функционировании мозговых структур. Однако чрезмерное ее содержание в крови тоже опасно, поскольку ведет к развитию сахарного диабета. Также при употреблении большого количества глюкозы начинает увеличиваться масса тела.

Фруктоза

Она относится к числу моносахаридов и очень похожа на глюкозу. Отличается более медленными темпами усвоения. Это объясняется тем, что для усвоения необходимо, чтобы фруктоза сначала преобразовалась в глюкозу.

Поэтому данное соединение считается неопасным для диабетиков, поскольку его потребление не ведет к резкому изменению количества сахара в крови. Тем не менее при таком диагнозе осторожность все же необходима.

У фруктозы есть способность к быстрому преобразованию в жирные кислоты, что становится причиной развития ожирения. Также из-за этого соединения снижается чувствительность к инсулину, что вызывает диабет 2 типа.

Это вещество можно получить из ягод и фруктов, а еще – из меда. Обычно оно там находится в сочетании с глюкозой. Соединению тоже присущ белый цвет. Вкус сладкий, причем эта особенность проявляется интенсивнее, чем в случае с глюкозой.

Другие соединения

Существуют и другие моносахаридные соединения. Они могут быть природными и полуискусственными.

К природным относится галактоза. Она тоже содержится в пищевых продуктах, но не встречается в чистом виде. Галактоза является результатом гидролиза лактозы. Основным ее источником называют молоко.

Другими природными моносахаридами являются рибоза, дезоксирибоза и манноза.

Также есть разновидности таких углеводов, для получения которых используются промышленные технологии.

Эти вещества тоже находятся в продуктах питания и попадают в человеческий организм:

  • рамноза;
  • эритрулоза;
  • рибулоза;
  • D-ксилоза;
  • L-аллоза;
  • D-сорбоза и пр.

Каждое из этих соединений отличается своими особенностями и функциями.

Дисахариды и их применение

Следующий тип углеводных соединений – дисахариды. Они считаются сложными веществами. В результате гидролиза из них образуется две молекулы моносахаридов.

Этот тип углеводов отличается следующими особенностями:

  • твердость;
  • растворимость в воде;
  • слабая растворимость в концентрированных спиртах;
  • сладкий вкус;
  • цвет – от белого до коричневого.

Основные химические свойства дисахаридов заключаются в реакциях гидролиза (происходит разрыв гликозидных связей и образование моносахаридов) и конденсации (формируются полисахариды).

Встречается 2 типа таких соединений:

  1. Восстанавливающие . Их особенностью является наличие свободной полуацетальной гидроксильной группы. За счет нее у таких веществ присутствуют восстановительные свойства. К данной группе углеводов относятся целлобиоза, мальтоза и лактоза.
  2. Невосстанавливающие . У этих соединений нет возможности к восстановлению, поскольку у них отсутствует полуацетальная гидроксильная группа. Наиболее известными веществами этого типа являются сахароза и трегалоза.

Эти соединения широко распространены в природе. Они могут встречаться как в свободном виде, так и в составе других соединений. Дисахариды являются источником энергии, поскольку при гидролизе из них образуется глюкоза.

Лактоза очень важна для детей, поскольку является основным из компонентов детского питания. Еще одной функцией углеводов этого типа является структурная, поскольку они входят в состав целлюлозы, которая нужна для формирования растительных клеток.

Характеристика и особенности полисахаридов

Еще одной разновидностью углеводов являются полисахариды. Это наиболее сложный тип соединений. Состоят они из большого количества моносахаридов (основной их компонент — глюкоза). В ЖКТ полисахариды не усваиваются – предварительно осуществляется их расщепление.

Особенности этих веществ таковы:

  • нерастворимость (либо слабая растворимость) в воде;
  • цвет желтоватый (или окраска отсутствует);
  • у них нет запаха;
  • почти все они безвкусны (некоторые имеют сладковатый вкус).

К химическим свойствам этих веществ относится гидролиз, который осуществляется под влиянием катализаторов. Результатом реакции становится распад соединения на структурные элементы – моносахариды.

Еще одно свойство – образование производных. Полисахариды могут вступать в реакцию с кислотами.

Продукты, образующиеся в ходе этих процессов, очень разнообразны. Это ацетаты, сульфаты, сложные эфиры, фосфаты и пр.

