Домой Гастроэнтерология Понятие и строение нейрона. Классификации нейронов

Понятие и строение нейрона. Классификации нейронов

Структурной единицей нервной системы является нервная клетка, или нейрон. Нейроны отличаются от других клеток организма многими особенностями. Прежде всего их популяция, насчитывающая от 10 до 30 млрд. (а быть может, и больше*) клеток, почти полностью «укомплектована» уже к моменту рождения, и ни один из нейронов, если он отомрет, не замещается новым. Принято считать, что после того, как человек минует период зрелости, у него ежедневно отмирает около 10 тысяч нейронов, а после 40 лет этот суточный показатель удваивается.

* Предположение, что нервная система состоит из 30 млрд. нейронов, сделал Пауэлл с сотрудниками (Powell et al., 1980), который показал, что у млекопитающих независимо от вида на 1 мм 2 нервной ткани приходится около 146 тысяч нервных клеток. Общая же поверхность человеческого мозга составляет 22 дм 2 (Changeux, 1983, р. 72).

Другая особенность нейронов состоит в том, что в отличие от клеток других типов они ничего не продуцируют, не секретируют и не структурируют; единственная их функция заключается в проведении нервной информации.

Структура нейрона

Существует много типов нейронов, структура которых варьирует в зависимости от выполняемых ими в нервной системе функций; сенсорный нейрон отличается по своему строению от моторного нейрона или нейрона мозговой коры (рис. А.28).

Рис. А.28. Различные типы нейронов.

Но какой бы ни была функция нейрона, все нейроны состоят из трех основных частей: тела клетки, дендритов и аксона.

Тело нейрона, как и всякой другой клетки, состоит из цитоплазмы и ядра. Цитоплазма нейрона, однако, особенно богата митохондриями, ответственными за выработку энергии, необходимой для поддержания высокой активности клетки. Как уже отмечалось, скопления тел нейронов образуют нервные центры в виде ганглия, в котором число клеточных тел исчисляется тысячами, ядра, где их еще больше, или, наконец, коры, состоящей из миллиардов нейронов. Тела нейронов образуют так называемое серое вещество.

Дендриты служат нейрону своего рода антеннами. Некоторые нейроны имеют много сотен дендритов, принимающих информацию от рецепторов или других нейронов и проводящих ее к телу клетки и ее единственному отростку другого типа - аксону.

Аксон представляет собой часть нейрона, ответственную за передачу информации дендритам других нейронов, мышцам или железам. У одних нейронов длина аксона достигает метра, у других аксон очень короткий. Как правило, аксон ветвится, образуя так называемое терминальное дерево; на конце каждой ветви имеется синоптическая бляшка. Именно она и образует соединение (синапс) данного нейрона с дендритами или телами других нейронов.

Большинство нервных волокон (аксонов) покрыто оболочкой, состоящей из миелина - белого жироподобного вещества, выполняющего функции изоляционного материала. Миелиновая оболочка с регулярными промежутками в 1-2 мм прерывается перетяжками - перехватами Ранвье, которые увеличивают скорость пробегания нервного импульса по волокну, позволяя ему «перепрыгивать» с одного перехвата на другой, вместо того чтобы постепенно распространяться вдоль волокна. Сотни и тысячи собранных в пучки аксонов образуют нервные пути, которые благодаря миелину имеют вид белого вещества.

Нервный импульс

Информация поступает в нервные центры, перерабатывается там и затем передается эффекторам в виде нервных импульсов, пробегающих по нейронам и соединяющим их нервным путям.

