Домой Питание Как строится прямоугольная изометрия окружности. Способы построения в изометрической проекции плоских фигур

Как строится прямоугольная изометрия окружности. Способы построения в изометрической проекции плоских фигур

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием . Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) - на осях х и z (рис. 97, б).

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).

Ответьте на вопросы


1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42


На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба - верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?

Начнем с того, что определимся с направлением осей в изометрии.

Возьмем для примера не очень сложную деталь. Это параллелепипед 50х60х80мм, имеющий сквозное вертикальное отверстие диаметром 20 мм и сквозное прямоугольное отверстие 50х30мм.

Начнем построение изометрии с вычерчивания верхней грани фигуры. Расчертим на требуемой нам высоте тонкими линиями оси Х и У. Из получившегося центра отложим вдоль оси Х 25 мм (половина от 50) и через эту точку проведем отрезок параллельный оси У длиной 60 мм. Отложим по оси У 30 мм (половина от 60) и через полученную точку проведем отрезок параллельный оси Х длиной 50 мм. Достроим фигуру.

Мы получили верхнюю грань фигуры.

Не хватает только отверстия диаметром 20 мм. Построим это отверстие. В изометрии окружность изображается особым образом - в виде эллипса. Это связано с тем, что мы смотрим на нее под углом. Изображение окружностей на всех трех плоскостях я описал в отдельном уроке , а пока лишь скажу, что в изометрии окружности проецируются в эллипсы с размерами осей a=1,22D и b=0,71D. Эллипсы, обозначающие окружности на горизонтальных плоскостях в изометрии изображаются с осью а расположенной горизонтально, а ось b - вертикально. При этом расстояние между точками расположенными на оси Х или У равно диаметру окружности (смотри размер 20 мм).

Теперь, из трех углов нашей верхней грани начертим вниз вертикальные ребра - по 80 мм и соединим их в нижних точках. Фигура почти полностью начерчена - не хватает только прямоугольного сквозного отверстия.

Чтобы начертить его опустим вспомогательный отрезок 15 мм из центра ребра верхней грани (указан голубым цветом). Через полученную точку проводим отрезок 30 мм параллельный верхней грани (и оси Х). Из крайних точек чертим вертикальные ребра отверстия - по 50 мм. Замыкаем снизу и проводим внутреннее ребро отверстия, оно параллельно оси У.

На этом простая изометрическая проекция может считаться завершенной. Но как правило, в курсе инженерной графики выполняется изометрия с вырезом одной четверти. Чаще всего, это четверть нижняя левая на виде сверху - в этом случае получается наиболее интересный с точки зрения наблюдателя разрез (конечно же все зависит от изначальной правильности компоновки чертежа, но чаще всего это так). На нашем примере эта четверть обозначена красными линиями. Удалим ее.

Как видим из получившегося чертежа, сечения полностью повторяют контур разрезов на видах (смотри соответствие плоскостей обозначенных цифрой 1), но при этом они вычерчены параллельно изометрическим осям. Сечение же второй плоскостью повторяет разрез выполненный на виде слева (в данном примере этот вид мы не чертили).

Надеюсь, этот урок оказался полезным, и построение изометрии вам уже не кажется чем-то совершенно неведомым. Возможно, некоторые шаги придется прочитать по два, а то и по три раза, но в конечном итоге понимание должно будет прийти. Удачи вам в учебе!

Как начертить окружность в изометрии?

Как вы наверняка знаете, при построении изометрии окружность изображается в виде эллипса. Причем вполне конкретного: длина большой оси эллипса AB=1.22*D, а длина малой оси CD=0.71*D (где D - диаметр той самой исходной окружности, которую мы хотим начертить в изометрической проекции). Как начертить эллипс зная длину осей? Об этом я рассказывал в отдельном уроке . Там рассматривалось построение больших эллипсов. Если же исходная окружность имеет диаметр где-то до 60-80 мм, то скорее всего мы сможем начертить ее и без лишних построений, используя 8 опорных точек. Рассмотрим следующий рисунок:

Это фрагмент изометрии детали, полный чертеж которой можно увидеть ниже. Но сейчас мы говорим о построении эллипса в изометрии. На данном рисунке AB - большая ось эллипса (коэффициент 1.22), CD - малая ось (коэффициент 0.71). На рисунке половина короткой оси (ОD) попала в вырезанную четверть и отсутствует - используется полуось СО (не забудьте об этом, когда будете откладывать значения по короткой оси - полуось - имеет длину равную половине короткой оси). Итак, мы уже имеем 4 (3) точки. Теперь отложим по двум оставшимся изометрическим осям точки 1,2,3 и 4 - на расстоянии равном радиусу исходной окружности (таким образом 12=34=D). Через полученные восемь точек уже можно провести достаточно ровный эллипс, либо аккуратно от руки, либо по лекалу.