Примеры полисахаридов:

  • крахмал;
  • целлюлоза;
  • гликоген;
  • хитин.

Образовательный видео-материал о функциях и классификации углеводов:

Эти вещества важны для полноценного функционирования организма целиком и клеток по отдельности. Они снабжают организм энергией, участвуют в образовании клеток, оберегают внутренние органы от повреждений и неблагоприятного воздействия. Также они играют роль запасных веществ, которые нужны животным и растениям на случай сложного периода.

Вспомните: качественную реакцию на глицерол (§ 32).

Понятие об углеводах и их классификация

В природе большое значение имеют углеводы (сахариды) — органические соединения с общей формулой Cn(H2O)m (m, n > 3).. Название этого класса соединений происходит от их свойства разлагаться на углерод и воду при нагревании или под действием концентрированной сульфатной кислоты, что также отображено в их общей формуле (рис. 36.1).

Рис. 36.1. Под действием концентрированной сульфатной кислоты углеводы разлагаются на углерод и воду

Углеводы делятся на простые (моносахариды) и сложные (дисахариды и полисахариды) (схема 6). Принципиально они отличаются тем, что сложные углеводы при определенных условиях гидролизуются до простых (разлагаются), а простые уже гидролизоваться не могут. Молекулы дисахаридов состоят из двух, а полисахаридов — из большого количества остатков молекул моносахаридов.

Схема 6. Классификация углеводов

Глюкоза C 6 H 12 O 6 — самый распространенный углевод в живой природе, именно она является одним из продуктов процесса фотосинтеза, в результате которого растения накапливают энергию Солнца.

Глюкоза — бесцветное кристаллическое вещество без запаха, плотность — 1,54 г/см 3 , температура плавления — 146 °С. При нагревании выше этой температуры вещество разлагается, не доходя до точки кипения. Глюкоза сладкая на вкус, но в полтора раза менее сладкая, чем сахароза. Хорошо растворяется в воде: в 100 г воды при 0 °С растворяется 32 г глюкозы, а при 25 °С — 82 г, плохо растворяется в органических растворителях. Ее растворы не проводят электрический ток (глюкоза — неэлектролит).

Молекула глюкозы содержит несколько групп -OH, как глицерол, поэтому, подобно ему, она может взаимодействовать со свежеосажденным купрум(П) гидроксидом (рис. 36.2, а и б):

При нагревании глюкоза разлагается, как и все углеводы, на углерод и воду:

Глюкоза — один из основных продуктов обмена веществ в живых организмах. В природе она образуется в зеленых частях растений в процессе фотосинтеза, который происходит с поглощением солнечного света:

Возможна также и обратная реакция:


Этим уравнением можно описать суммарный процесс, в результате которого все животные получают энергию для своей жизнедеятельности: глюкоза попадает в наш организм вместе с пищей, кислород мы вдыхаем легкими, а продукт реакции — углекислый газ — выдыхаем. Также это уравнение описывает процесс горения и взрыва глюкозы. Поджечь глюкозу достаточно сложно, она горит только в присутствии катализатора, а взрывается при очень сильном измельчении (см. § 20).

В растениях глюкоза превращается в сложные углеводы — крахмал и целлюлозу:

Рис. 36.2. Качественная реакция на глюкозу: а — свежеосажденный купрум(И) гидроксид; б — при наличии глюкозы осадок исчезает, образуется соединение темно-синего цвета

Синтезировать глюкозу методами органической химии гораздо сложнее. Впервые этот синтез реализовал Эмиль Фишер.

С растительной пищей углеводы попадают в организм животных, где они являются основным источником энергии. Так, из 1 г углеводов организм получает около 17 кДж (4 ккал). Если эта энергия не расходуется полностью, организм откладывает ее «про запас», направляя на синтез жиров.

Впервые глюкозу выделили из винограда, поэтому ее также называют виноградным сахаром. В чистом виде глюкоза содержится в сладких ягодах и фруктах: она обусловливает сладость некоторых частей растений (ягод, плодов, корнеплодов и др.). Вместе с фруктозой она содержится в составе меда.

