Домой Гастроэнтерология Способы построения трехмерного чертежа. Программы для черчения

Способы построения трехмерного чертежа. Программы для черчения

Построение аксонометрических проекций начинают с проведения аксонометрических осей.

Положение осей. Оси фронтальной ди-метрической проекции располагают, как показано на рис. 85, а: ось х - горизонтально, ось z - вертикально, ось у - под углом 45° к горизонтальной линии.

Угол 45° можно построить при помощи чертежного угольника с углами 45, 45 и 90°, как показано на рис. 85, б.

Положение осей изометрической проекции показано на рис. 85, г. Оси х и у располагают под углом 30° к горизонтальной линии (угол 120° между осями). Построение осей удобно проводить при помощи угольника с углами 30, 60 и 90° (рис. 85, д).

Чтобы построить оси изометрической проекции с помощью циркуля, надо провести ось z, описать из точки О дугу произвольного радиуса; не меняя раствора циркуля, из точки пересечения дуги и оси z сделать засечки на дуге, соединить полученные точки с точкой О.

При построении фронтальной диметрической проекции по осям х и z (и параллельно им) откладывают действительные размеры; по оси у (и параллельно ей) размеры сокращают в 2 раза, отсюда и название "диметрия", что по-гречески означает "двойное измерение".

При построении изометрической проекции по осям х, у, z и параллельно им откладывают действительные размеры предмета, отсюда и название "изометрия", что по-гречески означает "равные измерения".

На рис. 85, в и е показано построение аксонометрических осей на бумаге, разлинованной в клетку. В этом случае, чтобы получить угол 45°, проводят диагонали в квадратных клетках (рис. 85, в). Наклон оси в 30° (рис. 85, г) получается при соотношении длин отрезков 3: 5 (3 и 5 клеток).

Построение фронтальной диметрической и изометрической проекций . Построить фронтальную диметрическую и изометрическую проекции детали, три вида которой приведены на рис. 86.

Порядок построения проекций следующий (рис. 87):

1. Проводят оси. Строят переднюю грань детали, откладывая действительные величины высоты - вдоль оси z, длины - вдоль оси х (рис. 87, а).

2. Из вершин полученной фигуры параллельно оси v проводят ребра, уходящие вдаль. Вдоль них откладывают толщину детали: для фронтальной ди-метрической проекции - сокращенную в 2 раза; для изометрии - действительную (рис. 87, б).

3. Через полученные точки проводят прямые, параллельные ребрам передней грани (рис. 87, в).

4. Удаляют лишние линии, обводят видимый контур и наносят размеры (рис. 87, г).

Сравните левую и правую колонки на рис. 87. Что общего и в чем различие данных на них построений?

Из сопоставления этих рисунков и приведенного к ним текста можно сделать вывод о том, что порядок построения фронтальной диметрической и изометрической проекций в общем одинаков. Разница заключается в расположении осей и длине отрезков, откладываемых вдоль оси у.

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры, расположенные горизонтально.

Построение аксонометрической проекции квадрата показано на рис. 88, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у - половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.

Построение аксонометрической проекции треугольника показано на рис. 89, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/2, а по оси у - его высоту h (для фронтальной диметрической проекции половину высоты h/2). Полученные точки соединяют отрезками прямых.

Построение аксонометрической проекции правильного шестиугольника показано на рис. 90.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника. По оси у симметрично точке О откладывают отрезки s/2, равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n, полученных на оси у, проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.

Ответьте на вопросы

1. Как располагают оси фронтальной диметрической и изометрической проекций? Как их строят?

2. Какие размеры откладывают вдоль осей фронтальной диметрической и изометрической проекций и параллельно им?

3. Вдоль какой аксонометрической оси откладывают размер уходящих вдоль ребер предмета?

4. Назовите общие для фронтальной диметрической и изометрической проекций этапы построения.

Задания к § 13

Упражнение 40


Постройте аксонометрические проекции деталей, приведенных на рис. 91, а, б, в - фронтальные диметрические, для деталей на рис. 91, г, д, е - изометрические.

Размеры определите по числу клеток, считая, что сторона клетки равна 5 мм.

В ответах дано по одному примеру последовательности выполнения заданий.

Упражнение 41


Постройте в изометрической проекции правильные четырехугольную, треугольную и шестиугольную призмы. Основания призм расположены горизонтально, длина сторон основания 30 мм, высота 70 мм.

В ответах дан пример последовательности выполнения задания.

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры , расположенные горизонтально.

1. квадрата показано на рис. 1, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у - половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.

