Домой Гинекология Что такое атом краткое определение. Из чего состоит атом любого вещества

Что такое атом краткое определение. Из чего состоит атом любого вещества

Атом представляет собой наименьшую химически неделимую часть химического элемента, которая является носителем его свойств. В состав атома входят электроны и атомное ядро, которое в свою очередь состоит из незаряженных нейтронов, а также положительно заряженных протонов. Если количество электронов и протонов совпадает, то атом является электрически нейтральным. В обратном случае он имеет либо отрицательный, либо положительный заряд и в таком случае его называют ионом.

Атомы классифицируются по числу нейтронов и протонов в ядре: число нейтронов определяет его принадлежность к какому-либо изотопу химическому элементу, число протонов - непосредственно к этому элементу. Атомы разных видов в различных количествах, которые при этом связаны некоторыми межатомными связями, формируют молекулы.

Понятие об атоме впервые было сформулировано древнегреческими и древнеиндийскими философами. В XVII и XVIII столетиях химики смогли подтвердить данную гипотезу о том, что некоторые из веществ не могут подвергаться последующему расщеплению на более мелкие элементы при помощи специальных химических методов, экспериментально. Но в конце XIX и начале XX веков физики открыли субатомные частицы, после чего ясным стал то факт, что атом на самом деле не представляет собой “неделимую частицу”. В 1860 году в немецком городе Карлсруэ состоялся международный съезд химиков, на котором был принят ряд решений об определении понятий атом и молекулы. Вследствие этого атом это самая маленькая частица химического элемента, которая входит в состав сложных и простых веществ.

Модели атомов

Модель атома Томсона. Он предложил рассматривать атом в качестве некоторого положительно заряженного тела, внутри которого заключены электроны. Данную гипотезу окончательно опроверг знаменитый ученый Резерфорд после проведения его знаменитого опыта, на котором он рассевал альфа-частицы.

Кусочки материи. Древнегреческий ученый Демокрит считал, что свойства какого-либо вещества могут быть определены его массой, формой и подобными характеристиками атомов, из которых оно состоит. Например, огонь имеет острые атомы, вследствие чего он можно обжигать, а у тел твердых они шероховаты, из-за чего они крепко сцепляются между собой, у воды они гладкие, а поэтому она может течь. Демокрти также считал, что человеческая душа состоит из атомов.

Ранняя планетарная модель атома Нагаоки. Физики из Японии Хантаро Нагаока в 1904 году предложил такую модель атома, которая была построена по прямой аналогии с Сатурном. В данной модели вокруг небольшого положительного ядра вращались электроны по орбитам и они были объединены в кольца. Но данная модель была ошибочной.

Планетарная модель атома Бора-Резерфорда. Эрнест Резерфорд в 1911 году провел несколько экспериментов, после чего он пришёл к такому выводу, что атом является неким подобием планетной системы, где электроны передвигаются по орбитам вокруг тяжёлого положительно заряженного ядра, которое находится в центре атома. Но подобное описание противоречило классической электродинамики. Согласно последней, электрон во время движения с центростремительным ускорением обязан излучать какие-то электромагнитные волны, вследствие чего терять некоторую энергию. Его расчеты указывали на то, что время, которое необходимо электрону для падения на ядро в таком атоме является абсолютно ничтожным.

Нильсу Бору для того, чтобы объяснить стабильность атомов, пришлось ввести ряд специальных постулатов, которые были сведены к тому, что электрон атом, когда он находится в некоторых энергетических состояниях, энергию не излучает (“модель атома Бора-Резерфорда”). Боровские постулаты показали то, что для описания свойств атома и его определения классическая механика является неприменимой. Последующее изучение атомного излучения повлекло за собой создание такого раздела физики, как квантовая механика, что дало возможность объяснить огромное количество наблюдаемых фактов.

Квантово-механическая модель атома

Современная модель атома представляет собой развитие планетарной модели. В ядро атома входят не имеющие заряда нейтроны и положительно заряженные протоны, а оно окружено электронами, которые имеют отрицательный заряд. Но представления квантовой механики не дают возможности утверждать, что электроны передвигаются вокруг ядра по хоть как-нибудь определённым траекториям.
Химические свойства атома описываются квантовой механикой и определяются посредствам конфигурации их электронной оболочки. Местоположение атома в таблице периодических химических элементов Менделеева определяется исходя их электрического заряда его ядра, т.е. числа протонов, а число нейтронов не оказывает принципиального влияния на химические свойства. В ядре сосредоточена основная масса атома. Масса атом измеряется в специальных атомных единицах массы, равных.