Для лучшего понимания направления осей эллипсов в зависимости от того, какое направление имеет циллиндр, рассмотрим три разных отверстия в детали, имеющей форму параллелепипеда. Отверстие - тот же цилиндр, только из воздуха:) Но для нас это особого значения не имеет. Полагаю, что ориентируясь на эти примеры вы без труда сможете правильно расположить оси своих эллипсов. Если же обобщить, то получится так: большая ось эллипса перпендикулярна той оси, вокруг которой образован цилиндр (конус).

Построение аксонометрических проекций

5.5.1. Общие положения. Ортогональные проекции объекта дают полное представление о его форме и размерах. Однако очевидным недостатком таких изображений является их малая наглядность – образная форма слагается из нескольких изображений, выполненных на разных плоскостях проекций. Только в результате опыта развивается умение представлять себе форму объекта – «читать чертежи».

Затруднения при чтении изображений в ортогональных проекциях обусловили возникновение ещё одного метода, который должен был объединить простоту и точность ортогональных проекций с наглядностью изображения,– метода аксонометрических проекций.

Аксонометрической проекцией называют наглядное изображение, получаемое в результате параллельного проецирования предмета вместе с осями прямоугольных координат, к которым он отнесен в пространстве, на какую-либо плоскость.

Правила выполнения аксонометрических проекций устанавливаются ГОСТ 2.317-69.

Аксонометрия (от греческого axon – ось, metreo – мерю) – процесс построения, основанный на воспроизведении размеров предмета по направлениям трёх его осей – длины, ширины, высоты. В результате получается объёмное изображение, воспринимаемое как осязаемая вещь (рис. 56б), в отличие от нескольких плоских изображений, не дающих образной формы предмета (рис. 56а).

Рис. 56. Наглядное изображение аксонометрии

В практической работе аксонометрические изображения применяются для различных целей, поэтому были созданы различные их виды. Общим для всех видов аксонометрии является то, что за основу изображения любого предмета принимается то или иное расположение осей OX, OY, OZ , по направлению которых определяют размеры предмета – длину, ширину, высоту.

В зависимости от направления проецирующих лучей по отношению к картинной плоскости, аксонометрические проекции подразделяются на:

а) прямоугольные – проецирующие лучи перпендикулярны картинной плоскости (рис. 57а);

б) косоугольные – проецирующие лучи наклонены к картинной пло­скости (рис. 57б).

Рис. 57. Прямоугольная и косоугольная аксонометрия

В зависимости от положения предмета и осей координат относительно плоскостей проекций, а также в зависимости от направления проециро­вания единицы измерения проецируются в общем случае с искажением. Искажаются и размеры проецируемых предметов.

Отношение длины аксонометрической единицы к ее истинной вели­чине называют коэффициентом искажения для данной оси.

Аксонометрические проекции называют: изометрическими , если коэф­фициенты искажения по всем осям равны (х= у= z ); диметрическими, если коэффициенты искажения равны по двум осям(x=z );триметрическими, если коэффициенты искажения различны.

Для аксонометрических изображений предметов применяют пять видов аксонометрических проекций, установленных ГОСТ 2.317 – 69:

прямоугольные изометрические и диметрические;

косоугольные фронтальные диметрические, фронтальныеизомет­рические , горизонтальные изометрические.

Имея ортогональные проекции любого предмета, можно построить его аксонометрическое изображение.

Всегда необходимо выбирать из всех видов лучший вид данного изо­бражения – тот, который обеспечивает хорошую наглядность и простоту построения аксонометрии.

5.5.2. Общий порядок построения. Общий порядок построения любого вида аксонометрии сводится к следующему:

а) выбирают оси координат на ортогональной проекции детали;

б) строят эти оси в аксонометрической проекции;

в) строят аксонометрию полного изображения предмета, а затем и его элементов;

г) наносят контуры сечения детали и убирают изображение отсечённой части;

д) обводят оставшуюся часть и проставляют размеры.