Содержание глюкозы в крови человека составляет около 0,1 %, отклонение этого показателя от нормы свидетельствует о заболевании сахарным диабетом. Содержание глюкозы в крови (часто этот показатель называют просто «сахар в крови») контролируют, проводя клинический анализ крови. Этот анализ можно сделать и дома с помощью специального устройства — глюкометра (рис. 36.4).

Немецкий химик-органик, лауреат Нобелевской премии по химии 1902 года. Высшее образование получил в университетах Бонна и Страсбурга. В 22 года, после защиты диссертации, стал преподавателем Страсбургского университета. Фишер впервые определил строение некоторых органических веществ: кофеина, пурина, мочевой кислоты, глюкозы и фруктозы. Открыл методы их синтеза. Установил особенности реакций с участием ферментов, предложил классификацию белков. За исследования и синтез сахаридов и производных пурина получил Нобелевскую премию. В его честь Немецкое химическое общество учредило медаль Эмиля Фишера.

В промышленности глюкозу добывают гидролизом крахмала или целлюлозы. Но чистая глюкоза не имеет широкого применения. Такую глюкозу используют в различных биологических и биохимических исследованиях. В медицине ее используют для проведения глюкозотолерантного теста — исследования, позволяющего диагностировать сахарный диабет. При некоторых заболеваниях раствор глюкозы вводят человеку внутривенно. В пищевой промышленности в качестве подсластителя ее используют мало: она дороже и менее сладкая, чем сахар.

Для глюкозы характерна реакция брожения. Под действием молочнокислых бактерий из глюкозы образуется молочная кислота:

Эта реакция происходит при скисании молока и является основой изготовления различных молочнокислых продуктов — простокваши, йогуртов, сыра, сметаны и др. Молочнокислое брожение происходит при квашении капусты и других овощей, предотвращает развитие гнилостных бактерий и способствует длительному хранению продуктов. Этот процесс также может происходить в ротовой полости, что вызывает кариес зубов.

Сахароза

Наибольшее значение среди дисахаридов имеет сахароза C 12 H 22 O 1r Это химическое название обычного сахара, получаемого из сахарной свеклы или сахарного тростника.

Сахароза — бесцветное кристаллическое вещество без запаха, плотность — 1,59 г/см 3 , температура плавления — 186 °С. Сахароза сладкая на вкус (в полтора раза слаще глюкозы). Очень хорошо растворяется в воде: в 100 г воды при 0 °С растворяется 179 г сахарозы, а при 100 °С — 487 г.

Как и глюкоза, сахароза разлагается при нагревании:

Эта реакция происходит при изготовлении карамели и выпекании пирожных и тортов, благодаря ей образуется сладкая карамелизирован-ная корочка со специфическим привкусом жженого сахара (рис. 36.5).

Как и большинство органических веществ, сахароза может гореть с образованием углекислого газа и воды:

Но если просто пытаться поджечь сахар, то он не воспламенится: для этого нужен катализатор — соли Лития. Сильно измельченный сахар может не только гореть — его взвесь в воздухе может взорваться, о чем говорилось в § 20.

Рис. 36.5. Плавление сахарозы сопровождается изменением цвета и появлением специфического запаха карамели

Сахарозу называют дисахаридом, поскольку молекула сахарозы состоит из остатков молекул двух моносахаридов — глюкозы и фруктозы, соединенных между собой.

При гидролизе сахарозы в кислой среде или под действием ферментов связь между этими остатками разрывается и образуются молекулы глюкозы и фруктозы:

Такое преобразование происходит в организмах пчел: собирая нектар с цветков, они потребляют сахарозу, которая затем гидролизуется. Поэтому мед — это смесь равных количеств глюкозы и фруктозы, конечно, с примесями других веществ (рис. 36.6).

В больших количествах сахароза содержится только в трех растениях: сахарной свекле и сахарном тростнике, используемых для промышленного производства сахара, а также в сахарном клене (из него

получают кленовый сироп). Для привлечения насекомых сахароза в небольшом количестве содержится в нектаре цветов, а также во фруктах и ягодах.

В Украине сахарная промышленность — одна из старейших и самых важных отраслей пищевой промышленности, продукция которой является ценным продуктом экспорта. Значительный вклад в развитие сахарной отрасли в Украине сделал выдающийся украинский ученый Н. А. Бунге.