Свойства атома

Любые два атома, которые имеют одинаковое количество протонов, относятся к одному и тому же химическому элементу. Атомы с одинаковым числом протонов, но различным числом нейтронов называются изотопами этого элемента. К примеру, водородные атому содержат в себе один протон, но есть изотопы, которые не содержат нейтронов или один нейтрон (дейтерий) либо два нейтрона (тритий). Начиная с атома водорода, у которого один протон и заканчивая атомом унуноктия, в котором содержится 118 протонов, химические элементы составляют собой беспрерывный натуральный ряд по количеству протонов в ядре. С 83-го номера периодической системы начинаются радиоактивные изотопы элементов.

Массу покоя атома выражается в атомных единицах массы (дальтоне). Масса атома приблизительно равняется произведению атомной единицы массы на массовое число. Наиболее тяжелым изотопом является свинец-208, масса которого составляет 207,976 а. е. м.
Внешняя электронная атомная оболочка в том случае, если она заполнена не полностью, имеет название валентной оболочки, а ее электроны называются валентными.

ОПРЕДЕЛЕНИЕ

Атом – наименьшая химическая частица.

Многообразие химических соединений обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества. Способность же атома вступать в химические соединения, его химические и физические свойства определяются структурой атома. В связи с этим для химии первостепенное значение имеет внутреннее строение атома и в первую очередь структура его электронной оболочки.

Модели строения атома

В начале XIX века Д. Дальтон возродил атомистическую теорию, опираясь на известные к тому времени основополагающие законы химии (постоянства состава, кратных отношений и эквивалентов). Были проведены первые эксперименты по изучению строения вещества. Однако, несмотря на сделанные открытия (атомы одного и того же элементы обладают одними и теми же свойствами, а атомы других элементов – иными свойствами, введено понятие атомной массы), атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома (фотоэффект, катодные и рентгеновские лучи, радиоактивность) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой.

Эти открытия дали толчок к созданию первых моделей строения атома. Одна из перых моделей была предложена Дж. Томсоном (1904) (рис. 1): атом представлялся как «море положительного электричества» с колеблющимися в нем электронами.

После опытов с α-частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома (рис. 1), похожую на строение солнечной системы. Согласно планеетарной модели, в центре атома находится очень маленькое ядро с зарядом Z е, размеры которого приблизительно в 1000000 раз меньше размеров самого атома. Ядро заключает в себе практически всю массу атома и имеет положительный заряд. Вокруг ядра по орбитам движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома составляет 10 -8 см, в то время, как диаметр ядра много меньше -10 -12 см.

Рис. 1 Модели строения атома по Томсону и Резерфорду

Опыты по изучению атомных спектров показали несовершенство планетарной модели строения атома, поскольку эта модель противоречит линейчатой структуре атомных спектров. На основании модели Резерфорда, учении Энштейна о световых квантах и квантовой теории излучения планка Нильс Бор (1913) сформулировал постулаты , в которых заключается теория строения атома (рис. 2): электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным орбитам (стационарным), двигаясь по такой орбите он не излучает электромагнитной энергии, излучение (поглощение или испускание кванта электромагнитной энергии) происходит при переходе (скачкообразном) электрона с одной орбиты на другую.

Рис. 2. Модель строения атома по Н. Бору

Накопленный экспериментальный материал, характеризующий строение атома, показал, что свойства электронов, а также других микрообъектов не могут быть описаны на основе представлений классической механики. Микрочастицы подчиняются законам квантовой механики, которая стала основой для создания современной модели строения атома .

Главные тезисы квантовой механики:

— энергия испускается и поглощается телами отдельными порциями – квантами, следовательно, энергия частиц изменяется скачкообразно;

— электроны и другие микрочастицы имеют двойственную природу – проявляет свойства и частицы, и волны (корпускулярно-волновой дуализм);

— квантовая механика отрицает наличие определенных орбит у микрочастиц (для движущихся электронов невозможно определить точное положение, т.к. они движутся в пространстве вблизи ядра, можно лишь определить вероятность нахождения электрона в различных частях пространства).