Независимо от того, какую информацию передают нервные импульсы, пробегающие по миллиардам нервных волокон, они ничем не отличаются друг от друга. Почему же в таком случае импульсы, идущие от уха, передают информацию о звуках, а импульсы от глаза - о форме или цвете предмета, а не о звуках или о чем-нибудь совсем ином? Да просто потому, что качественные различия между нервными сигналами определяются не самими этими сигналами, а тем местом, куда они приходят: если это мышца, она будет сокращаться или растягиваться; если это железа, она будет выделять секрет, уменьшать или прекращать секрецию; если это определенная область мозга, в ней будет формироваться зрительный образ внешнего стимула или же сигнал подвергнется расшифровке в виде, например, звуков. Теоретически достаточно было бы изменить ход нервных путей, например, часть зрительного нерва в зону мозга, ответственную за расшифровку звуковых сигналов, чтобы заставить организм «слышать глазами».

Потенциал покоя и потенциал действия

Нервные импульсы передают по дендритам и аксонам не сам внешний стимул как таковой и даже не его энергию. Внешний стимул лишь активирует соответствующие рецепторы, и эта активация преобразуется в энергию электрического потенциала, который создается на кончиках дендритов, образующих контакты с рецептором.

Возникающий при этом нервный импульс можно грубо сравнить с огнем, бегущим вдоль бикфордова шнура и поджигающим расположенный у него на пути патрон с динамитом; «огонь», таким образом, распространяется по направлению к конечной цели за счет небольших следующих друг за другом взрывов. Передача нервного импульса, однако, принципиально отличается от этого тем, что почти сразу же после прохождения разряда потенциал нервного волокна восстанавливается.

Нервное волокно в состоянии покоя можно уподобить маленькой батарейке; с наружной стороны его мембраны имеется положительный заряд, а с внутренней - отрицательный (рис. А.29), и этот потенциал покоя преобразуется в электрический ток только при замыкании обоих полюсов. Именно это и происходит при прохождении нервного импульса, когда мембрана волокна на какое-то мгновение становится проницаемой и деполяризуется. Вслед за этой деполяризацией наступает период рефрактерности, в течение которого мембрана реполяризуется и восстанавливает способность к проведению нового импульса*. Так за счет последовательных деполяризаций и происходит распространение этого потенциала действия (т. е. нервного импульса) с постоянной скоростью, варьирующей в пределах от 0,5 до 120 метров в секунду в зависимости от типа волокна, его толщины и наличия или отсутствия у него миелиновой оболочки.

* Во время периода рефрактерности, длящегося около тысячной доли секунды, нервные импульсы по волокну проходить не могут. Поэтому за одну секунду нервное волокно способно провести не более 1000 импульсов.

Рис. А.29. Потенциал действия. Развитие потенциала действия, сопровождающееся изменением электрического напряжения (от -70 до + 40 мВ), обусловлено восстановлением равновесия между положительными и отрицательными ионами по обе стороны мембраны, проницаемость которой на короткое время увеличивается.

Закон «всё или ничего». Поскольку каждому нервному волокну присущ определенный электрический потенциал, распространяющиеся по нему импульсы независимо от интенсивности или каких-либо других свойств внешнего стимула всегда имеют одни и те же характеристики. Это означает, что импульс в нейроне может возникнуть только в том случае, если его активация, вызванная стимуляцией рецептора или импульсом от другого нейрона, будет превосходить некий порог, ниже которого активация неэффективна; но, если порог достигнут, сразу же возникает «полномерный» импульс. Этот факт получил название закона «всё или ничего».

Синаптическая передача

Синапс. Синапсом называют область соединения между окончанием аксона одного нейрона и дендритами или телом другого. Каждый нейрон может образовать до 800-1000 синапсов с другими нервными клетками, а плотность этих контактов в сером веществе мозга составляет боле 600 млн. на 1 мм 3 (рис. А.30)*.

*Это значит, что если за одну секунду отсчитывать по 1000 синапсов, то для их полного пересчета потребуется от 3 до 30 тысяч лет (Changeux, 1983, р. 75).

Рис. А.30. Синаптическое соединение нейронов (в середине - область синапса при большем увеличении). Терминальная бляшка пресинаптического нейрона содержит пузырьки с запасом нейромедиатора и митохондрии, доставляющие энергию, необходимую для передачи нервного сигнала.

