Домой Питание Наследственные болезни: лечение, введение. Лечение и профилактика наследственных болезней За рубежом лечение наследственных болезней

Наследственные болезни: лечение, введение. Лечение и профилактика наследственных болезней За рубежом лечение наследственных болезней

14.5. Принципы лечения наследственных болезней человека. Генная терапия

В настоящее время нет способов для исправления дефектов генетического материала человека, являющихся причиной развития наследственной патологии. Следовательно, отсутствует рациональная этиотропная терапия таких заболеваний, направленная на устранение их основной причины.

При всех наследственных заболеваниях широко применяется симптоматическое лечение, с помощью которого удается в той или иной мере снизить тяжесть клинической картины болезни. Оно включает применение различных лекарственных препаратов, физиотерапевтическое лечение, климатолечение и др. При некоторых наследственных болезнях такое лечение является единственно возможным способом облегчения развившейся симптоматики.

Некоторых больных с наследственной патологией лечат оперативным путем после рождения, применяя реконструктивную хирургию ("волчья пасть", "заячья губа", заращение анального отверстия, стеноз привратника, косолапость, врожденный вывих тазобедренного сустава, пороки сердца), при необходимости используя трансплантацию тканей и органов. Ряд дефектов, возникших как следствие нарушения генотипа, могут быть устранены только

оперативным путем (поражение глаза при ретинобластоме, мекониальный илеус у новорожденных при муковисцидозе).

При заболеваниях, связанных с нарушением обмена веществ (фенилкетонурия, галактоземия, фруктоземия и др.), применяют патогенетическое лечение, которое может значительно исправлять изменения нормального фенотипа индивидуума путем воздействия на биохимический механизм развития болезни. При этом существенное значение имеют сведения о конкретных молекулярных нарушениях звеньев метаболического процесса у того или иного больного.

Примером такого лечения является обсуждавшееся ранее успешное применение диетотерапии для коррекции фенотипа ребенка при фенилкетонурии и галактоземии. В случае нарушения синтеза какого-либо гормона проводят прямую заместительную терапию путем введения этого гормона в организм ребенка. Применяется и внутриутробное лечение заболеваний, таких как резус-несовместимость, галактоземия. Особые надежды возлагаются на терапию плода (фетальную терапию), например, при наличии у него иммунодефицита или α-талассемии.

Наиболее радикальным и эффективным способом лечения наследственных заболеваний человека является генная терапия, возможности которой сегодня интенсивно изучают, экспериментируя на различных биологических моделях (клетках бактерий, растений, животных, человека и др.) и используя в клинической практике.

Принципиальный смысл методов генной терапии состоит в замещении мутантного белка клеток человека, с которым связано развитие болезни, на соответствующий нормальный белок, который будет синтезироваться в таких клетках. С этой целью в клетки больного вводят ген нормального белка (трансген), находящийся в составе генно-инженерной конструкции, т.е. экспериментально сконструированной рекомбинантной молекулы ДНК (на основе молекулы векторной ДНК).

Генная терапия может быть связана с коррекцией генетических дефектов в соматических клетках больного человека либо в зародышевых клетках на ранних стадиях развития зиготы. В настоящее время успешно синтезируются отдельные гены в экспериментах in vitro, разработаны различные способы их переноса в клетки человека. Наиболее сложные проблемы генной терапии связаны с механизмами доставки гена в нужные клетки, возможностями его эффективной экспрессии в этих клетках и мерами безопасности организма. Для переноса генов чаще всего используют относительно легко доступные для вмешательства клетки внутренних органов и тканей человека (клетки красного костного мозга, фибробласты, клетки печени, лимфоциты). Такие клетки можно выделить из организма, включить в них нужную генную конструкцию и затем вновь ввести их в организм больного.

Для введения нужных генов в организм человека чаще всего используют вирусные векторы (комплекс вирусная ДНК — ген человека), плазмидные векторы (плазмидная ДНК — ген человека), а также искусственные макромолекулярные системы (транс-ген в составе липосомного комплекса). Ограниченное применение вирусных векторов связано с возможной патогенностью используемых в этих целях вирусов (ретровирусы), их способностью индуцировать иммунный ответ (аденовирусные конструкции). Кроме того, в некоторых случаях встраивание вирусных комплексов в геном человека может быть причиной инсерционных мутаций, приводящих к нарушению активности отдельных генов. Играет отрицательную роль и ограничение размера генетической конструкции, которая включается в геном вируса.

В то же время большинство невирусных комплексов низкотоксично, немутагенно, поэтому их использование более предпочтительно. Однако, они также не лишены недостатков, к которым относится короткое время экспрессии включенных в них генов и отсутствие достаточной специфичности в отношении тех или иных тканей организма.

В настоящее время поиски наиболее оптимальных вариантов генной терапии ведутся в разных направлениях. Так, например, делаются попытки использования искусственно синтезированных фрагментов РНК (РНК-олигонуклеотидов) для блокирования тех или иных комплементарных им участков определенных генов в целях регуляции их функциональной активности ("антисмысловая" терапия). Разработаны методы введения ДНК гибридных плазмид путем их инъекций в мышечные и другие клетки (ДНК-иммунизация) либо с помощью систем ДНК-катионных липосом (комплекс называют геносомой), которые, взаимодействуя с клеточной мембраной, легко проникают в клетки, доставляя туда плазмидную ДНК. Считают также перспективным использование некоторых других искусственных макромолекулярных комплексов невирусной природы (синтетических пептидов, катионных или липидных лигандов, в частности гидрофобных поликатионов), на основе которых созданы системы, обеспечивающие перенос генов в определенные ткани. Следует отметить, что в предпринимаемых попытках генотерапии человека используют разные пути переноса нормальных генов. Такой перенос (трансгеноз) осуществляют либо путем введения необходимых генов в выделенные из организма соматические клетки (in vitro) с дальнейшим их введением в органы или кровоток, либо проводят прямой трасгеноз (in vivo), используя рекомбинантный вектор с необходимым геном.

Генная терапия находит применение в лечении различных моногенных, мультифакториальных, инфекционных заболеваний человека и даже при попытках лечения СПИДа. В настоящее время ведутся работы по генной терапии гемофилии, тяжелого

комбинированного иммунодефицита с недостаточностью аденозиндезаминазы, миодистрофии Дюшенна, болезни Паркинсона, рака и атеросклероза.