Пространство вблизи ядра, в котором достаточно велика вероятность нахождения электрона (90%), называется орбиталью .

Квантовые числа. Принцип Паули. Правила Клечковского

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел .

n – главное квантовое число. Характеризует общий запас энергии электрона в атоме и номер энергетического уровня. nприобретает целочисленные значения от 1 до ∞. Наименьшей энергией электрон обладает при n=1; с увеличением n – энергия . Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия минимальна, называется основным. Состояния с более высокими значениями называются возбужденными. Энергетические уровни обозначаются арабскими цифрами в соответствии со значением n. Электроны можно расположить по семи уровням, поэтому, реально n существует от 1 до 7. Главное квантовое число определяет размеры электронного облака и определяет средний радиус нахождения электрона в атоме.

l – орбитальное квантовое число. Характеризует запас энергии электронов в подуровне и форму орбитали (табл. 1). Принимает целочисленные значения от 0 до n-1. l зависит от n. Если n=1,то l=0, что говорит о том, что на 1-м уровне 1-н подуровень.


m e – магнитное квантовое число. Характеризует ориентацию орбитали в пространстве. Принимает целочисленные значения от –l через 0 до +l. Так, при l=1 (p-орбиталь), m e принимает значения -1, 0, 1 и ориентация орбитали может быть различной (рис. 3).

Рис. 3. Одна из возможных ориентаций в пространстве p-орбитали

s – спиновое квантовое число. Характеризует собственное вращение электрона вокруг оси. Принимает значения -1/2(↓) и +1/2 (). Два электрона на одной орбитали обладают антипараллельными спинами.

Состояние электронов в атомах определяется принципом Паули : в атоме не может быть двух электронов с одинаковым набором всех квантовых чисел. Последовательность заполнения орбиталей электронами определяется правилами Клечковского : орбитали заполняются электронами в порядке возрастания суммы (n+l) для этих орбиталей, если сумма (n+l) одинакова, то первой заполняется орбиталь с меньшим значением n.

Однако, в атоме обычно присутствуют не один, а несколько электронов и, чтобы учесть их взаимодействие друг с другом используют понятие эффективного заряда ядра – на электрон внешнего уровня действует заряд, меньший заряда ядра, вследствие чего внутренние электроны экранируют внешние.

Основные характеристики атома: атомный радиус (ковалентный, металлический, ван-дер-ваальсов, ионный), сродство к электрону, потенциал ионизации, магнитный момент.

Электронные формулы атомов

Все электроны атома образуют его электронную оболочку. Строение электронной оболочки изображается электронной формулой , которая показывает распределение электронов по энергетическим уровням и подуровням. Число электронов на подуровне обозначается цифрой, которая записывается справа вверху от буквы, показывающей подуровень. Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электронная формула гелия, содержащего два электрона записывается так: 1s 2 .

У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Связь электронного строения атома с положением элемента в Периодической системе

Электронную формулу элемента определяют по его положению в Периодической системе Д.И. Менделеева. Так, номер периода соответствует У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

У атомов некоторых элементов, наблюдается явление «проскока» электрона с внешнего энергетического уровня на предпоследний. Проскок электрона происходит у атомов меди, хрома, палладия и некоторых других элементов. Например:

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Номер группы для элементов главных подгрупп равен числу электронов на внешнем энергетическом уровне, такие электроны называют валентными (они участвуют в образовании химической связи). Валентными электронами у элементов побочных подгрупп могут быть электроны внешнего энергетического уровня и d-подуровня предпоследнего уровня. Номер группы элементов побочных подгрупп III-VII групп, а также у Fe, Ru, Os соответствует общему числу электронов на s-подуровне внешнего энергетического уровня и d-подуровне предпоследнего уровня

Задания:

Изобразите электронные формулы атомов фосфора, рубидия и циркония. Укажите валентные электроны.

Ответ:

15 P 1s 2 2s 2 2p 6 3s 2 3p 3 Валентные электроны 3s 2 3p 3

37 Rb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1 Валентные электроны 5s 1

40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 Валентные электроны 4d 2 5s 2

АТОМ (от греч. atomos - неделимый), наименьшая частица хим. элемента, его св-в. Каждому хим. элементу соответствует совокупность определенных атомов. Связываясь друг с другом, атомы одного или разных элементов образуют более сложные частицы, напр. . Все многообразие хим. в-в (твердых, жидких и газообразных) обусловлено разл. сочетаниями атомов между собой. Атомы могут существовать и в своб. состоянии (в , ). Св-ва атома, в т. ч. важнейшая для способность атома образовывать хим. соед., определяются особенностями его строения.