Рис. 1. Аксонометрические проекции квадрата:

2. Построение аксонометрической проекции треугольника показано на рис. 2, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/ 2, а по оси у - его высоту h (для фронтальной диметрической проекции половину высоты h/2 ). Полученные точки соединяют отрезками прямых.

Рис. 2. Аксонометрические проекции треугольника:

а - фронтальная диметрическая; б - изометрическая

3. Построение аксонометрической проекции правильного шестиугольника показано на рис. 3.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника . По оси у симметрично точке О откладывают отрезки s/2 , равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n , полученных на оси у , проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.


Рис. 3. Аксонометрические проекции правильного шестиугольника:

а - фронтальная диметрическая; б - изометрическая

4. Построение аксонометрической проекции окружности .

Фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подобных представленными на рис. 4.

Рис.4. Фронтальные диметрические проекции деталей

На рис. 5. дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями. Окружности , расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами . Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем.

Рис.5. Фронтальные диметрические проекции окружностей, вписанных в грани куба

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием .

Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 6, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 6, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 6, в).

Рис. 6. Построение фронтальной диметрической проекции детали с цилиндрическими элементами

Изометрические проекции окружностей .

Квадрат в изометрической проекции проецируется в ромб . Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 7), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Рис. 7. Изометрические проекции окружностей, вписанных в грани куба

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 8, а). Для этого через точку О проводят изометрические оси х и у, и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, b , с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал . Для этого из вершин тупых углов (точек А и В ) описывают дуги радиусом R , равным расстоянию от вершины тупого угла (точек А и В ) до точек a, b или с, d соответственно. От точки В к точкам а и b проводят прямые (рис. 8, б); пересечение этих прямых с большей диагональю ромба дает точки С и D , которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db ). Дугами этого радиуса сопрягают большие дуги овала.

Рис. 8. Построение овала в плоскости, перпендикулярной оси z.

Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 7). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 9, а), а овала 2 (см. рис. 7) - на осях х и z (рис. 9, б).


Рис. 9. Построение овала в плоскостях, перпендикулярных осям х и у

Построение изометрической проекции детали с цилиндрическим отверстием .

Если на изометрической проекции детали нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани, представленное на рисунке. 10, а.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 7.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 10, а).

2. Строят ромб , сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 10, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 10, в).

4. Проводят малые дуги (рис. 10, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 10, д).


Рис. 10. Построение изометрической проекции детали с цилиндрическим отверстием

Для выполнения изометрической проекции любой детали не­обходимо знать правила построения изометрических проекций плоских и объемных геометрических фигур.

Правила построения изометрических проекций геометриче­ских фигур. Построение любой плоской фигуры следует начи­нать с проведения осей изометрических проекций.

При построении изометрической проекции квадрата (рис. 109) из точки О по аксонометрическим осям откладывают в обе сто­роны половину длины стороны квадрата. Через полученные за­сечки проводят прямые, параллельные осям.

При построении изометрической проекции треугольника (рис. 110) по оси X от точки 0 в обе стороны откладывают отрезки, равные половине стороны треугольника. По оси У от точки О откладывают высоту треугольника. Соединяют полученные за­сечки отрезками прямых.

Рис. 109. Прямоугольная и изометрические проекции квадрата



Рис. 110. Прямоугольная и изометрические проекции треугольника

При построении изометрической проекции шестиугольника (рис. 111) из точки О по одной из осей откладывают (в обе сторо­ны) радиус описанной окружности, а по другой - H/2. Через полученные засечки проводят прямые, параллельные одной из осей, и на них откладывают длину стороны шестиугольника. Со­единяют полученные засечки отрезками прямых.


Рис. 111. Прямоугольная и изометрические проекции шестиугольника



Рис. 112. Прямоугольная и изометрические проекции круга

При построении изометрической проекции круга (рис. 112) из точки О по осям координат откладывают отрезки, равные его радиусу. Через полученные засечки проводят прямые, парал­лельные осям, получая аксонометрическую проекцию квадрата. Из вершин 1, 3 проводят дуги CD и KL радиусом 3С. Соединяют точки 2 с 4, 3 с С и 3 с D. В пересечениях прямых получаются центры а и б малых дуг, проведя которые получают овал, заме­няющий аксонометрическую проекцию круга.

Используя описанные построения, можно выполнить аксоно­метрические проекции простых геометрических тел (табл. 10).

10. Изометрические проекции простых геометрических тел



Способы построения изометрической проекции детали:

1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем:

1) построение осей изометрической проекции;

2) построение изометрической проекции формообразующей грани;

3) построение проекций остальных граней посредством изо­бражения ребер модели;


Рис. 113. Построение изометрической проекции детали, начиная от фор­мообразующей грани

4) обводка изометрической проекции (рис. 113).