Хороший эффект трансгеноза in vitro получен при лечении иммунодефицита с недостаточностью аденозиндезаминазы путем встраивания гена этого фермента человека в мононуклеарные клетки периферической крови, извлеченные из организма, с последующим возвращением таких клеток обратно в организм.

Имеются сообщения о возможности лечения методом генной терапии семейной гиперхолестеринемии, причиной которой является недостаточность рецептора липопротеинов низкой плотности. Нормальный ген рецептора липопротеинов вводили в клетки печени больных с помощью ретровирусного вектора in vitro, a затем такие клетки возвращали в организм больного. При этом у одного больного удалось получить стойкую ремиссию со снижением уровня холестерина на 50 %.

В настоящее время разрабатывается ряд подходов для лечения некоторых опухолей генно-инженерными методами. Так, например, для лечения меланом используют инфильтрирующие опухоль лимфоциты, в которые введен ген фактора некроза опухоли. При введении таких лимфоцитов в пораженный организм наблюдается лечебный эффект. Имеются данные о возможности лечения опухолей головного мозга при использовании ретровирусных векторов, которые переносят обладающий лечебным эффектом трансген только в делящиеся клетки опухоли, но не затрагивают при этом нормальные клетки.

Таким образом, в будущем генная терапия может стать одним из ведущих направлений в лечении наследственной патологии человека в связи с возможностью исправлять функции генетического аппарата больного, нормализуя таким образом его фенотип.

Базисные термины и понятия: вирусный вектор; генетическая инженерия; генная терапия; геносома; ДНК-иммунизация; ДНК-липосомный комплекс; иммунный ответ; патогенетическое лечение; ретровирусы; симптоматическое лечение; структура ДНК-липосома; трансгеноз; этиотропное лечение.

Задания для самостоятельной работы

14.1. В генетическую консультацию обратилась беременная женщина, переболевшая коревой краснухой на ранних сроках беременности. Составьте поэтапный план проведения генетического консультирования с указанием необходимых на ваш взгляд методов лабораторной диагностики для установления возможных патологических нарушений у плода.

14.2. Первый ребенок у здоровых родителей болен фенилкетонурией. Определите риск появления этого заболевания у следующего ребенка.

Какие дополнительные методы исследования может предложить этой семье генетик-консультант?

14.3. Первый ребенок нормальной женщины с группой крови М и нормального мужчины с группой крови MN имеет группу крови MN и признаки альбинизма (аутосомнорецессивное заболевание). Определите вероятные генотипы родителей ребенка и возможность повторного рождения у них ребенка-альбиноса с той или иной группой крови системы MN

14.4. Дочь отца-дальтоника, имеющая нормальное зрение, вышла замуж за мужчину с нормальным зрением, отец которого тоже был дальтоником. Установите вероятность заболевания их будущих детей и его связь с полом последних (см. также информацию в табл. 2.6).

14.5. У пожилых супругов с нормальным зрением имеется трое детей: 1) сын-дальтоник, который, в свою очередь, имеет дочь с нормальным зрением; 2) дочь с нормальным зрением, которая родила одного сына-дальтоника, а другого сына с нормальным зрением; 3) дочь с нормальным зрением, у которой родилось пять сыновей, не имеющих признаков дальтонизма. Составьте родословную трех поколений этой семьи и определите возможные генотипы всех ее представителей. Установите вероятность рождения больных детей (и их пол) у внучки (индивидуума третьего поколения), имеющей отца-дальтоника и нормальное зрение, если она выйдет замуж за молодого человека с нормальным зрением из семьи, в которой никогда не наблюдалось этого заболевания.

14.6. Из перечисленных заболеваний выберите те, диагноз которых может быть подтвержден с помощью ультразвукового исследования (УЗИ): 1) болезнь Дауна; 2) фенилкетонурия; 3) редукция конечностей; 4) дефект нервной трубки; 5) синдром Эдвардса.

14.7 Определите, при каких из указанных заболеваний происходит повышение уровня α-фетопротеина в амниотической жидкости: 1) пороки развития нервной трубки; 2) гемофилия; 3) синдром Шерешевского —Тернера; 4) врожденный нефроз.

14.8 Первый ребенок у молодой матери родился с болезнью Дауна, в настоящее время у этой женщины вторая беременность. Есть ли реальные методы определения хромосомной патологии у плода до рождения?

14.9 В порядке самоконтроля имеющихся у вас знаний, внесите необходимую информацию в незаполненные колонки табл. 14.1.

Таблица 14.1

Биохимические методы диагностики генных болезней

14.10 В сыворотке крови беременной женщины резко снижено содержание α-фетопротеина, тогда как уровень хорионического гонадотропина повышен. Сделайте предварительное заключение о возможной патологии плода.

14.11 Первый ребенок в семье погиб сразу после рождения из-за множественных пороков развития. Какие методы пренатальной диагностики следует использовать в случае повторной беременности у матери этого ребенка?

14.12. Выберите из предложенных методов диагностики те, которые используются для первичного установления и подтверждения диагноза заболевания, расставив против приведенных названий болезней цифры, которыми обозначены эти методы (например, а-1 и т.д):

14.13. Используя имеющуюся у вас информацию, составьте схему трансгеноза in vitro. Приведите примеры заболеваний, при которых возможно использование этого способа терапии.

14.14. Выберите из числа предложенных заболеваний те, при которых возможно применение в качестве патогенетического лечения специальных диет: 1) галактоземия; 2) адреногенитальный синдром; 3) фенилкетонурия; 4) болезнь Дауна; 5) гемофилия.

14.15. Расставьте против приведенных названий заболеваний буквы, которыми обозначены возможные подходы к их лечению (например, 1-б):

14.16. В порядке самоконтроля имеющихся у вас знаний отметьте в предложенной табл. 14.2 знаком (+) или (-), какие нарушения в генетических структурах человека могут привести к появлению следующих заболеваний:

Таблица 14.2

Нарушения в генетических структурах человека, приводящие к наследственной патологии

Окончание табл. 14.2

Название болезни Нарушение структуры ядерной ДНК Нарушение структуры мтДНК Изменение числа половых хромосом Изменение числа аутосом Структурные аберрации хромосом
Болезнь Дауна
Фенилкетонурия
Синдром Патау
Синдром Пирсона
Синдром Орбели
Лейциноз
Синдром Эдвардса
Оптическая нейропатия Лебера
Синдром Клайн-фельтера

Перспективы дальнейшего развития медицинской генетики связывают с разработкой новых эффективных методов ранней диагностики наследственных болезней человека и скрытого носительства генов патологических признаков, с совершенствованием методов профилактики и генотерапии наследственной патологии. Предполагается возможность расшифровки генетических основ различных мультифакториальных заболеваний и открытия способов их коррекции на молекулярном уровне. Является также весьма актуальным решение проблемы защиты наследственности человека от повреждающего действия мутагенных факторов окружающей среды.