Общая характеристика строения атома. Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных . Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра атома (линейные размеры атома ~ 10~ 8 см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значит. степени условны и зависят от способов их определения (см. ). Ядро атома состоит из Z и N , удерживаемых ядерными силами (см. ). Положит. заряд и отрицат. заряд одинаковы по абс. величине и равны е= 1,60*10 -19 Кл; не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика атома, обусловливающая его принадлежность к определенному хим. элементу. элемента в периодич. системе Менделеева () равен числу в ядре.

В электрически нейтральном атоме число в облаке равно числу в ядре. Однако при определенных условиях он может терять или присоединять , превращаясь соотв. в положит. или отрицат. , напр. Li + , Li 2+ или О - , О 2- . Говоря об атомах определенного элемента, подразумевают как нейтральные атомы, так и этого элемента.

Масса атома определяется массой его ядра; масса (9,109*10 -28 г) примерно в 1840 раз меньше массы или ( 1,67*10 -24 г), поэтому вклад в массу атома незначителен. Общее число и А = Z + N наз. . и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. 23 11 Na. Вид атомов одного элемента с определенным значением N наз. . Атомы одного и того же элемента с одинаковыми Z и разными N наз. этого элемента. Различие масс мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия ()наблюдаются у вследствие большой относит. разницы в массах обычного атома (), D и Т. Точные значения масс атомов определяют методами .

Стационарное состояние одноэлектронного атома однозначно характеризуется четырьмя квантовыми числами: п, l, m l и m s . Энергия атома зависит только от п, и уровню с заданным п соответствует ряд состояний, отличающихся значениями l, m l , m s . Состояния с заданными п и l принято обозначать как 1s, 2s, 2p, 3s и т.д., где цифры указывают значения л, а буквы s, p, d, f и дальше по латинскому соответствуют значениям д = 0, 1, 2, 3, ... Число разл. состояний с заданными п и д равно 2(2l+ 1) числу комбинаций значений m l и m s . Общее число разл. состояний с заданным п равно , т. е. уровням со значениями п = 1, 2, 3, ... соответствуют 2, 8, 18, ..., 2n 2 разл. . Уровень, к-рому соответствует лишь одно (одна волновая ф-ция), наз. невырожденным. Если уровню соответствует два или более , он наз. вырожденным (см. ). В атоме уровни энергии вырождены по значениям l и m l ; вырождение по m s имеет место лишь приближенно, если не учитывать взаимод. спинового магн. момента с магн. полем, обусловленным орбитальным движением в электрич. поле ядра (см. ). Это - релятивистский эффект, малый в сравнении с кулоновским взаимод., однако он принципиально существен, т.к. приводит к дополнит. расщеплению уровней энергии, что проявляется в в виде т. наз. тонкой структуры.

При заданных n, l и m l квадрат модуля волновой ф-ции определяет для электронного облака в атоме среднее распределение . Разл. атома существенно отличаются друг от друга распределением (рис. 2). Так, при l = 0 (s-состояния) отлична от нуля в центре атома и не зависит от направления (т.е. сферически симметрична), для остальных состояний она равна нулю в центре атома и зависит от направления.

Рис. 2. Форма электронных облаков для различных состояний атома .

В многоэлектронных атомах вследствие взаимного электростатич. отталкивания существенно уменьшается их связи с ядром. Напр., энергия отрыва от Не + равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых атомов связь внеш. с ядром еще слабее. Важную роль в многоэлектронных атомах играет специфич. , связанное с неразличимостью , и тот факт, что подчиняются , согласно к-рому в каждом , характеризуемом четырьмя квантовыми числами, не может находиться более одного . Для многоэлектронного атома имеет смысл говорить только о всего атома в целом. Однако приближенно, в т. наз. одноэлектронном приближении, можно рассматривать отдельных и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей ф-цией) совокупностью четырех квантовых чисел n, l, m l и m s . Совокупность 2(2l+ 1) в состоянии с данными п и l образует электронную оболочку (наз. также подуровнем, подоболочкой); если все эти состояния заняты , оболочка наз. заполненной (замкнутой). Совокупность 2п 2 состояний с одним и тем же n, но разными l образует электронный слой (наз. также уровнем, оболочкой). Для п= 1, 2, 3, 4, ... слои обозначают символами К, L, M, N, ... Число в оболочках и слоях при полном заполнении приведены в таблице:

Между стационарными состояниями в атоме возможны . При переходе с более высокого уровня энергии Е i на более низкий E k атом отдает энергию (E i - E k), при обратном переходе получает ее. При излучательных переходах атом испускает или поглощает квант электромагн. излучения (фотон). Возможны и , когда атом отдает или получает энергию при взаимод. с др. частицами, с к-рыми он сталкивается (напр., в ) или длительно связан (в. Хим. св-ва определяются строением внеш. электронных оболочек атомов, в к-рых связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек атомов хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают в замкнутой оболочке. Поэтому атомы с одним или неск. в частично заполненной внеш. оболочке отдают их в хим. р-циях. Атомы, к-рым не хватает одного или неск. для образования замкнутой внеш. оболочки, обычно принимают их. Атомы , обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек атомов, к-рых связаны гораздо прочнее (энергия связи 10 2 -10 4 эВ), проявляется лишь при взаимод. атомов с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц ( , ) на атомах (см. ). Масса атома определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра атома зависят нек-рые тонкие физ. эффекты ( зависит от частоты излучения, что обусловливает зависимость от нее показателя преломления в-ва, связанного с атома. Тесная связь оптич. св-в атома с его электрич. св-вами особенно ярко проявляется в оптич. спектрах.

===
Исп. литература для статьи «АТОМ» : Карапетьянц М. X., Дракин С.И., Строение , 3 изд., М., 1978; Шло лье кий Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984. М. А. Ельяшевич.

Страница «АТОМ» подготовлена по материалам .

Атом, как обособленная единица, построен из ядра, заряженного положительным и из электронов, несущих отрицательных заряд. Вот из чего состоит атом.

В его центре располагается ядро, которое образуют ещё более мелкие частицы - протоны и нейтроны. Относительно радиуса всего атома радиус ядра примерно в сто тысяч раз меньше. Плотность ядра чрезвычайно высока.

Стабильная ядра с положительным зарядом - это протон. Нейтрон - это элементарная частица, не обладающая электрическим зарядом, с массой, приблизительно равной массе протона. Масса ядра складывается, соответственно, из общей массы протонов и нейтронов, совокупность которых в составе ядра сокращённо называют нуклоном. Эти нуклоны в ядре связаны уникальными Число протонов в атоме равно определённому в атомной оболочке и, как следствие, составляет основу для химических свойств атома.

Электрон как мельчайшая частица вещества несёт в себе элементарный отрицательный электрический постоянно вращаются вокруг ядра по определённым орбитам подобно вращению планет вокруг Солнца. Таким образом, на вопрос о том, из чего состоит атом, можно дать следующий ответ: из элементарных частиц с положительными, отрицательными и нейтральными зарядами.

Существует следующая закономерность: размер атома зависит от размера его электронной оболочки, или высоты орбиты. В рамках ответа на вопрос о том, из чего состоит атом, можно уточнить, что электроны способны как добавляться, так и удаляться из атома. Это обстоятельство превращает атом в положительный ион или, соответственно, в отрицательный. А сам процесс трансформации элементарной химической частицы называют ионизацией.

В сконцентрирован большой запас энергии, которая способна высвобождаться во время ядерных реакций. Такие реакции, как правило, возникают при столкновении атомных ядер с другими элементарными частицами или с ядрами иных химических элементов. В результате способны образовываться новые ядра. Например, реакция способна осуществить переход нейтрона в протон, при этом из ядра атома удаляется бета-частица, иначе - электрон.

Качественный переход в центре атома протона в нейтрон способен осуществляться двумя вариантами. В первом случае из ядра выходит частица с массой, которая равна массе электрона, однако с положительным зарядом, называющаяся позитроном (так называемый позитронный распад). Второй вариант предполагает захват ядром атома одного из ближайшей к нему электронов с К-орбиты (К-захват). Так химические элементы превращаются из одного в другой благодаря тому, из чего состоит атом.