5.5.3. Прямоугольная изометрическая проекция. Этот вид аксонометрической проекции широко распространён благо­даря хорошей наглядности изображений и простоте построений. В пря­моугольной изометрии аксонометрические оси OX, OY, OZ расположены под углами 120 0 одна к другой. Ось OZ вертикальна. Оси OX и OY удобно строить, откладывая с помощью угольника от горизонтали углы 30 0 . Поло­жение осей можно также определить, отложив от начала координат в обе стороны по пять произвольных равных единиц. Через пятые деления про­водят вниз вертикальные линии и откладывают на них по 3 такие же еди­ницы. Действительные коэффициенты искажения по осям равны 0,82. Что­бы упростить построение, применяют приведённый коэффициент, равный 1. В этом случае при построении аксонометрических изображений измере­ния предметов, параллельные направлениям аксонометрических осей, от­кладывают без сокращений. Расположение аксонометрических осей и по­строение прямоугольной изометрии куба, в видимые грани которого впи­саны окружности, показаны на рис. 58, а, б.

Рис. 58. Расположение осей прямоугольной изометрии

Окружности, вписанные в прямоугольную изометрию квадратов – трех видимых граней куба, – представляют собой эллипсы. Большая ось эллип­са равна 1,22 D , а малая – 0,71 D , где D – диаметр изображаемой окруж­ности. Большие оси эллипсов перпендикулярны соответствующим аксоно­метрическим осям, а малые оси совпадают с этими осями и с направле­нием, перпендикулярным плоскости грани куба (на рис. 58б – утолщенные штрихи).

При построении прямоугольной аксонометрии окружностей, лежащих в координатных или им параллельных плоскостях, руководствуются пра­вилом: большая ось эллипса перпендикулярна той координатной оси, ко­торая отсутствует в плоскости окружности.

Зная размеры осей эллипса и проекции диаметров, параллельных координатным осям, можно построить эллипс по всем точкам, соединяя их с помощью лекала.

Построение овала по четырём точкам – концам сопряжённых диамет­ров эллипса, расположенных на аксонометрических осях, показано на рис. 59.

Рис. 59. Построение овала

Через точкуО пересечения сопряжённых диаметров эллипса проводят горизонтальную и вертикальную прямые и из неё описывают окружность радиусом, равным половине сопряжённых диаметров АВ=СД . Эта окружность пересечёт вертикальную линию в точках 1 и 2 (центры двух дуг). Из точек 1, 2 проводят дуги окружностей радиусом R=2-А (2-D) или R=1-C (1-B) . Радиусом ОЕ делают засечки на горизонтальной прямой и получают еще два центра сопрягаемых дуг 3 и 4 . Далее соединяют центры 1 и 2 с центрами 3 и 4 линиями, которые в пересечении с дугами радиусомR дают точки сопряжений K, N, P, M. Крайние дуги проводят из центров 3 и 4 радиусом R 1 =3-М (4-N).



Построение прямоугольной изометрии детали, заданной её проекция­ми, производят в следующем порядке (рис. 60, 61).

1. Выбирают оси координат X, Y, Z на ортогональных проекциях.

2. Строят аксонометрические оси в изометрии.

3. Строят основание детали – параллелепипед. Для этого от начала координат по оси Х откладывают отрезки ОА и ОВ , соответственно равные отрезкам О 1 А 1 и О 1 В 1 , взятым с горизонтальной проекции детали, и получают точкиА и В , через которые проводят прямые, параллельные оси Y , и откладывают отрезки, равные половине ширины параллелепипеда.

Получают точки C, D, J, V , которые являются изометрическими проек­циями вершин нижнего прямоугольника, и соединяют их прямыми, па­раллельными оси Х . От начала координат О по оси Z откладывают отрезок ОО 1 , равный высоте параллелепипеда О 2 О 2 ´; через точку О 1 проводят оси Х 1 , Y 1 и строят изометрию верхнего прямоугольника. Вершины прямо­угольников соединяют прямыми, параллельными оси Z .