В отношении человека, как объекта генетических ис­следований существует две точки зрения:

    Одни полагают, что человек является крайне небла­гоприятным объектом генетических исследований.

    Другие, наоборот, находят в человеке много преимуществ.

Почему же человек – неблагоприятный объект для генетических исследований?

а) Невозможность экспериментальных браков, т.е. искус­ственного создания брака (скрещивания). Нельзя по заранее составленной схеме получить и проанализировать потомство от родителей с известным генотипом. Еще Н.К.Кольцов в 1923 году писал "... мы не можем заставить Н.Нежданову выйти замуж за Ф.Шаляпина, чтобы посмотреть, каковы у них будут дети". При генетическом анализе человека как бы выпадает основа гибридологического метода – экспериментальное скрещивание. Этот "недостаток" можно преодолеть двумя путями: 1) среди множества человеческих семей исследователь может найти такие, которые соответствуют его схемам исследования; 2) успешно разрабатываемый метод гибридизации соматических клеток позволяет уже в некоторых случаях проводить генетический анализ, используя культуру клеток человека.

б) Ограниченное количество потомков (1–2–3 ребенка) в семье. Даже в государствах с большим приростом населения количество детей в семье не более 3–4, а 10–15 детей – крайне редко. В любом случае размер семьи настолько мал, что не позволяет вести анализ расщепления признаков в потомстве в пределах одной семьи. Однако, зная признак, по которому анализируется потомство, можно подобрать не одну, а необходимое количество семей.

в) Длительность смены поколений. Для смены одного поколения человека нужно в среднем 30 лет, а это значит, что генетик не может наблюдать более 1–2 поколений. Этот недостаток в известной мере устраняется большими популяциями человека, регистрацией признаков в течение длительного времени (на протяжении нескольких поколений).

г) Достаточно большой по количеству набор хромосом (групп сцепления). Он состоит из 23 пар, что затрудняет их генетическое и цитологическое картирование и снижает тем самым возможность генетического анализа.

д) Модификация наследственной изменчивости под влиянием образа жизни, социальных факторов.

е) Организационные недостатки (но они исправимы): плохая сохранность документации, неудовлетворительная регистрация браков, рождаемости, смертности, диагностики наследственных болезней и статистики.

Преимущества человека, как генетического объекта:

а) Хорошая изученность фенотипа человека – анатомическая, физиологическая, иммунологическая, биохимическая, клиническая. Специалисты различного профиля продолжают независимо от интересов генетиков изучать человека, что несомненно помогает генетику легко распознавать многие формы наследственных отклонений.

б) Возможность использовать все методы, применяемые в медицине (биохимические, морфологические, иммунологические, электрофизиологические, клинические и др.), т.е. любые методы, которые дают возможность регистрировать признак и выражать его количественно.

Для решения сугубо генетических задач применительно к человеку в настоящее время используют следующие методы:

    Генеалогический (генеалогия – греч. genealogia; от genea рождение, происхождение, поколение + logos слово, изложение – установление родственных связей между индивидумами в пределах одного поколения или в ряду поколений, или родословная) – метод родословных, т.е. прослеживание болезни (или признака) в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике его часто называют клинико-генеалогическим, так как речь идет об изучении патологических признаков в семье с помощью клинических приемов обследования. Он относится к наиболее универсальным методам в генетике человека. Этот метод используется для установления наследственного характера признака, определения типа наследования и пенетрантности гена, при анализе сцепления генов и картирования хромосом, при изучении интенсивности мутационного процесса, при расшифровке механизмов взаимодействия генов, при медико–генетическом консуль­тировании. Суть этого метода сводится к выяснению родственных связей и к прослеживанию признака или болезни среди близких и дальних, прямых и непрямых родственников. Он включает два этапа: составление родословных и генеалогический анализ.

Составление родословной начинается с пробанда (лицо, первое попавшее в поле зрения исследователя). Чаще всего это больной или носитель изучаемого признака. Дети одной родительской пары называются сибсами (братья–сестры). Семьей в узком смысле называют родительскую пару и их детей. Обычно родословная собирается по одному или нескольким признакам. Она может быть полной (составление по восходящему, нисходящему и боковым направлениям) и ограниченной. Для наглядности готовят графическое изображение родословной. Грубой ошибкой является искусственное укорочение звеньев родословной в связи с трудностями обследованных родственников II и III степени. Генеалогический анализ позволяет установить генетические закономерности: наследственный характер признака и тип наследования.

Недостатки и ошибки при использовании генеалогического метода могут быть обусловлены неправильной диагностикой болезни (признака) и возможностью неправильного определения отцовства за счет внебрачных связей (от 1–3 до 10%).

    Близнецовый метод – исследование генетических закономерностей на близнецах. Он был предложен Gallon в 1875 г. При использовании этого метода производится сопоставление монозиготных близнецов сдизиготными, партнеров монозиготных пар между собой, данных анализа близнецовой выборки с общей популяцией.

Монозиготными близнецами (однояйцевые, идентичные) называются индивиды, выросшие из одной зиготы, раз­делившейся на ранних стадиях дробления на 2 части; они обладают поэтому идентичными генотипами. Дизиготные близнецы (двуяйцевые, неидентичные) возникают за счет оплодотворения двух яйцеклеток, развивающихся в течение одной беременности. Они имеют в среднем 50% идентичных генов, но отличаются от обычных сибсов значительно большей общностью факторов среды.

Общая частота родов двойнями равна приблизительно 1%, из которых 1/4–1/3 приходится на рождение монозиготных близнецов. Близнецовый метод применяется для:

    оценки соотносительной роли наследственности и среды в развитии признака;

    установления наследственного характера признака и определения пенетрантности гена;

    оценки действия некоторых внешних факторов: лекарственных препаратов, методов воспитания, обучения.