Выдающийся украинский химик, профессор Киевского университета. Родился в Варшаве. Окончил Киевский университет, в котором с 1870 года преподавал техническую химию. Основные научные достижения относятся к технической химии, в частности виноделию, сахарному производству. Усовершенствовал технологию производства сахара из сахарной свеклы. Исследовал технологию образования сахарных кристаллов, условия образования, состав и преобразование свекольного студня. Организовал техническую школу по сахароварению, опубликовал 33 тома «Ежегодника свеклосахарной промышленности». Был одним из организаторов газового и электрического освещения, а также водоснабжения Киева.

Сегодня в Украине около 100 сахарных заводов с общей максимальной мощностью около 7 млн тонн в год. На этих предприятиях могут производить сахар как из свеклы (местное сырье), так и из тростника (экспортируют обычно из Кубы). Самым большим заводом является Лохвицкий сахарный комбинат (Полтавская область) с ежедневной мощностью 9300 тонн сахара. В последние годы в Украине производят около 2 млн тонн сахара ежегодно, часть которого идет на экспорт.

Коричневый сахар — это обычный тростниковый сахар, который в процессе производства недочистили от примесей. Интересно, что в его производстве меньше технологических процессов (отсутствует окончательная очистка), в производстве он дешевле, но в продаже гораздо дороже обычного белого сахара.

Слова «сахароза» и «сахар» происходят от древнеиндийского «саркара», что означает кусочки кристаллического вещества, образующиеся при сгущении сока сахарного тростника.


Входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. На долю углеводов приходится около 80% сухого вещества растений и около 20% животных. Растения синтезируют углеводы из неорганических соединений - углекислого газа и воды (СО 2 и Н 2 О) в процессе фотосинтеза:

6СО 2 + 6Н 2 О свет, хлорофилл C 6 H 12 O 6 + 6 O 2

Углеводы имеют общую формулу C n (H 2 O) m , откуда и возникло название этих природных соединений. Углеводы делятся на: моносахариды (важнейшие представители – глюкоза и фруктоза); дисахариды(сахароза); полисахариды (важнейшие представители – крахмал и целлюлоза).

Фруктоза C 6 H 12 O 6 является одним из самых распространенных углеводов фруктов, содержится в мёде. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом.

Сахароза С 12 Н 22 О 11 , образован молекулами глюкозы и фруктозы. Содержание сахарозы в сахаре 99,5%. Сахар часто называют «носителем пустых калорий», так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли. Сахароза содержится в сахарном тростнике и сахарной свекле, а также в сладостях.

Сбор сахарного тростника . Фреска во дворце Кортеса в Куэрнаваке.

Крахмал и целлюлоза


Крахмал (С 6 Н 10 О 5) n - природный полимер, он накапливается в виде зерен, главным образом в клетках семян, луковиц, клубней, а также в листьях и стеблях. Крахмал - белый порошок, нерастворимый в холодной воде. В горячей воде он набухает и образует клейстер.
Крахмал чаще всего получают из картофеля. Для этого картофель измельчают, промывают водой и перекачивают в большие сосуды, где происходит отстаивание. Полученный крахмал еще раз промывают водой, отстаивают и сушат в струе теплого воздуха.

Крахмал - основная часть важнейших продуктов питания: муки (75 - 80%), картофеля (25%), саго и др. Энергетическая ценность около 16,8 кДж/г. Он является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, то есть картофель варят, хлеб пекут. В этих условиях происходит частичный гидролиз крахмала и образуются декстрины, растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала, - (C 6 H 10 O 5) n , но его молекулы более разветвленные. Особенно много гликогена содержится в печени (до 10%). В организме гликоген является резервным веществом, которое превращается в глюкозу по мере ее расходования в клетках.
В промышленности крахмал путем гидролиза превращают в патоку и глюкозу. Для этого его нагревают с разбавленной серной кислотой, избыток которой затем нейтрализуют мелом.