Бывают такие состояния образовавшегося ядра, когда оно обладает избытком энергии, иначе говоря, оно находится в возбуждённом состоянии. В случае перехода в естественное состояние ядро выделяет чрезмерную энергию в виде порции электромагнитного излучения с очень малой длиной волны - так образуется гамма-излучение. Та энергия, что выделяется при осуществляемых ядерных реакциях, находит практическое применение в ряде отраслей науки и промышленности.

Атом (от греческого atomos - неделимый) - одноядерная, неделимая химическим путем частица химического элемента, носитель свойств вещества. Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов (заряд протона соответствует +1 в условных единицах) и N нейтронов, которые не несут на себе заряда (количество нейтронов может быть равно или чуть больше или меньше, чем протонов). Протоны и нейтроны называют нуклонами, то есть частицами ядра. Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны (соответственно 1 и 1 а.е.м.). Масса атома в основном определяется массой его ядра, поскольку масса электрона примерно в 1836 раз меньше массы протона и нейтрона и в расчётах редко учитывается. Точное количество нейтронов можно узнать по разности между массой атома и количеством протонов (N =A -Z ). Вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N), называется нуклидом (это могут быть как разные элементы с одинаковым общим количеством нуклонов (изобары) или нейтронов (изотоны), так и один химический элемент - одно количество протонов, но разное количество нейтронов (изомеры)).

Поскольку в ядре атома сосредоточена практически вся масса, но его размеры ничтожно малы по сравнению с общим объёмом атома, то ядро условно принимается материальной точкой, покоящейся в центре атома, а сам атом рассматривается как система электронов. При химической реакции ядро атома не затрагивается (кроме ядерных реакций), как и внутренние электронные уровни, а участвуют только электроны внешней электронной оболочки. По этой причине необходимо знать свойства электрона и правила формирования электронных оболочек атомов.

Свойства электрона

Перед изучением свойств электрона и правил формирования электронных уровней необходимо затронуть историю формирования представлений о строении атома. Мы не будем рассматривать полную историю становления атомарного строения, а остановимся лишь на самых актуальных и наиболее "верных" представлениях, способных наиболее наглядно показать как располагаются электроны в атоме. Первыми наличие атомов как элементарных составляющих вещества предположили еще древнегреческие философы (если какое-либо тело начать делить пополам, половинку ещё пополам и так далее, то этот процесс не сможет происходить до бесконечности; мы остановимся на частичке, которую уже не сможем поделить, - это и будет атом). После чего история строения атома прошла сложный путь и разные представления, такие как неделимость атома, Томсоновская модель атома и другие. Наиболее близкой оказалась модель атома, предложенная Эрнестом Резерфордом в 1911 году. Он сравнил атом с солнечной системой, где в роли солнца выступало ядро атома, а электроны двигались вокруг него подобно планетам. Размещение электронов на стационарных орбитах было очень важным шагом в понимании строения атома. Однако такая планетарная модель строения атома шла в противоречие с классической механикой. Дело в том, что при движении электрона по орбите он должен был терять потенциальную энергию и в конце концов "упасть" на ядро, и атом должен был прекратить свое существование. Такой парадокс был устранен введением постулатов Нильсом Бором . Согласно этим постулатам, электрон двигался по стационарным орбитам вокруг ядра и при нормальных условиях не поглощал и не испускал энергию. Постулаты показывают, что для описания атома законы классической механики не подходят. Такая модель атома называется моделью Бора-Резерфорда. Продолжением планетарного строения атома является квантово-механическая модель атома, согласно которой мы и будем рассматривать электрон.

Электрон является квазичастицей, проявляя корпускулярно-волновой дуализм: он одновременно является и частицей (корпускула), и волной. К свойствам частицы можно отнести массу электрона и его заряд, а к волновым свойствам - способность к дифракции и интерференции. Связь между волновыми и корпускулярными свойствами электрона отражены в уравнении де Бройля:

λ = h m v , {\displaystyle \lambda ={\frac {h}{mv}},}

где λ {\displaystyle \lambda } - длина волны, - масса частицы, - скорость частицы, - постоянная Планка = 6,63·10 -34 Дж·с .