Этот метод включает 3 этапа: 1) сопоставление близнецовой выборки, 2) установление зиготности, 3) сопоставление пар и групп близнецов по рассматриваемым признакам.

Диагностика основывается на анализе наиболее изученных моногенных полиморфных признаков (эритро– и лейкоцитарные антигены, группы белков сыворотки крови и т.д.). Дизиготные близнецы в отличие от монозиготных отличаются по этим признакам. Если какой–либо качественный признак встречается у обоих близнецов данной пары – это конкордантная пара, а если только у одного из них – это дискордантная пара близнецов.

    Популяционно-статистический метод основан на использовании наследственных признаков в больших группах населения из одной или нескольких популяций, в одном или нескольких поколениях. Изучаются выборки из конкретных популяций с применением статистической обработки полученного материала. Этот метод используется для изучения:

а) частоты генов в популяции, включая частоту нас­ледственных болезней,

б) мутационного процесса,

в) роли наследственности и среды в возникновении болезней, особенно болезней с наследственным предрасположением,

г) роли наследственности и среды в формировании фенотипического полиморфизма по нормальным признакам,

д) значения генетических факторов в антропогенезе, в частности в расообразовании.

Возможные ошибки этого метода могут быть связаны с недоучетом миграции населения и с тем, что выбранные группы отличаются по большему числу признаков, чем сравниваются.

    Цитогенетический метод основан на микро­скопическом изучении хромосом. Его начали широко использовать в генетике человека только с 20–х годов XX века для:

    диагностики хромосомных болезней,

    составления карт хромосом,

    изучения мутационного процесса,

    решения некоторых эволюционных проблем в генетике человека,

    изучения нормального хромосомного полиморфизма в человеческой популяции.

Именно с этим методом связано открытие всех форм хромосомных болезней. С его помощью изучается частота хромосомных и геномных мутаций в зародышевых клетках и частота хромосомных аберраций в соматических клетках. Культуры соматических клеток человека являются хорошими объектами для проверки мутагенности факторов среды (физических, химических, биологических). Цитогенетическими методами изучаются механизмы мутагенеза.

Основные сведения о морфологии хромосом человека получены при их изучении в метафазе митоза и профазе–метафазе мейоза. Для прямого хромосомного анализа можно использовать клетки костного мозга и гонад (семенников), полученные путем биопсии, что ограничивает цитогенетические исследования без культивирования. Поэтому основные цитогенетические работы выполнены на культурах клеток человека, особенно на лимфоцитах периферической крови.

Культивирование лейкоцитов периферической крови в течение 2–3 суток в присутствии ФГА позволяет получить большое число метафаз. Кроме лейкоцитов, можно культивировать клетки эпидермиса, амниотической жидкости. "Сортировка" хромосом (во время метафазы) прямо под микроскопом или чаще всего на микрофотографиях позволяет построить кариотип – т.е. упорядоченно расположить хромосомы по их отличительным признакам. В основе идентификации хромосом лежит два признака: общая длина хромосомы и расположение центромера; но он не позволяет индивидуально идентифицировать все хромосомы. Поэтому используются более точные методы: радиоавтографический, окраску хромосом флуорохромами, красителем Гимзы, гибридизации нуклеиновых кислот на цитологических препаратах.

    Методы генетики соматических клеток . Поскольку соматические клетки содержат весь объем генетической информации, на них можно изучать генетические закономерности целостного организма. Соматические клетки человека характеризуются 5основными свойствами, позволяющими их использовать в генетических исследованиях:

    быстрое размножение их на питательных средах, что позволяет получать необходимое их количество для анализа,

    они подвергаются клонированию –можно получать генетически идентичное потомство,

    разные клетки могут сливаться, образуя гибридные клоны,

    легко подвергаются селекции на специальных питательных средах,

    хорошо и долго сохраняются при глубоком замораживании.

Культуру соматических клеток человека получают для генетических исследований из материала биопсий или аутопсий (кожа, опухоли, периферическая кровь, костный мозг, ткань эмбрионов, клетки из околоплодной жидкости). В настоящее время чаще используются фибробласты и лимфоидные клетки. В генетике человека используют 4метода из генетики соматических клеток: простое культивирование, клонирование, гибридизация и селекция.

В настоящее время обосновано 4 подхода в борьбе с наследственными болезнями:

    Массовое "просеивание" новорожденных на нас­ледственные дефекты обмена веществ.

    Пренатальная диагностика.

    Медико-генетическое консультирование.

    Контроль за мутагенной опасностью факторов окружающей среды.

    Массовое "просеивание " новорожденных на наследственные болезни обмена веществ наряду с другими методами является основой профилактики наследственных болезней в популяциях. "Просеивание" (аналог –"скрининг") означает предположительное выявление недиагностированной ранее болезни с помощью тестов, обследований или других процедур, дающих быстрый ответ.

Проще говоря, просеивание –это обследование контингентов с целью подразделения их на группы с высокой и низкой вероятностью заболевания. "Просеивают" заболевания, для которых установлена связь между мутантным геном и поврежденной биохимической функцией. Изменения в биохимических параметрах по срокам своего проявления предшествуют возникновению клинических симптомов.

Современные программы массового просеивания предусматривают выявление фенилкетонурии, гипотиреоза, врожденной гипоплазии надпочечников, галактоземию, муковисцидоз, гомоцистинурию, лейциноз, гистидинемию, аминоацидопатии, недостаточность альфа–1–антитрипсина. В практике массового просеивания на наследственные болезни обмена веществ используется кровь (пуповинная, капиллярная, венозная) и сыворотка крови.

Просеивание в зависимости от искомого дефекта проводят среди различного контингента с учетом возраста, национальной и расовой принадлежности. Просеивание на наследственные аминоацидопатии и гипотиреоз необходимо проводить в первые дни жизни, чтобы терапия оказалась эффективной; просеивание на носительство гемоглобинопатии и болезни Тея–Сакса –у вступающих в брак. Просеивание на гемоглобинопатию целесообразно в популяциях или расовых группах, подвергшихся действию малярийного фактора отбора, а просеивание на носительство болезни Тея–Сакса (в Израиле) –у евреев–ашкенази, у которых мутантный ген встречается в 10раз чаще, чем в других популяциях.

Например, в программах массового просеивания на фенилуксусную кислоту и другие аминоацидопатии используют три метода: микробиологический по Гатри (на его долю приходится 90%),хроматографический и флюорометрический.