Место перехода нервного импульса с одного нейрона на другой представляет собой, собственно, не точку контакта, а скорее узкий промежуток, называемый синоптической щелью. Речь идет о щели шириной от 20 до 50 нанометров (миллионных долей миллиметра), которая с одной стороны ограничена мембраной пресинаптической бляшки нейрона, передающего импульс, и с другой - постсинаптической мембраной дендрита или тела другого нейрона, принимающего нервный сигнал и затем передающего его дальше.

Нейромедиаторы. Именно в синапсах происходят процессы, в результате которых химические вещества, освобождаемые пресинаптической мембраной, передают нервный сигнал с одного нейрона на другой. Эти вещества, получившие название нейромедиаторов (или просто медиаторов),-своего рода «мозговые гормоны» (нейрогормоны) - накапливаются в пузырьках синаптических бляшек и освобождаются, когда по аксону сюда приходит нервный импульс.

После этого медиаторы диффундируют в синаптическую щель и присоединяются к специфическим рецепторным участкам постсинаптической мембраны, т. е. к таким участкам, к которым они «подходят, как ключ к замку». В результате этого проницаемость постсинаптической мембраны изменяется, и таким образом сигнал передается с одного нейрона на другой; медиаторы могут также и блокировать передачу нервных сигналов на уровне синапса, уменьшая возбудимость постси-наптического нейрона.

Выполнив свою функцию, медиаторы расщепляются или нейтрализуются ферментами либо всасываются обратно в пресинаптическое окончание, что приводит к восстановлению их запаса в пузырьках к моменту прихода следующего импульса (рис. А.31).

Рис. А.31. la. Медиатор А, молекулы которого освобождаются из концевой бляшки нейрона I, связывается специфическими рецепторами на дендритах нейрона II. Молекулы X, которые по своей конфигурации не подходят к этим рецепторам, занять их не могут и потому не вызывают каких-либо синаптических эффектов.

1б. Молекулы M (например, молекулы некоторых психотропных препаратов) сходны по своей конфигурации с молекулами нейромедиатора А и поэтому могут связываться с рецепторами для этого медиатора, таким образом мешая ему выполнять свои функции. Например, ЛСД мешает серотонину подавлять проведение сенсорных сигналов.

2а и 2б. Некоторые вещества, называемые нейромодуляторами, способны воздействовать на окончание аксона, облегчая или подавляя высвобождение нейромедиатора.

Возбуждающая или тормозная функция синапса зависит главным образом от типа выделяемого им медиатора и от действия последнего на постсинаптическую мембрану. Некоторые медиаторы всегда оказывают только возбуждающее действие, другие - только тормозное (ингибирующее), а третьи в одних отделах нервной системы играют роль активаторов, а в других-ингибиторов.

Функции главных нейромедиаторов. В настоящее время известно несколько десятков этих нейрогормонов, но их функции изучены пока недостаточно. Сказанное, например, относится к ацетилхолину, который участвует в мышечном сокращении, вызывает замедление сердечного и дыхательного ритма и инактивируется ферментом ацетилхолинэстеразой* . Не вполне изучены и функции таких веществ из группы моноаминов, как норадреналин, отвечающий за бодрствование мозговой коры и учащение сердечного ритма, дофамин, присутствующий в «центрах удовольствия» лимбической системы и некоторых ядрах ретикулярной формации, где он участвует в процессах избирательного внимания, или серотонин, который регулирует сон и определяет объем информации, циркулирующей в сенсорных путях. Частичная инактивация моноаминов происходит в результате их окисления ферментом моноаминоксидазой. Этот процесс, обычно возвращающий активность мозга к нормальному уровню, в некоторых случаях может приводить к чрезмерному ее снижению, что в психологическом плане проявляется у человека в чувстве подавленности (депрессии).