  1. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 114).
  2. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 115).
  3. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 116).

Аксонометрическую проекцию детали можно выполнять с изображением (рис. 117, а) и без изображения (рис. 117, б) неви­димых частей формы.


Рис. 114. Построение изометрической проекции детали на основе последовательного удаления объемов


Рис. 115 Построение изометрической проекции детали на основе последовательного приращения объемов


Рис. 116. Использование комбинированного способа построения изометрической проекции детали


Рис. 117. Варианты изображения изометрических проекций детали: а - с изображением невидимых частей;
б - без изображения невидимых частей

Для построения аксонометрических проекций применяют способы координат, вторичных проекций, сечений, вписанных сфер, проекционной связи и др..

Способы координат.

Часто приходится, пользуясь ортогональными проекциями, строить аксонометрические изображения по координатам. При построении необходимо откладывать по осям в аксонометрии соответствующие размеры, взятые с ортогонального чертежа.

Плоские и пространственные кривые строят по координатам отдельных точек. Приступая к вычерчиванию деталей в аксонометрии, следует прежде всего решить, вдоль какой оси будет направлен тот или иной их размер. Обычно длину откладывают вдоль оси OX, ширину – вдоль оси OY и высоту – вдоль оси OZ.

Аксонометрические координаты, откладываемые параллельно соответствующим осям, равны натуральным координатам X, Y, Z, измеренными по ортогональным проекциям и умноженным на соответствующий показатель искажения (рисунок 11.28).

Рисунок 11.28

На рисунке 11.29 показано выполнение аксонометрии детали с четвертью выреза

Рисунок 11.29

Способы сечений.

По данному комплексному чертежу предмета сначала строят аксонометрические проекции фигур сечения, затем дочерчивают части изображения предмета, расположенные за секущими плоскостями. Второй способ упрощает построение, освобождает чертеж от лишних линий (рисунок 11.30).

Рисунок 11.30

При выборе вида аксонометрического изображения необходимо учитывать следующее: если тело имеет квадратную форму или отдельная часть предмета квадратная, то следует выполнять прямоугольную диметрическую проекцию этого тела, так как в прямоугольной изометрии ухудшается наглядность изображения.

Другие способы построения аксонометрических проекций подробно рассмотрены в учебнике «Строительные черчение» авторы Будасов Б.В., Каменский В.П. (Стройиздат 1995г. с изменениями).

Пересечение тел в аксонометрии. Пересечение цилиндрических поверхностей.

Для построения изометрической проекции пересекающихся цилиндров необходимо построить линию пересечения этих тел (глава 8 п.8.3;п.8.4) на комплексном чертеже (рисунок 11.31).

Рисунок 11.31

Построение прямоугольной изометрической проекции пересекающихся цилиндров начинают с построения изометрии вертикального цилиндра. Далее через точку о´ 1 параллельно оси о´х´ проводят ось горизонтального цилиндра. Положение точки о´ 1 определяется высотой h, взятой с комплексного чертежа (рисунок 11.31). Отрезок, равный h, откладывают от точки о´ вверх по оси о´z´ (рисунок 11.32). откладывая от точки о´ 1 по оси горизонтального цилиндра отрезок l, получим точку о´ – центр основания горизонтального цилиндра.



Рисунок 11.32

Изометрия линии пересечения строится по точкам при помощи трех координат, как это было показано на рисунке 2. однако в данном примере искомые точки можно построить несколько иначе.

Так, например, изометрию точек 3´ и 2´ строят следующим образом. От центра 0´ 2 (рис.11.32) вверх по прямой, параллельной оси о´z´, откладывают отрезки m и n, взятые с комплексного чертежа. Через концы этих отрезков проводят прямые, параллельные оси о´у´, до пересечения с эллипсом или овалом (основанием горизонтального цилиндра) в точках 3´ 1 и 2´ 1 . Затем из точек 3´ 1 и 2´ 1 проводят прямые, параллельные оси о´х´, и на них откладывают отрезки, равные расстоянию от основания горизонтального цилиндра до линии пересечения, взяты с фронтальной или горизонтальной проекции комплексного чертеже, например, отрезок 3´ 1 3´ = 3 1 3. Конечные точки этих отрезков будут принадлежать изометрии линий пересечений. Через эти точки проводят по лекалу кривую, выделяя ее видимы и невидимые часть.

Пересечение поверхностей призм и пирамид.

В приемах построения проекции линии пересечения двух прямых призм много общего с построением линий пересечения двух цилиндров. Если ребра двух призм взаимно перпендикулярны (рисунок 11.33) линия пересечения призм строится следующим образом.