    Пренатальная диагностика осуществляется с помощью разных методов исследования в Iи IIтриместрах беременности. В ней нуждается 10–15%семей, обращающихся в медико–генетическую консультацию. Показания к проведению пренатальной диагностики:

    пожилой возраст родителей,

    гетерозиготное носительство хромосомной аномалии,

    предыдущее рождение ребенка с болезнью Дауна, врож­денными пороками развития или умственной отсталостью,

    Х–сцепленная патология,

    наследственные дефекты метаболизма,

    тератогенные воздействия.

Пренатальная диагностика представляет собой комплексное исследование, основанное на использовании лабораторных и инструментальных методов:

    ультразвуковое исследование (врожденные пороки развития),

    фетоскопия используется для взятия образцов крови, кожи или других органов плода (показания –токсоплазмоз, вирусная краснуха, гемофилия, талассемия, осложнения связанные с самопроизвольным прерыванием беременности),

    фетоамниография использовалась до появления УЗИ для диагностики врожденных пороков развития костной системы, спинномозговых и пупочных грыж и особенно атрезий желудочно–кишечного тракта. Использование контрастных веществ вызывает осложнения как у беременной, так и у плода,

    диагностический амниоцентез (в сроки 14–20недель беременности) –это акушерско–хирургическая процедура, позволяющая получить амниотическую жидкость для после­дующих лабораторных исследований (в 1–2%случаев после амниоцентеза наблюдается гибель плода). Амниотические клетки используют для культивирования и цитогенетических исследований, для диагностики лизосомных болезней, альфа–фетопротеина, для диагностики более 60форм наследственных ферментопатий,

    диагностическая биопсия хориона (хориоцентез). Оптимальный срок для биопсии –17–я неделя беременности, а результаты, связанные с культивированием амниотических клеток, могут быть получены спустя 3–5недель. Используют 3 основных методики получения биоптата хориона: с помощью щипцов, методом эндоцервикальной аспирации и с помощью браши (по типу лабораторного ершика для пробирок). Этот метод используют для диагностики хромосомных и биохимических (молекулярных) нарушений.

    Медико-генетическое консультирование включает:

    выявление наследственной формы патологии на основании осмотра больного, составления родословной, цитологических, биохимических, кариологических и других методов диагностики наследственных болезней,

    определение степени риска появления потомства с наследственными дефектами развития у лиц из семей, отягощенных наследственной патологией, вступающих в брак и желающих иметь детей. В обоснованных случаях рекомендуется воздержаться от заключения брака,

    выявления нарушений в геноме, обменных процессов у пло­да с помощью методов пренатальной диагностики с возможным дальнейшим прерыванием беременности, если риск рождения больного ребенка достаточно высок. Однако, принятие оконча­тельного решения о прерывании или сохранении беременности остается за супругами,

    искусственное осеменение от генетически здорового доно­ра применимо в тех случаях, когда рождение здорового потом­ства невозможно из-за доминантного характера наследования патологии.

    Контроль за мутагенной опасностью факторов окружающей среды осуществляют генетики, экологи, врачи гигиенического профиля, учитывая естественный фон радиации и его колебания, дрейф мутаций и т.п.

Принципы лечения наследственных заболеваний:

    Симптоматическое лечение –хирургическое лечение расщелины верхней губы и твердого неба, сросшихся пальцев, коррегирующие линзы при близорукости и др.

    Патогенетическая терапия –воздействие на те механизмы, которые формируют наследственное заболевание:

    заместительная терапия –восполнение недостающего компонента (введение инсулина при сахарном диабете, свертывающих факторов при гемофилии и т.д.) или удаление части железы при гиперфункции;

    когда повышен синтез тех или иных веществ, то уменьшают их образование путем применения медикаментов, угнетающих их образование;

    диетотерапия –при нарушении расщепления тех или иных веществ (галактозы, фенилаланина) их исключают из диеты;

    медикаментозное лечение направлено на удаление про­дуктов, избыточно накапливающихся в организме. Например, при поражении печени в ней накапливаются ионы меди, поэтому применяют ионообменные смолы, которые препятствуют вса­сыванию меди в кишечнике.

    Генная инженерия –это направление исследований в молекулярной биологии и генетике, конечной целью которого является получение с помощью лабораторных методов организмов с новыми комбинациями наследственных свойств. В основе лежит целенаправленное манипулирование с фрагментами нуклеиновых кислот, т.е. конструируются из различных фрагментов генетического материала нужные фрагменты и вводятся в реципиентный организм.


Успехи в изучении молекулярных основ наследственных болезней расширили возможности точной диагностики моногенных болезней. Понимание патогенеза наследственных болезней развивается медленнее, в основном из- за того, что прогресс в этой области часто требует знания процессов, охватывающих организм в целом, - а их невозможно изучать в классическом остром эксперименте. Большие надежды возлагаются на развитие неинвазивных методов исследования метаболизма, таких, как позитронно-эмиссионная томография и локальная магнитно-резонансная спектрометрия, а также на новые генетические подходы к получению биологических моделей наследственных болезней человека.

Лечение наследственной болезни может быть симптоматическим или патогенетическим . В последнем случае проводится коррекция на уровне метаболитов, дефектного белка или гена ( табл. 67.1).

Эмпирические попытки лечить больных с наследственной паталогией, предпринимаемые в течение 200 лет вплоть до 30-х годов ХХ в., не дали положительных результатов. Диагноз наследственной болезни оставался как приговор обреченности больному и его семье, а такие семьи считались вырождающимися. Эта позиция в медицине в первые десятилетия ХХ в. опиралась, по-видимому, также на генетическую концепцию об очень строгой детерминации менделирующих наследственных признаков. В связи с этим в начале ХХ в. возникло направление, названное негативной евгеникой , концепция которой состояла в том, что необходимо насильственно ограничить деторождение у лиц с наследственной патологией. К счастью, практическая реализация этой идеи была не- долгой из-за общественного давления.

Переломным периодом в отношении лечения наследственных болезней можно считать 20-30-е годы. Так, в середине 20-х годов в экспериментах на дрозофиле были получены факты, показывающие разную степень проявления действия генов в зависимости от влияния генотипа или внешней среды. На основе этих фактов были сформированы понятия о пенетрантности , экспрессивности и специфичности действия генов. Поэтому стала возможной логическая экстраполяция: если среда влияет на экспрессивность генов, то, следовательно, можно уменьшить или исключить патологическое действие генов при наследственных болезнях. Именно на основе этих положений выдающийся русский биолог Н.К. Кольцов предложил и обосновал новое направление в медицинской генетике - евфенику - учение о "хорошем" проявлении наследственных задатков. По его мнению, евфеника должна изучать условия среды, стимулирующие проявления положительных наследственных и непроявления отрицательных свойств наследственных болезней.