* По-видимому, недостаток ацетилхолина в некоторых ядрах промежуточного мозга-одна из главных причин болезни Альцгеймера, а недостаток дофамина в скорлупе (одно из базальных ядер) может быть причиной болезни Паркиисона.

Гамма-аминомасляная кислота (ГАМК) представляет собой нейро-медиатор, выполняющий примерно ту же физиологическую функцию, что и моноаминоксидаза. Ее действие состоит главным образом в снижении возбудимости мозговых нейронов по отношению к нервным импульсам.

Наряду с нейромедиаторами существует группа так называемых нейромодуляторов, которые в основном участвуют в регуляции нервного ответа, взаимодействуя с медиаторами и видоизменяя их эффекты. В качестве примера можно назвать вещество Р и брадикинин, участвующие в передаче болевых йпгналов. Освобождение этих веществ в синапсах спинного мозга, однако, может быть подавлено секрецией эндорфинов и энкефалина, которая таким образом приводит к уменьшению потока болевых нервных импульсов (рис. А.31, 2а). Функции модуляторов выполняют и такие вещества, как фактор S, играющий, по-видимому, важную роль в процессах сна, холецистокинин, ответственный за чувство сытости, ангиотензин, регулирующий жажду, и другие агенты.

Нейромедиаторы и действие психотропных веществ. В настоящее время известно, что различные психотропные препараты действуют на уровне синапсов и тех процессов, в которых участвуют нейромедиаторы и нейромодуляторы.

Молекулы этих препаратов по своей структуре сходны с молекулами определенных медиаторов, что и позволяет им «обманывать» различные механизмы синаптической передачи. Таким образом они нарушают действие истинных нейромедиаторов, либо занимая их место на рецепторных участках, либо мешая им всасываться обратно в пресинаптические окончания или подвергаться разрушению специфическими ферментами (рис. А.31, 26).

Установлено, например, что ЛСД, занимая серотониновые рецепторные участки, мешает серотонину затормаживать приток сенсорных сигналов. Таким образом ЛСД открывает доступ к сознанию для самых разнообразных стимулов, непрерывно атакующих органы чувств.

Кокаин усиливает эффекты дофамина, занимая его место в рецепторных участках. Подобным же образом действуют морфин и другие опиаты, мгновенный эффект которых объясняется тем, что они быстро успевают занять рецепторные участки для эндорфинов*.

* Несчастные случаи, связанные с передозировкой наркотиков, объясняются тем, что связывание чрезмерного количества, например, героина зндорфиновыми рецепторами в нервных центрах продолговатого мозга приводит к резкому угнетению дыхания, а иногда и к полной его остановке (Besson, 1988, Science et Vie, Hors série, n° 162).

Действие амфетаминов обусловлено тем, что они подавляют обратное поглощение норадреналина пресинаптическими окончаниями. В результате накопление избыточного количества нейрогормона в синаптической щели приводит к чрезмерной степени бодрствования мозговой коры.

Принято считать, что эффекты так называемых транквилизаторов (например, валиума) объясняются главным образом их облегчающим влиянием на действие ГАМК в лимбической системе, что приводит к усилению тормозных эффектов этого медиатора. Наоборот, как антидепрессанты действуют главным образом ферменты, инактивирую-шие ГАМК, или такие препараты, как, например, ингибиторы моноаминоксидазы, введение которых увеличивает количества моноаминов в синапсах.

Смерть от некоторых отравляющих газов наступает вследствие удушья. Такое действие этих газов связано с тем, что их молекулы блокируют секрецию фермента, разрушающего ацетилхолин. Между тем ацетилхолин вызывает сокращение мышц и замедление сердечного и дыхательного ритма. Поэтому его накопление в синаптических пространствах приводит к угнетению, а затем и полной блокаде сердечной и дыхательной функций и одновременному повышению тонуса всей мускулатуры.