Рисунок 11.33

В данном случае горизонтальная и профильная проекции линии пересечения совпадаю соответственно с горизонтальной проекцией пятиугольника (основание одной призмы) и с профильной проекцией части четырехугольника (основание другой призмы). Фронтальную проекцию ломанной линии пересечения строят по точкам пересечения ребер одной призмы с гранями другой.

Например, взяв горизонтальную 1 1 и профильную 1 2 проекции точки 1 1 пересечение ребра пятигранной призмы с гранью четырехгранной и пользуясь известным приемом построения, с помощью линии связи можно легко найти и фронтальную проекцию 1 2 точки 1 1 , принадлежащей линии пересечения призмы.

Изометрическая проекция линии пересечения двух призм может быть построена по координатам точек этой линии.

Рисунок 11.34

Например, изометрию двух точек 5´ и 5´ 1 , симметрично расположенных на левой грани пятигранной призмы, строят так. Принимая для удобства построений за начало координат точку о´, лежащую на верхнем основании пятигранной призмы, откладываем в лево от о´ по направлению, параллельному изометрической оси о´х´, отрезок о´Е´, равной координате х 5 , взятой с комплексного чертежа на фронтальной или горизонтальной проекции. Далее из точки Е´ вниз параллельно оси o´z´ откладываем отрезок Е´F´, равный второй координате z 5 = a, и, наконец, от точки F´ влево и вправо параллельно оси о´y´ откладываем отрезки F´5´ и F´5´ 1 , равные третьей координате у 5 = .

Далее от точки F´ параллельно оси о´x´ откладываем отрезок n, взятый с комплексного чертежа. Через его конец проводим прямую, параллельную оси о´y´, и откладываем на них отрезок, равный с. Вниз параллельно оси о´z´ откладываем отрезок, равный b, и параллельно о´y´ - отрезок, равные к. В результате получаем изометрию основания четырехгранной призмы.

Точки 1´ и 4´ на ребрах пятигранной призмы можно построит используя только одну координату z.

Заданную нам плоскую фигуру мы можем построить в трех основных положениях: в плоскости x"Ο"z", соответствующей плоскости П 2 ; в плоскости х"О"у", соответствующей плоскости П 1 (и в плоскости z"О"у", соответствующей плоскости П 3 . Кроме того, мы можем строить натуральное изображение плоской фигуры с использованием показателей искажения u, ν и w или увеличенное (приведенное) с использованием приведенных показателей искажения U, V и W. Эти вопросы на практике решают исходя из конкретных условий: формы плоского отсека, его положения в пространстве и назначения изображения.

TBegin-->TEnd-->

Построим натуральное изображение квадрата размером 50X50 мм в трех основных положениях в прямоугольной изометрической проекции. Для определения величины стороны квадрата умножим заданный нам размер 50 на показатель искажения u=0,82. Получим 50x0,82=41 мм. Строим изометрические оси х", у", z" (рис. 147, а). Для простоты располагаем стороны квадрата параллельно изометрическим осям. Изометрические проекции квадрата будут равными, но различно расположенными ромбами П" 1 , П" 2 , П" 3 с размерами 41x41 мм.

Пусть требуется построить в прямоугольной изометрии «приведённое» изображение прямоугольника, имеющего размеры 30x60 мм. Решаем вопрос о том, в каком положении его изобразить. Положим, решили изобразить в плоскости х"О"у". Проводим оси х"О" и у"О" (рис. 147, б); по одной из них откладываем размер 60 мм, а по другой 30 мм; проведя линии, параллельные осям, получаем изометрическую проекцию прямоугольника, которая будет являться параллелограммом. Сверху изображения подписываем масштаб увеличения М 1.22: 1. Тот же прямоугольник мы "могли изобразить в плоскости x"O"z" (верхнее изображение).

Построим «приведенное» изображение квадрата размером 50 X 50 мм в трех основных положениях в прямоугольной диметричесдой проекции, Приведенные показатели по осям х" и z" равны единице; следовательно, стороны квадрата, параллельные этим осям, будут иметь размеры, равные 50 мм (рис. 148). Приведенный показатель по оси у" равен 0,5, т. е. стороны квадрата, параллельные этой оси, будут иметь размер 25 мм. Изображение в плоскости x"O"z будет являться ромбом, изображения в двух других плоскостях будут равными, но различно расположенными параллелограммами. Масштаб изображения М 1,06: 1 указывают вверху чертежа.