(С 6 Н 10 О 5) n + n H 2 O- H 2 SO 4, t ˚ C n C 6 H 12 O 6

Образовавшийся осадок сульфата кальция отфильтровывают, раствор упаривают и выделяют глюкозу. Если гидролиз крахмала не доводить до конца, то образуется смесь декстринов с глюкозой - патока, которую применяют в кондитерской промышленности. Получаемые с помощью крахмала декстрины используются в качестве клея, для загустения красок при нанесении рисунков на ткань. Крахмал применяют для накрахмаливания белья. Под горячим утюгом происходит частичный гидролиз крахмала и превращение его в декстрины. Последние образуют на ткани плотную пленку, которая придает блеск ткани и предохраняет ее от загрязнения. Крахмал и его производные применяются при производстве бумаги, текстильных изделий, в литейном и других производствах, в фармацевтической промышленности.

Обнаружение крахмала

Целлюлоза или клетчатка (С 6 Н 10 О 5) n , один из самых распространённых природных полимеров; главная составная часть клеточных стенок растений, обусловливающая механическую прочность и эластичность растительных тканей. Так, содержание целлюлозы в волосках семян хлопчатника 97-98%, в стеблях лубяных растений (лён, рами, джут) 75-90%, в древесине 40-50%, камыше, злаках, подсолнечнике 30-40%. Обнаружена в организме некоторых низших беспозвоночных.

Целлюлоза используется человеком с очень древних времен. Сначала применяли древесину как горючий и строительный материал; затем хлопковые, льняные и другие волокна стали использовать как текстильное сырье. Первые промышленные способы химической переработки древесины возникли в связи с развитием бумажной промышленности.
Бумага – это тонкий слой волокон клетчатки, спрессованных и проклеенных для создания механической прочности, гладкой поверхности, для предотвращения растекания чернил. Первоначально для изготовления бумаги употребляли растительное сырье, из которого чисто механически можно было получить необходимые волокна, стебли риса (так называемая рисовая бумага), хлопка, использовали также изношенные ткани. Однако по мере развития книгопечатания перечисленных источников сырья стало не хватать для удовлетворения растущей потребности бумаги. Особенно много бумаги расходуется для печатания газет, причем вопрос о качестве (белизне, прочности, долговечности) для газетной бумаги значения не имеет. Зная, что древесина примерно на 50% состоит из клетчатки, к бумажной массе стали добавлять размолотую древесину. Такая бумага непрочна и быстро желтеет (особенно на свету).
Для улучшения качества древесных добавок к бумажной массе были предложены различные способы химической обработки древесины, позволяющие получить из нее более или менее чистую целлюлозу, освобожденную от сопутствующих веществ – лигнина, смол и других. Для выделения целлюлозы было предложено несколько способов, из которых мы рассмотрим сульфитный. По сульфитному способу измельченную древесину ”варят “ под давлением с гидросульфитом кальция. При этом сопутствующие вещества растворяются, и освобожденную от примесей целлюлозу отделяют фильтрованием. Отходы содержат способные к брожению моносахариды, их используют как сырье для получения этилового спирта (так называемый гидролизный спирт). Целлюлоза используется для получения вискозного, ацетатного, медно-аммиачного волокон.

Задания для закрепления

№1.

Крахмал образуется в процессе фотосинтеза, причём сначала образуется глюкоза, а из неё крахмал:

CO 2 -> C 6 H 12 O 6 -> (C 6 H 10 O 5) n

nC 6 H 12 O 6 - > (C 6 H 10 O 5) n + nH 2 O

Решите задачу:
Вычислите массу крахмала, который образуется в процессе фотосинтеза? Если известно, что в процессе фотосинтеза участвуют 10 кг воды и 20 л углекислого газа (н.у.).

№2. При взаимодействии сахарозы с водой образуется смесь глюкозы и сахарозы.

Решите задачу:
Вычислите массу раствора сахарозы (массовая доля сахарозы 20%), который подвергли гидролизу (взаимодействию с водой), если при этом выделилось 7,2 г глюкозы.

№3. Заполните таблицу


ВАЖНЕЙШИЕ УГЛЕВОДЫ

МОНОСАХАРИДЫ

ДИСАХАРИДЫ

ПОЛИСАХАРИДЫ

НАЗВАНИЯ ПРЕДСТАВИТЕЛЕЙ





ХИМИЧЕСКАЯ ФОРМУЛА





НАХОЖДЕНИЕ

В

ПРИРОДЕ





ПРИМЕНЕНИЕ




Углеводы являются главным источником энергии для организма, и около 60% этой энергии организм принимает в виде углеводов, а оставшуюся часть, в виде белков и жиров. При этом углеводы находятся в основном в продуктах растительного происхождения. И все же что такое углеводы .