Изучение нейромедиаторов еще только начинается, и можно ожидать, что в скором времени будут открыты сотни, а может быть и тысячи этих веществ, многообразные функции которых определяют их первостепенную роль в регуляции поведения.

, являющаяся функциональной единицей нервной системы.

Виды нейронов

Нейроны, передающие импульсы в центральную нервную систему (ЦНС), называются сенсорными или афферентными . Моторные, или эфферентные, нейроны передают импульсы от ЦНС к эффекторам, например к мышцам. Те и другие нейроны могут связываться между собой с помощью вставочных нейронов (интернейронов). Последние нейроны еще называются контактными или промежуточ-ными .

В зависимости от числа и рас-положения отростков нейроны делятся на униполярные, биполярные и мультиполярные .

Строение нейрона

Нервная клетка (нейрон) со-стоит из тела (перикариона ) с ядром и нескольких отростков (рис. 33).

Перикарион является метаболическим центром, в кото-ром протекает большинство син-тетических процессов, в частно-сти, синтез ацетилхолина. В теле клетки есть рибосомы , микротру-бочки (нейротрубочки) и другие органоиды . Нейроны формируют-ся из клеток-нейробластов, кото-рые еще не имеют выростов. От тела нервной клетки отходят ци-топлазматические отростки, число которых может быть различным.

Короткие ветвящиеся отростки , проводящие импульсы к телу клетки, называются дендритами . Тонкие и длинные отростки, прово-дящие импульсы от перикариона к другим клеткам или перифериче-ским органам, называются аксонами . Когда в процессе формирования нервных клеток из нейробластов происходит отрастание аксонов, спо-собность нервных клеток делиться утрачивается.

Концевые участки аксона способны к нейросекреции. Их тонкие веточки со вздутиями на концах соединяются с соседними нейронами в специальных местах — синапсах. Вздутые окончания содержат мел-кие пузырьки, наполненные ацетилхолином, играющим роль нейромедиатора. Есть в пузырьках и ми-тохондрии (рис. 34). Разветвлен-ные отростки нервных клеток пронизывают весь организм жи-вотного и образуют сложную систему связей. На синапсах возбуждение передается от ней-рона к нейрону или к мышечным клеткам. Материал с сайта

Функции нейронов

Основная функция нейронов — обмен информации (нервными сигналами) между частями тела. Нейроны восприим-чивы к раздражению, т. е. способны возбуждаться (генерировать возбуждение), проводить возбуждения и, наконец, передавать его дру-гим клеткам (нервным, мышечным, железистым). По нейронам прохо-дят электрические импульсы, и это делает возможной коммуни-кацию между рецепторами (клетками или органами, воспринимаю-щими раздражение) и эффекторами (тканями или органами, отвечаю-щими на раздражение, например мышцами).

На этой странице материал по темам:

ЦНС имеет нейронный тип строения, т.е. состоит из отдельных нервных клеток, или нейронов, которые не переходят непосредственно друг в друга, а лишь контактируют между собой. Мозг человека содержит около 25 млрд нейронов, примерно 25 млн из них локализуются на периферии или соединяют периферию с ЦНС.
Нейрон является основной структурной и функциональной единицей ЦНС. Он состоит из тела (сомы) и большого количества отростков, которые имеют преобладающее направление и специализацию. Длинный отросток (аксон) в процессе онтогенетического развития достигает второго клетки, с которой устанавливается функциональная связь. Место отхождения аксона от тела нервной клетки называется начальным сегментом, или аксонного бугорком; этот участок аксона не имеет миелиновой оболочки и синаптических контактов. Главная функция аксоиа заключается в проведении нервных импульсов к клеток - нервных, мышечных, секреторных.Ближе к окончания аксон ветвится и образует тонкую кисть из конечных гилокаксонних терминалей. На конце каждого терминала образует синапс с постсинаптической клетки, ее сомой или дендритами. Специальная функция синапса состоит в передаче импульсов от одной клетки к другой.
Кроме аксона нейрон имеет большое количество коротких древовидно разветвленных отростков - дендритов, которые размещены преимущественно в пределах серого вещества мозга. Функция дендритов состоит в восприятии синаптических влияний. На дендритах заканчиваются терминале аксонов, которые покрывают всю поверхность дендритов.
Поверхность сомы и дендритов, покрытая синагитичнимы бляшками афферентных нейронов, образует рецепторную поверхность («дендритную зону») нейрона, которая принимает и передает импульсы. У тел большинства нейронов эта функция сочетается с функцией получения и использования питательных веществ, то есть с трофической функцией. В некоторых нейронов эти
функции морфологически разрозненные и тело клетки не имеет отношения к восприятию и передаче сигналов. Рост отростков наблюдается не только в эмбриональный период, но и во взрослом организме при условии, что собственная клетка не повреждена.
Основными функциями нейрона является восприятие и переработка информации, проведение ее в других клеток. Нейроны выполняют еще и трофическую функцию, направленную на регуляцию обмена веществ и питания как в аксонах и дендритах, так и при диффузии через синапсы физиологически активных веществ в мышцах и железистых клетках.
Нейроны в зависимости от формы своих отростков, их направления, длины и разветвления делятся на афферентные, или чувствительные, промежуточные, или интернейроны, и эфферентные, проводящих импульсы на периферию.
Афферентные нейроны имеют простую округлую форму сомы с одним отростком, который затем делится Т-образно: один отросток (видоизмененный дендрит) направляется на периферию и образует там чувствительные окончания (рецепторы), а второй - в ЦНС, где разветвляется на волокна, которые заканчиваются на других клетках (есть собственно аксоном клетки).
Большая группа нейронов, аксоны которых выходят за пределы ЦНС, образуют периферические нервы и заканчиваются в исполнительных структурах (эффекторы) или периферических нервных узлах (ганглиях), обозначаются как эфферентные нейроны. Они имеют аксоны большого диаметра, покрытые миелиновой оболочкой и разветвляются только в конце, при подходе к органу, который иннервирует. Небольшое количество разветвлений локализуется и в начальной части аксона еще до выхода его из ЦНС (так называемые аксонного коллатерали).
В ЦНС также большое количество нейронов, которые характеризуются тем, что их сома содержится внутри ЦНС и отростки не выходят из нее. Эти нейроны устанавливают связь только с другими нервными клетками ЦНС, а не с чувствительными или эфферентными структурами. Они словно вставлены между афферентными и эфферентными нейронами и «запирают» их. Это промежуточные нейроны (интернейроны). их можно разделить на короткоаксонни, которые устанавливают короткие связи между нервными клетками, и довгоаксонни - нейроны проводящих путей, соединяющих различные структуры ЦНС.

Структура нейрона, его свойства.

Нейроны являются возбудимыми клетками нервной системы. В отличие от глиальных клеток они способны возбуждаться (генерировать потенциалы действия) и проводить возбуждение. Нейроны высокоспециализированные клетки и в течение жизни не делятся.

В нейроне выделяют тело (сому) и отростки. Сома нейрона имеет ядро и клеточные органоиды. Основной функцией сомы является осуществление метаболизма клетки.

Рис.3. Строение нейрона. 1 - сома (тело) нейрона; 2 - дендрит; 3 - тело Швановской клетки; 4 - миелинизированный аксон; 5 - коллатераль аксона; 6 - терминаль аксона; 7 - аксонный холмик; 8 - синапсы на теле нейрона

Число отростков у нейронов различно, но по строению и выполняемой функции их делят на два типа.

1. Одни - короткие, сильно ветвящиеся отростки, которые называются дендритами (от dendro - дерево, ветвь). Нервная клетка несет на себе от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов. Ребенок рождается с ограниченным числом дендритов (межнейронных связей), и увеличение массы мозга, которое происходит на этапах постнатального развития, реализуется за счет увеличения массы дендритов и глиальных элементов.