Впервые в мире невропатолог и генетик С.Н. Давиденков, основываясь на собственном клиническом опыте и достижениях экспериментальной генетике, в начале 30-х годов указал на ошибочность точки зрения о неизлечимости наследственных болезней и вырождении семей с такими болезнями. Он, как и Кольцов, исходил из признания роли факторов внешней и внутренней среды в проявлении наследственных болезней. С.Н. Давиденков настаивал на принципиальных возможностях вмешательства в функционирование патологических генов и сам много сделал для разработки методов лечения наследственных болезней нервной системы. Такая исходная позиция позволяла разрабатывать различны подходы и методы лечения лиц с наследственными болезнями на основе достижений генетики, теоретической и клинической медицины. Однако отсутствие сведений о патогенетических механизмах развития наследственных болезней в тот период ограничивало возможности разработки методов, и все подобные попытки, несмотря на правильные теоретические установки, оставались длительное время эмпирическими.

В настоящее время благодаря успехам генетики в целом и существенномау прогрессу теоретической и клинической медицины можно твердо утверждать, что многие наследственные болезни успешно лечатся. Именно такая установка должна быть у врача.

Общие подходы к лечению наследственных болезней сходны с подходами к лечению болезней любой другой этиологии. При лечении наследственных болезней полностью сохраняется принцип об индивидуализированном лечении - ведь врач и при наследственной патологии лечит не просто болезнь, а болезнь у конкретного человека. Возможно даже, что и при наследственной патологии принцип индивидуализированного лечения должен соблюдаться еще строже, потому что гетерогенность наследственных болезней далеко не расшифрована, а, следовательно, с одной и той же клинической картиной могут протекать разные наследственные болезни с различным патогенезом. В зависимости от условий пре- и постанального онтогенеза, а также от всего генотипа индивида фенотипические проявления мутаций у конкретного индивида могут модифицироваться в ту или другую сторону. Следовательно, необходима разная коррекция наследственной болезни у разных лиц.

Как и при лечении других хорошо изученных болезней (например, инфекционных), можно выделить три подхода к лечению наследственных болезней и болезней с наследственной предрасположенностью: симптоматическое , патогенетическое , этиологическое . Применительно к наследственным болезням в отдельную группу можно выделить хирургические методы, поскольку они иногда выполняют функции симптоматической терапии, иногда патогенетической, иногда и той и другой вместе.

При симптоматическом и патогенетическом подходах используются все методы современного лечения (лекарственное, генетическое, рентгенорадиологическое, физиотерапев-тическое, климатическое и т. д.). Генетический диагноз, клинические данные о состоянии больного и вся динамика болезни определяют поведение врача на протяжении всего периода лечения со строгим постоянным соблюдением гипполкратовского принципа "не навреди". При лечении наследственных болезней надо быть особенно внимательным в соблюдении этических и деонтологических принципов в отношении пациента и членов его семьи. Ведь часто речь идет о тяжелых хронических больных с детского возраста.

Наследственные болезни настолько разнообразны по типам мутаций, по звеньям нарушенного обмена, степени вовлеченности в патологический процесс органов и систем, по характеру течения, что невозможно подробно описать лечение всех наследственных болезней. Изложим общие принципы лечения наследственной патологии и разработки новых методов.

В целом можно ожидать дальнейших сдвигов в патогенетическом лечении путем возмещения продуктов (белков, гормонов) в связи с успехами физико-химической биологии, генной инженерии и биотехнологии: уже получают специфические белки и гормоны человека, необходимые для восполнения нарушенного звена обмена при лечении наследственных болезней (инсулин, соматотропин, интерферон).

Развитие организма и поддержание гомеостаза зависят от согласованных взаимодействий множества генных продуктов, работающих в метаболических системах. Эти системы способны к адаптации, что обеспечивает гомеостаз в определенном диапазоне условий окружающей среды.

Таким образом, и в норме, и при патологии гены играют важную и неоднозначную роль. Поэтому и лечение наследственных болезней сложно и часто не вполне эффективно.

Для лечения наследственных болезней необходимо:

Поставить точный диагноз;

Начать лечение до развития необратимых повреждений тканей;

Иметь четкое представление о патогенезе заболевания и о вызывающих его биохимических нарушениях.

Знание генетической природы многих врожденных биохимических дефектов позволяет вплотную подойти к проблеме их лечения и профилактики (рис. 10). Как уже говорилось ранее, последствия генной мутации для организма во многих случаях сводятся к накоплению в результате ферментной недостаточности больших количеств какого-либо вещества. Так, например, при фенилкетонурии высокие концентрации фенилаланина и фенилпирувата в тканях ведут к подавлению процессов усвоения глюкозы и в силу этого к энергетическому голоду. Для того чтобы уменьшить концентрацию этих веществ в организме, сразу по выявлении фенилкетону-рии ребенку назначают диету, содержащую очень малые количества фенилаланина. При использовании такой «синтетической» диеты в течение ряда лет клинические проявления фенилкетонурии у таких детей выражены слабо или совсем отсутствуют.

Другим методом лечения является стимуляция остаточной активности мутантного фермента. Так, при генетическом дефекте глюкозо-6-фосфатазы печени, одной из форм гликогенозов у детей, применяется индукция 1 аномального фермента с помощью кортизона - гормона надпочечников. При гомоцистинурии были проведены исследования цистатионинсинтетазы - фермента, дефектного при этом заболевании. В результате была разработана схема лечения витамином Вб, основанная на индукции активности мутантного фермента, и достигнуто значительное клиническое улучшение.

К сожалению, в большинстве случаев известных генных биохимических дефектов не представляется возможным подобрать соответствующую диету или индуцировать неактивный фермент. В связи с этим постоянно предпринимаются попытки изыскать способ доставки нормального фермента к месту его обычной деятельности в организме. При ряде генных мутаций был получен временный успех при вливании больным массы нормальных белых кровяных клеток.

Индукция - стимуляция синтеза данного фермента в ответ на специфическое воздействие.