TBegin-->
TEnd-->

При построении треугольника будем пользоваться его основанием и высотой (рис. 149, а). Построение «приведенного» изображения в прямоугольной изометрии начинаем с проведения осей х" и z" (рис. 149, б). От точки О" пересечения осей вправо и влево по оси х" откладываем половины заданного размера а = 50 мм, а по оси z" — высоту треугольника h = 40 мм. Вершины треугольника соединяем прямыми линиями. Обратим внимание на то, что левая сторона треугольника в аксонометрии будет значительно длиннее, чем правая. Вверху построения указываем масштаб изображения.

Построим тот же треугольник в прямоугольной диметрии. Расположим треугольник в плоскости х"О"у" (рис. 149, в). По оси х" отложим высоту треугольника; по оси у" от точки О" отложим половины уменьшенного вдвое размера основания треугольника. Вверху построения указываем масштаб изображения.

В связи с тем, что аксонометрические изображения применяются в практике чаще в качестве иллюстрационных, сопровождающих комплексные чертежи, на которых имеются все необходимые размеры, нанесение размеров и указание масштаба изображения на аксонометрических чертежах не является обязательным. При дальнейшем изложении аксонометрии мы не всегда будем наносить масштабы изображений и размеры.

TBegin-->
TEnd-->

Большое значение в практике имеет быстрота построений аксонометрических изображений. Для ускорения можно рекомендовать некоторые практические приемы построения изометрических осей без измерения углов транспортиром. Первый прием (рис. 150,а) основан наделении окружности на шесть равных частей. Выбрав на оси z "точку О", проводим дугу произвольного радиуса; она пересечет ось z" в точке А, из этой точки тем же радиусом проводим вторую дугу; точки В пересечения дуг используем для проведения осей х" и у". Можно воспользоваться другим приемом (рис. 150, б).

Проводим через точку О" горизонтальную прямую и откладываем на ней семь произвольных равных отрезков; из конечной точки А восставляем перпендикуляр и откладываем на нем четыре таких же части; полученные при этом точки В — искомые.

Вместо 7 и 4 можно брать числа того же отношения, например 35 и 20, 28 и 16 и т. д. Для построения осей в прямоугольной диметрии можно пользоваться следующими соотношениями отрезков (рис. 150, в): для построения угла в 7° 10" — отношением 1: 8 (5: 40), для построения угла в 41°25" — отношением 7: 8 (35: 40).

TBegin-->TEnd-->

Построение правильного шестиугольника в «приведенной» изометрической проекции (рис. 151, а) начинаем с проведения осей х" и у" через точку О" (рис. 151, б). По оси х" откладываем отрезки А"О" и O"D", равные отрезкам АО и OD. По оси у" откладываем отрезок т, взятый с первого чертежа. Через конец этого отрезка проводим прямую F"E"||х": так же строим отрезок В"С. Полученные шесть точек соединяем и обводим изображение.

TBegin-->
TEnd-->

Пусть требуется построить неправильный многоугольник ABCDEF в плоскости х"О"г" в прямоугольной диметрической проекции (рис. 152, а). Опишем вокруг многоугольника прямоугольник GHOK. Принимаем стороны КО и НО за направление осей х и z. Проводим на аксонометрическом чертеже (рис. 152, б) оси х" и z" и строим аксонометрическую проекцию G"H"O"K" прямоугольника GHOK, беря размеры его сторон с первого чертежа. Легко находим точки А", В", Е" и F", принадлежащие сторонам прямоугольника. Для построения точек С, D" пользуемся координатами этих точек, что ясно из сопоставления чертежей. Координаты точек начерчены пунктирными (точечными) линиями.

При построении этого многоугольника в плоскости х"О"у" размеры сторон, параллельных оси у", должны быть уменьшены вдвое, изображение будет суженным (рис. 153, а).

TBegin-->
TEnd-->

Аналогично строится многоугольник во фронтальной диметрической проекции (рис. 153, б), с той лишь разницей, что ось х" располагается горизонтально, а ось у" — под углом 45° к ней.

Кроме фронтальной диметрической проекции ГОСТ 2.317—69 разрешает пользоваться фронтальной изометрической проекцией с таким же расположением аксонометрических осей. Фронтальную изометрическую проекцию выполняют без искажения по осям х",у" и z" (рис. 154, а). Допускается применять фронтальные изометрические и диметрические проекции с углом наклона оси у", равным 30 и 60°.

TBegin-->
TEnd-->

ГОСТ установлена также горизонтальная изометрическая проекция с углом 90° между осями x" и у" и 120° между осями у" и z" (рис. 154, б); вместо угла 120° допускается применять углы 135 и 150°. Горизонтальную изометрическую проекцию выполняют без искажения по осям х", у" и z".



Новое на сайте

>

Самое популярное