2. Другим типом отростков нервных клеток являются аксоны . Аксон в нейроне один и представляет собой более или менее длинный отросток, ветвящийся только на дальнем от сомы конце. Эти ветвления аксона называются аксонными терминалами (окончаниями). Место нейрона, от которого начинается аксон, имеет особое функциональное значение и называется аксонным холмиком . Здесь генерируется потенциал действия - специфический электрический ответ возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления.

Часть аксонов центральной нервной системы покрывается специальным электроизолирующим веществом - миелином . Миелинизацию аксонов осуществляют клетки глии . В центральной нервной системе эту роль выполняют олигодендроциты, в периферической - Шванновские клетки, являющиеся разновидностью олигодендроцитов. Олигодендроцит оборачивается вокруг аксона, образуя многослойную оболочку. Миелинизации не подвергается область аксонного холмика и терминали аксона. Цитоплазма глиальной клетки выдавливается из межмембранного пространства в процессе «обертывания». Таким образом, миелиновая оболочка аксона состоит из плотно упакованных, перемежающихся липидных и белковых мембранных слоев. Аксон не сплошь покрыт миелином. В миелиновой оболочке существуют регулярные перерывы - перехваты Ранвье . Ширина такого перехвата от 0,5 до 2, 5 мкм. Функция перехватов Ранвье - быстрое скачкообразное распространение потенциалов действия, осуществляющееся без затухания.

В центральной нервной системе аксоны различных нейронов, направляющиеся к одной структуре, образуют упорядоченные пучки - проводящие пути . В подобном проводящем пучке аксоны направляются «параллельным курсом» и часто одна глиальная клетка образует оболочку нескольких аксонов. Поскольку миелин является веществом белого цвета, то проводящие пути нервной системы, состоящие из плотно лежащих миелинизированных аксонов, образуют белое вещество мозга. В сером же веществе мозга локализуются тела клеток, дендриты и немиелинизированные части аксонов.

Рис.4.Строение миелиновой оболочки 1 - связь между телом клетки глии и миелиновой оболочкой; 2 - олигодендроцит; 3 - гребешок; 4 - плазматическая мембрана; 5 - цитоплазма олигодендроцита; 6 - аксон нейрона; 7 - перехват Ранвье; 8 - мезаксон; 9 - петля плазматической мембраны

Конфигурацию отдельного нейрона выявить очень трудно, поскольку они плотно упакованы. Все нейроны принято делить на несколько типов в зависимости от числа и формы, отходящих от их тела отростков. Различают три типа нейронов: униполярные, биполярные и мультиполярные.

Рис. 5. Виды нейронов. а - сенсорные нейроны: 1 - биполярный; 2 - псевдобиполярный; 3 - псевдоуниполярный; б - двигательные нейроны: 4 - пирамидная клетка; 5 - мотонейроны спинного мозга; 6 - нейрон двойного ядра; 7 - нейрон ядра подъязычного нерва; в - симпатические нейроны: 8 - нейрон звездчатого ганглия; 9 - нейрон верхнего шейного ганглия; 10 - нейрон бокового рога спинного мозга; г - парасимпатические нейроны: 11 - нейрон узла мышечного сплетения кишечной стенки; 12 - нейрон дорсального ядра блуждающего нерва; 13 - нейрон ресничного узла

Униполярные клетки . Клетки, от тела которых отходит только один отросток. На самом деле при выходе из сомы этот отросток разделяется на два: аксон и дендрит. Поэтому правильнее называть их псевдоуниполярными нейронами. Для этих клеток характерна определенная локализация. Они принадлежат неспецифическим сенсорным модальностям (болевая, температурная, тактильная, проприоцептивная).

Биполярные клетки - это клетки, которые имеют один аксон и один дендрит. Они характерны для зрительной, слуховой, обонятельной сенсорных систем.

Мультиполярные клетки имеют один аксон и множество дендритов. К такому типу нейронов принадлежит большинство нейронов ЦНС.