4. Строят аксонометрию цилиндра. По оси Z от О 1 откладывают отре­зок О 1 О 2 , равный отрезку О 2 ´О 2 ´´ , т.е. высоте цилиндра, и через точку О 2 проводят оси X 2 ,Y 2 . Верхнее и нижнее основания цилиндра являются окружностями, расположенными в горизонтальных плоскостях X 1 O 1 Y 1 и X 2 O 2 Y 2 ; строят их аксонометрические изображения – эллипсы. Очерковые образующие цилиндра проводят касательно к обоим эллипсам (парал­лельно оси Z ). Построение эллипсов для цилиндрического отверстия вы­полняют аналогично.

5. Строят изометрическое изображение ребра жёсткости. От точки О 1 по оси Х 1 откладывают отрезок О 1 Е=О 1 Е 1 . Через точку Е проводят прямую, параллельную оси Y , и откладывают в обе стороны отрезки, равные половине ширины ребра Е 1 К 1 и Е 1 F 1 . Из полученных точек К, Е, F параллельно оси Х 1 проводят прямые до встречи с эллипсом (точки Р, N, М ). Далее проводят прямые, параллельные оси Z (линии пересечения плоскостей ребра с поверхностью цилиндра), и на них откладывают отрезки РТ, MQ и NS , равные отрезкам Р 2 Т 2 , M 2 Q 2 , и N 2 S 2 . Точки Q, S, T соединяют и обводят по лекалу, а точки К, Т и F, Q соединяют прямыми.

6. Строят вырез части заданной детали, для чего проводят две секущие плоскости: одну через оси Z и Х , а другую – через оси Z и Y .

Первая секущая плоскость разрежет нижний прямоугольник паралле­лепипеда по оси Х (отрезок ОА ), верхний – по оси Х 1 , а ребро – по линиям EN и ES , цилиндры – по образующим, верхнее основание цилиндра – по оси Х 2 .

Аналогично вторая секущая плоскость разрежет верхний и нижний прямоугольники по осям Y и Y 1 , а цилиндры – по образующим, верхнее основание цилиндра – по оси Y 2 .

Плоские фигуры, полученные от сечения, заштриховываются. Для определения направления штриховки необходимо на аксонометрических осях отложить от начала координат равные отрезки, а затем концы их со­единить.


Рис. 60. Построение трех проекций детали

Рис. 61. Выполнение прямоугольной изометрии детали


Линии штриховки для сечения, расположенного в плоскости XOZ , будут параллельны отрезку 1-2 , а для сечения, лежащего в плоскости ZOY , – параллельны отрезку 2-3 . Удаляют все невидимые линии и обводят контурные линии. Изометрическую проекцию применяют в тех случаях, когда необходимо построить окружности в двух или трёх плоскостях, параллельных координатным осям.

5.5.4. Прямоугольная диметрическая проекция. Аксонометрические изображения, построенные прямоугольной димет­рии, обладают наилучшей наглядностью, однако построение изображений сложнее, чем в изометрии. Расположение аксонометрических осей в диметрии следующее: ось OZ направлена вертикально, а оси и OY составляют с горизонтальной линией, проведённой через начало координат (точка О ), углы, соответственно, 7º10´ и 41º25´. Положение осей можно также определить, отложив от начала координат в обе стороны по восемь равных отрезков; через восьмые деления проводят вниз линии и на левой вертикали откладывают один отрезок, а на правой – по семь отрезков. Соединив полученные точки с началом координат, определяют направление осей ОХ и ОУ (рис. 62).

Рис. 62. Расположение осей в прямоугольной диметрии

Коэффициенты искажения по осям ОХ , OZ равны 0,94, а по оси ОY – 0,47. Для упрощения в практике пользуются приведёнными коэффициентами искажения: по осям OX и OZ коэффициент равен 1, по оси ОY – 0,5.

Построение прямоугольной диметрии куба с окружностями, вписанными в три видимые его грани показано на рис. 62б. Окружности, вписанные в грани, представляют собой эллипсы двух видов. Оси эллипса, расположенного в грани, которая параллельна координатной плоскости XOZ , равны: большая ось – 1,06 D ; малая – 0,94 D , где D – диаметр окружности, вписанной в грань куба. В двух других эллипсах большие оси равны 1,06 D , а малые – 0,35 D .