Для электрона невозможно рассчитать траекторию его движения, можно говорить только о вероятности нахождения электрона в том или ином месте вокруг ядра. По этой причине говорят не об орбитах движения электрона вокруг ядра, а об орбиталях - пространстве вокруг ядра, в котором вероятность нахождения электрона превышает 95%. Для электрона невозможно одновременно точно измерить и координату, и скорость (принцип неопределённости Гейзенберга).

Δ x ∗ m ∗ Δ v > ℏ 2 {\displaystyle \Delta x*m*\Delta v>{\frac {\hbar }{2}}}

где Δ x {\displaystyle \Delta x} - неопределённость координаты электрона, Δ v {\displaystyle \Delta v} -погрешность измерения скорости, ħ=h/2π=1.05·10 -34 Дж·с
Чем точнее мы измеряем координату электрона, тем больше погрешность в измерении его скорости, и наоборот: чем точнее мы знаем скорость электрона, тем больше неопределённость в его координате.
Наличие волновых свойств у электрона позволяет применить к нему волновое уравнение Шредингера.

∂ 2 Ψ ∂ x 2 + ∂ 2 Ψ ∂ y 2 + ∂ 2 Ψ ∂ z 2 + 8 π 2 m h (E − V) Ψ = 0 {\displaystyle {\frac {{\partial }^{2}\Psi }{\partial x^{2}}}+{\frac {{\partial }^{2}\Psi }{\partial y^{2}}}+{\frac {{\partial }^{2}\Psi }{\partial z^{2}}}+{\frac {8{\pi ^{2}}m}{h}}\left(E-V\right)\Psi =0}

где - полная энергия электрона, потенциальная энергия электрона, физический смысл функции Ψ {\displaystyle \Psi } - квадратный корень от вероятности нахождения электрона в пространстве с координатами x , y и z (ядро считается началом координат).
Представленное уравнение написано для одноэлектронной системы. Для систем, содержащих более одного электрона, принцип описания остаётся прежним, но уравнение принимает более сложный вид. Графическим решением уравнения Шредингера является геометрия атомных орбиталей. Так, s-орбиталь имеет форму шара, p-орбиталь - форму восьмерки с "узлом" в начале координат (на ядре, где вероятность обнаружения электрона стремится к нулю).

В рамках современной квантово-механической теории электрон описывается набором квантовых чисел: n , l , m l , s и m s . Согласно принципу Паули в одном атоме не может быть двух электронов с полностью идентичным набором всех квантовых чисел.
Главное квантовое число n определяет энергетический уровень электрона, то есть на каком электронном уровне расположен данный электрон. Главное квантовое число может принимать только целочисленные значения больше 0: n =1;2;3... Максимальное значение n для конкретного атома элемента соответствует номеру периода, в котором расположен элемент в периодической таблице Д. И. Менделеева.
Орбитальное (дополнительное) квантовое число l определяет геометрию электронного облака. Может принимать целочисленные значения от 0 до n -1. Для значений дополнительного квантового числа l применяют буквенное обозначение:

значение l 0 1 2 3 4
буквенное обозначение s p d f g

S-орбиталь имеет форму шара, p-орбиталь - форму восьмерки. Остальные орбитали имеют очень сложную структуру, как, например, представленная на рисунке d-орбиталь.

Электроны по уровням и орбиталям располагаются не хаотично, а по правилу Клечковского , согласно которому заполнение электронов происходит по принципу наименьшей энергии, то есть в порядке возрастания суммы главного и орбитального квантовых чисел n +l . В случае, когда сумма для двух вариантов заполнения одинакова, первоначально заполняется наименьший энергетический уровень (например: при n =3 а l =2 и n =4 а l =1 первоначально заполняться будет уровень 3). Магнитное квантовое число m l определяет расположение орбитали в пространстве и может принимать целочисленное значение от -l до +l , включая 0. Для s-орбитали возможно только одно значение m l =0. Для p-орбитали - уже три значения -1, 0 и +1, то есть p-орбиталь может располагаться по трём осям координат x, y и z.

расположение орбиталей в зависимости от значения m l

Электрон обладает собственным моментом импульса - спином, обозначающимся квантовым числом s . Спин электрона - величина постоянная и равная 1/2. Явление спина можно условно представить как движение вокруг собственной оси. Первоначально спин электрона приравнивали к движению планеты вокруг собственной оси, однако такое сравнение ошибочно. Спин - чисто квантовое явление, не имеющее аналогов в классической механике.



Новое на сайте

>

Самое популярное