Исходя из особенностей формы этих клеток их делят на веретенообразные, корзинчатые, звездчатые, пирамидные. Только в коре головного мозга насчитывается до 60 вариантов форм тел нейронов.

Сведения о форме нейронов, их местоположении и направлении отростков очень важны, поскольку позволяют понять качество и количество связей, приходящих к ним (структура дендритного дерева), и пункты, в которые они посылают свои отростки.

Нервная система контролирует, координирует и регулирует согласованную работу всех систем органов, поддержание постоянства состава его внутренней среды (благодаря этому организм человека функционирует как единое целое). При участии нервной системы осуществляется связь организма с внешней средой.

Нервная ткань

Нервная система образована нервной тканью , которая состоит из нервных клеток - нейронов и мелких клеток спутников (глиальных клеток ), которых примерно в 10 раз больше, чем нейронов.

Нейроны обеспечивают основные функции нервной системы: передачу, переработку и хранение информации. Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов.

Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток.

Строение нейрона

Нейрон - основная структурная и функциональная единица нервной системы.

Структурно-функциональной единицей нервной системы является нервная клетка – нейрон . Его основными свойствами являются возбудимость и проводимость.

Нейрон состоит из тела и отростков .

Короткие, сильно ветвящиеся отростки - дендриты , по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.

Каждая нервная клетка имеет один длинный отросток - аксон , по которому импульсы направляются от тела клетки . Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы .

Длинные отростки нервной клетки (аксоны) покрыты миелиновой оболочкой . Скопления таких отростков, покрытых миелином (жироподобным веществом белого цвета), в центральной нервной системе образуют белое вещество головного и спинного мозга.

Короткие отростки (дендриты) и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.

Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона. Место контакта одного нейрона с другим называется синапсом . На теле одного нейрона насчитывается 1200–1800 синапсов.

Синапс - пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому.

Каждый синапс состоит из трёх отделов :

  1. мембраны, образованной нервным окончанием (пресинаптическая мембрана );
  2. мембраны тела клетки (постсинаптическая мембрана );
  3. синаптической щели между этими мембранами

В пресинаптической части синапса содержится биологически активное вещество (медиатор ), которое обеспечивает передачу нервного импульса с одного нейрона на другой. Под влиянием нервного импульса медиатор выходит в синаптическую щель, действует на постсинаптическую мембрану и вызывает возбуждение в теле клетки следующего нейрона. Так через синапс передается возбуждение от одного нейрона к другому.

Распространение возбуждения связано с таким свойством нервной ткани, как проводимость .

Типы нейронов

Нейроны различаются по форме

В зависимости от выполняемой функции выделяют следующие типы нейронов:

  • Нейроны, передающие сигналы от органов чувств в ЦНС (спинной и головной мозг), называют чувствительными . Тела таких нейронов располагаются вне ЦНС, в нервных узлах (ганглиях). Нервный узел представляет собой скопление тел нервных клеток за пределами центральной нервной системы.
  • Нейроны, передающие импульсы от спинного и головного мозга к мышцам и внутренним органам называют двигательными . Они обеспечивают передачу импульсов от ЦНС к рабочим органам.
  • Связь между чувствительными и двигательными нейронами осуществляется с помощью вставочных нейронов через синаптические контакты в спинном и головном мозге. Вставочные нейроны лежат в пределах ЦНС (т.е. тела и отростки этих нейронов не выходят за пределы мозга).

Скопление нейронов в центральной нервной системе называется ядром (ядра головного, спинного мозга).

Спинной и головной мозг связаны со всеми органами нервами .

Нервы - покрытые оболочкой структуры, состоящие из пучков нервных волокон, образованных в основном аксонами нейронов и клетками нейроглии.

Нервы обеспечивают связь центральной нервной системы с органами, сосудами и кожным покровом.



Новое на сайте

>

Самое популярное