В настоящее время имеется возможность очистки и выделения в достаточно чистом виде многих ферментов. Для защиты этих белков на их пути к тканям больных от разрушения сывороточными ферментами используются различные биологические «капсулы».

«Генная инженерия», ее принципы и трудности. Специалисты по генетике микробов уже давно используют феномен генетической трансформации и трансдукции. Генетическая трансформация отдельных признаков бактерий происходит при добавлении к ним ДНК другой разновидности. Например, у пневмококков, не имеющих слизистой оболочки, она появляется через некоторое время после обработки их препаратом ДНК, полученным из бактерий «слизистой» линии. Генетическая трансформация возможна и для клеток человека. ДНК, трансформирующая генетические признаки, по-видимому, включается в геном клеток и активно функционирует как генетическая единица. Однако «приживление» генов подобным образом в цельном организме больного-мутанта очень затруднительно. Дело в том, что в биологических жидкостях и клетках высокоактивны ДНК-азы - ферменты, разрушающие введенную ДНК.

Трансдукция генов до недавних пор казалась возможной только в мире бактерий. Понятие «трансдукция» можно определить как перенос одного или группы генов из одной клетки в другую с помощью вируса. Наиболее подробно изучена трансдукция генов с участием одного из вирусов кишечной палочки человека, известного как фаг «лямбда».

При заражении фагом «лямбда» бактериальной клетки ДНК вируса встраивается в кольцевую хромосому клетки-хозяина. Зараженная клетка не погибает и, размножаясь, воспроизводит в несметном числе геном фага. Когда вирус опять активируется и разрушает клетку-хозяина, то ново-образующиеся частицы фага, кроме своих генов, могут содержать и гены бактерии. Так удалось получить линии фага «лямбда», имеющие в своем

составе ген галактозо-1-фосфатуридилтрансферазы - важного фермента обмена сахаров.

Трансплантация этого гена в клетки человека удалась в 1971 г. американским ученым Мериллу, Гейеру и Петриччиани. Объектом в этих опытах служили клетки кожи больных с отсутствием активности галактозо-1 -фосфатуридилтрансферазы (галактоземия). Донором служил упомянутый фаг «лямбда», содержащий данный ген микробного происхождения. В зараженных клетках больных галактоземией появилась активность галактозо-1-фосфатуридилтрансферазы. Таким образом, пересадка гена от бактерии человеку стала фактом. Приобретенная клетками активность фермента наследовалась дочерними клетками, т. е. пересаженный ген не «отторгался».

Сенсационное сообщение американских ученых вызвало широкий интерес. Открылась перспектива лечения тяжелых врожденных ошибок обмена веществ. Однако работы в этом направлении не сулят скорых успехов. Проблема заключается в получении достаточного ассортимента вирусов, несущих определенные гены, способных интегрироваться в геном человеческих клеток в организме.

В последнее время были разработаны методики синтеза отдельных генов. Так, из красных кровяных телец кролика были выделены полирибосомы, а из них - и-РНК глобина (белковой части гемоглобина). Из этих дифференцированных клеток ее сравнительно легко выделить. Далее с помощью вирусного фермента РНК-зависимой ДНК-полимеразы американскими учеными впервые была синтезирована ДНК копия этой и-РНК. Однако данным методом можно получить лишь структурный участок гена без важных регуляторных «придатков». Тем не менее методы получения генов «в пробирке» представляют большой интерес.

Медико-генетическая консультация. Несмотря на существенные успехи в лечении наследственных заболеваний, ведущая роль в борьбе с ними принадлежит профилактике. В этом направлении достигнуты значительные успехи.

Профилактические мероприятия могут проводиться в различных направлениях. Сюда относится изучение конкретных механизмов мутационного процесса, контроль за уровнем радиации и -воздействием различных мутагенов. Патологическое развитие организма, смерть эмбриона, плода или ребенка могут быть вызваны любым из известных типов мутаций. Мутации, ведущие к гибели плода во время внутриутробного периода или вскоре после рождения, называют летальными. Изучение механизмов летальных эффектов хромосомных и генных мутаций еще только начато, но имеет большое значение для Профилактики наследственной патологии.

Не менее важной является профилактика инфекций и травм, способствующих во многих случаях проявлению или ухудшению течения наследственного заболевания. Вредное воздействие факторов внешней среды, взаимодействующих с генетическими факторами, особенно сказывается в эмбриональном периоде развития организма. Существенно влияет и пожилой возраст матери, увеличивающий риск появления у нее больного потомства.

Наибольшее значение для профилактики наследственных заболеваний имеет в настоящее время медико-генетическое консультирование. С этой целью развернуты специальные медико-генетические консультации или медико-генетические кабинеты при крупных лечебно-профилактических объединениях, где имеется возможность проведения специальных методов исследования - цитологического, биохимического и иммунологического.

Генетическое консультирование с профилактической целью наиболее эффективно не тогда, когда обращаются после рождения больного ребенка, а тогда, когда оценивается степень риска рождения у родительской пары детей с какими-либо генетическими дефектами, особенно в тех случаях, когда в семье имеется или предполагается наследственная патология.

Вопросы о медико-генетическом прогнозе для потомства могут возникать и у лиц, состоящих в кровнородственном браке, у супругов, имеющих несоответствие по резус-фактору крови, а также в случаях наличия у женщин повторных выкидышей и мертворожденных. В настоящее время доказана значительная роль хромосомных аномалий в мертворождаемости и самопроизвольных абортах.

Медико-генетическое консультирование базируется на установлении характера наследования в каждом конкретном случае. Расчет риска заболевания определяется

степенью его наследственной обусловленности и типом наследственной передачи. При доминантном наследовании патологического гена 50% детей будут больными и передадут свое заболевание последующему поколению. Остальные 50% останутся здоровыми и будут иметь вполне здоровое потомство.

При аутосомно-рецессивном наследовании в случаях, если оба родителя являются гетерозиготными носителями мутантного гена, 25% их детей будут больными (гомозиготами), 50% являются фенотипически здоровыми, но являются гетерозиготными носителями по тому же мутантному гену, который могут передавать своему потомству, 25% остаются свободными от заболевания. При рецессивно передающихся заболеваниях противопоказаны кровно-родственные браки. С этой точки зрения представляется важной задачей выявление гетерозигот-ности у членов отягощенной семьи и вообще в популяции, так как именно гетерозиготные носители мутантного гена поддерживают постоянную концентрацию его в популяции.