Углеводы пищевых продуктов подразделяются на простые углеводы, это:

  • моносахариды (фруктоза, глюкоза, галактоза),
  • дисахариды (лактоза, сахароза).

Кроме того в их число входят и сложные углеводы , а это полисахариды, включающие гликоген, крахмал, клетчатка и пектиновые вещества.

Простые углеводы легко растворимы в воде, они усваиваются довольно быстро. Их легко распознать по явному сладкому вкусу, они и относятся к сахарам.

Углевод глюкоза

Самый распространенный моносахарид, это глюкоза. Она входит в состав многих плодов и ягод, но при этом производится и в организме а следствие расщепления крахмала пищи и дисахаридов. Глюкоза лучше всего применима в организме для образования гликогена, ей питаются ткани мозга, работающие мышцы, она поддерживает нужный уровень сахара в крови и создает запас гликогена печени. , как источник энергии.

Польза фруктозы

Фруктоза имеет те же свойства, что и глюкоза, но она несколько медленнее усваивается в кишечнике, а, поступая в кровь, сравнительно быстро покидает кровяное русло. Фруктоза в ощутимом количестве (до 80%) задерживается в печени и не производит перенасыщения крови сахаром. В печени фруктоза легче превращается в гликоген, ели сравнивать ее с глюкозой. , нежели сахароза и она более сладкая. Это ее свойство применяется для уменьшения ее количества при достижении нужного порядка сладости продуктов, что позволяет уменьшить общее потребление сахара. Это важно при назначении пищевых рационов уменьшенной калорийности. Фруктоза, в основном, содержится во фруктах, ягодах и сладких овощах.

Большим пищевым источником глюкозы и фруктозы является мед, там 36.2% глюкозы и 37.1%фруктозы. В арбузах весь сахар — фруктоза, ее там 8%. В семечковых, также фруктоза, но в косточковых культурах, к числу которых относятся персики, абрикосы, сливы — глюкоза.

Простые углеводы галактоза и сахароза

Галактоза — это результат расщепления лактозы — основного углевода молок а и в свободном виде в пищевых продуктах она не встречается.

Из дисахаридов в пище человека, в основном присутствует сахароза, распадающаяся при гидролизе на глюкозу и фруктозу.

Сахароза — это весьма важная продукция, получаемая из тростникового и свекловичного сахара. В сахаре-песке сахарозы содержится до 99.75%. Натуральные поставщики сахарозы, это бахчевые культуры, а также некоторые овощи и фрукты. Попав в организм, сахароза без затруднений разлагается на моносахариды. Однако это происходит, когда мы потребляем сырой свекольный, либо тростниковый сок. Обычный сахар усваивается намного сложнее.

Молочный сахар — лактоза

Молочный сахар — лактоза — это основной углевод молочных продуктов. Ее очень велика в раннем детском возрасте, при этом молоко — . Если фермент расщепляющей лактозу до глюкозы и галактозы уменьшается, либо отсутствует, в ЖКТ наблюдается непереносимость молока.

Сложные углеводы — полисахариды, обладают усложненным строением молекулы и слабой растворимостью в воде. Это гликоген, крахмал, пектиновые вещества и клетчатка.

Углевод Мальтоза

Солодовый сахар — Мальтоза является промежуточным веществом, возникающим при расщеплении крахмала и гликогена в ЖКТ. В свободном виде ее можно определить в меде, пиве, солоде, патоке и проросшем зерне.

Важнейшим поставщиком углеводов является крахмал . Крахмал сырых растений поступательно распадается в пищеварительном тракте организма человека, а распад начинается еще во рту. Слюна рта начинает превращать т его в мальтозу. Именно поэтому тщательное пережевывание пищи и обработка ее слюной весьма важны.

Следует всегда применять продукты, в которых содержится естественная глюкоза, фруктоза и сахароза. Больше всего сахара в овощах, фруктах и сухофруктах, но кроме того, он есть и в проросшем зерне.



Новое на сайте

>

Самое популярное