При наследовании заболеваний, сцепленных с полом (Х-хромосомой), фенотипически здоровая женщина передает заболевание половине своих сыновей, которые являются больными. Половина ее дочерей также являются носителями мутантного гена, будучи внешне здоровыми.

Иногда дача заключения оказывается весьма сложной. Это обусловлено тем, что имеется ряд заболеваний, сходных по своему проявлению с наследственными, но вызванных воздействием факторов внешней среды (так называемые фенокопии); многие наследственные болезни имеют значительные вариации в своем проявлении (так называемый полиморфизм).

Далеко не каждое врожденное и не каждое семейное заболевания являются наследственными, так же как и не всякое заболевание с наследственной этиологией является врожденным или семейным. Особенно это касается врожденных уродств развития, которые в ряде случаев могут быть вызваны не генетическими механизмами, а патогенным воздействием на плод во время беременности. Так, в некоторых зарубежных странах у женщин, принимавших во время беременности снотворные препараты, рождались дети с уродствами.

Вероятность наследования патологического гена в отягощенной семье сохраняется для каждого последующего ребенка независимо от того, был ли здоровым или больным ранее родившийся ребенок.

В тех случаях, когда тип наследственной передачи мутантного гена не может быть установлен или носит полигенный характер, медико-генетическое консультирование основывается на эмпирически установленной вероятности риска рождения больного ребенка. Меди-ко-генетическое консультирование, основанное на вычислении степени риска заболевания у родственников больных, за последнее время все в большей степени конкретизируется благодаря расширению возможностей диагностики гетерозиготного носительства. Методы выявления гетерозиготного носительства разрабатываются давно, но надежное определение его стало возможным лишь в связи с прогрессом биохимических методов диагностики. В настоящее время более чем при 200 заболеваниях установлено гетерозиготное носительство, что является необходимым для научно обоснованной медико-генетической консультации.

Весьма перспективным методом профилактики наследственных заболеваний можно считать пренатальную диагностику. При подозрении на рождение ребенка с наследственным дефектом проводят на 14-16-й неделе беременности амниоцентез и получают определенное количество околоплодной жидкости. В ней содержатся слущенные клетки эпителия зародыша. Исследование этого материала позволяет определить наследственный дефект еще до рождения ребенка. В настоящее время этим методом можно диагностировать более 50 наследственных заболеваний обмена веществ и все хромосомные болезни.

Врач, дающий медико-генетический совет, разъясняет консультируемому степень риска возникновения заболевания у его детей или родственников. Окончательное решение принадлежит самому консультируемому, врач не может запретить ему иметь детей, а только помогает реально оценить степень опасности. При правильном медико-генетическом разъяснении обычно больной сам приходит к правильному решению. Значительную роль при этом играет не только величина степени риска, но и тяжесть наследственной патологии:

значительные уродства, глубокой степени слабоумие. В этих случаях, особенно если в семье имеется такой ребенок, даже при редко встречающемся заболевании супруги ограничивают дальнейшее деторождение. Иногда бывает и так, что степень риска рождения ребенка с наследственной патологией преувеличивается членами семьи и совет врача рассеивает необоснованные опасения.

Наследственные заболевания – это болезни, появление и развитие которых связано со сложными нарушениями в наследственном аппарате клеток, передаваемых через гаметы (репродуктивные клетки). Обусловлено возникновение таких недугов нарушениями в процессах хранения, реализации и передачи генетической информации.

Причины появления наследственных заболеваний

В основе болезней данной группы лежат мутации генной информации. Они могут быть выявлены у ребенка сразу после рождения, а могут проявиться у уже взрослого человека спустя долгое время.

Появление наследственных заболеваний может быть связано только с тремя причинами:

  1. Нарушение хромосом. Это добавление лишней хромосомы или утеря одной из 46.
  2. Изменения структуры хромосом. Вызывают болезни изменения, происходящие в половых клетках родителей.
  3. Генные мутации. Заболевания возникают из-за мутации как отдельных генов, так и из-за нарушения комплекса генов.

Генные мутации относят к наследственно предрасположенным, но их проявление зависит от влияния внешней среды. Именно поэтому к причинам такого наследственного заболевания, как сахарный диабет или гипертоническая болезнь, помимо мутаций, относятся также неправильное питание, длительное перенапряжение нервной системы, и психические травмы.

Виды наследственных заболеваний

Классификация таких болезней тесно связана с причинами их появления. Видами наследственных заболеваний являются:

  • генетические болезни – возникают в результате повреждения ДНК на уровне гена;
  • хромосомные болезни – связаны со сложной аномалией количества хромосом или же с их аберрациями;
  • болезни с наследственной предрасположенностью.
Методы определения наследственных болезней

Для качественного лечения знать, какие бывают наследственные заболевания человека, недостаточно, нужно обязательно вовремя выявить их или вероятность их появления. Для этого ученые используют несколько методов:

  1. Генеалогический. С помощью изучении родословной человека можно выявить особенности наследования как нормальных, так и патологических признаков организма.
  2. Близнецовый. Такая диагностика наследственных заболеваний представляет собой изучение сходства и различий близнецов для выявления влияния внешней среды и наследственности на развитие различных генетических болезней.
  3. Цитогенетический. Исследование структуры хромосом у больных и здоровых людей.
  4. Биохимический метод. Наблюдение за особенностями .

Кроме этого, практически все женщины во время беременности проходят ультразвуковое исследование. Оно позволяет по признакам плода выявлять врожденные пороки развития, начиная с I-го триместра, а также заподозрить наличие у ребенка некоторых наследственных заболеваний нервной системы или хромосомных болезней.

Профилактика наследственных заболеваний

Еще совсем недавно даже ученые не знали, каковы возможности лечения наследственных заболеваний. Но изучение патогенеза позволило найти путь излечения некоторых видов болезней. К примеру, пороки сердца сегодня можно успешно вылечить хирургическим путем.

Множество генетических недугов, к сожалению, так до конца и не изучены. Поэтому в современной медицине огромное значение отводится профилактике наследственных заболеваний.

К методам предотвращения появления таких болезней относят планирование деторождения и отказ от вынашивания ребенка в случаях высокого риска врожденной патологии, прерывание беременности при высокой вероятности заболевания плода, а также коррекция проявления патологических генотипов.



Новое на сайте

>

Самое популярное