Для упрощения построений можно заменить эллипсы овалами. На рис. 63 даны приёмы построения четырех центровых овалов, заменяющих эллипсы. Овал в передней грани куба (ромба) строится следующим образом. Из середины каждой стороны ромба (рис. 63а) проводят перпендикуляры до пересечения с диагоналями. Полученные точки 1-2-3-4 будут являться центрами сопрягающих дуг. Точки сопряжений дуг находятся посредине сторон ромба. Построение можно выполнить и другим способом. Из середин вертикальных сторон (точки N и M ) проводят горизонтальные прямые линии до пересечения с диагоналями ромба. Точки пересечения будут искомыми центрами. Из центров 4 и 2 проводят дуги радиусом R , а из центров 3 и 1 – радиусом R 1 .

Рис. 63. Построение окружности в прямоугольной диметрии

Овал, заменяющий два других эллипса, выполняют следующим образом (рис. 63б). Прямые LP и MN , проведенные через середины противоположных сторон параллелограмма, пересекаются в точке S . Через точку S проводят горизонтальную и вертикальную линии. Прямую LN , соединяющую середины смежных сторон параллелограмма, делят пополам, и через ее середину проводят перпендикуляр до пересечения его с вертикальной линией в точке 1 .

на вертикальной прямой откладывают отрезок S-2 = S-1 .Прямые2-М и 1-N пересекают горизонтальную прямую в точках 3 и 4 . Полученные точки 1 , 2, 3 и 4 будут центрами овала. Прямые 1-3 и 2-4 определяют точки сопряжения T и Q .

из центров 1 и 2 описывают дуги окружностей TLN и QPM , а из центров 3 и 4 – дуги MT и NQ . Принцип построения прямоугольной диметрии детали (рис. 64) аналогичен принципу построения прямоугольной изометрии, приведённой на рис. 61.

Выбирая тот или иной вид прямоугольной аксонометрической проекции, следует иметь в виду, что в прямоугольной изометрии поворот боковых сторон предмета получается одинаковым и поэтому изображение иногда оказывается не наглядным. Кроме того, часто диагональные в плане ребра предмета на изображении сливаются в одну линию (рис. 65б). Эти недостатки отсутствуют на изображениях, выполненных в прямоугольной диметрии (рис. 65в).

Рис. 64. Построение детали в прямоугольной диметрии

Рис. 65. Сравнение различных видов аксонометрии

5.5.5. Косоугольная фронтальная изометрическая проекция.

Аксонометрические оси располагаются следующим образом. Ось OZ - вертикальная, ось ОХ – горизонтальная, ось ОУ относительно горизон­тальной прямой расположена над углом 45 0 (30 0 , 60 0) (рис. 66а). По всем осям размеры откладывают без сокращений, в истинную величину. На рис. 66б показана фронтальная изометрия куба.

Рис. 66. Построение косоугольной фронтальной изометрии

Окружности, расположенные в плоскостях, параллельных фронтальной плоскости, изображаются в натуральную величину. Окружности, расположенные в плоскостях, параллельных горизонтальной и профильной плоскостям, изображаются в виде эллипсов.

Рис. 67. Деталь в косоугольной фронтальной изометрии

Направление осей эллипсов совпадает с диагоналями граней куба. Для плоскостей ХОY и ZОY величина большой оси равна 1,3 D , а малой – 0,54 D (D – диаметр окружности).

Пример фронтальной изометрии детали приведён на рис. 67.

Аксонометрические деталей и узлов машин нередко используются в конструкторской документации для того, чтобы наглядно показать конструктивные особенности детали (сборочного узла), представить, как выглядит деталь (узел) в пространстве. В зависимости от того, под каким углом расположены оси координат, аксонометрические проекции подразделяются на прямоугольные и косоугольные.

Вам понадобится

  • Программа для построения чертежей, карандаш, бумага, ластик, транспортир.

Инструкция

Прямоугольные проекции. Изометрическая проекция. При построении прямоугольной изометрической проекции учитывают коэффициент искажения по осям X, Y, Z, равный 0,82, при этом , параллельные плоскостям проекций, проецируются на аксонометрические плоскости проекций в виде эллипсов, ось которых равна d, а ось – 0,58d, где d – диаметр исходной окружности. Для простоты расчетов изометрическую проекцию без искажения по осям (коэффициент искажения равен 1). В этом случае проецируемые окружности будут иметь вид эллипсов с осью, равной 1,22d, и малой осью, равной 0,71d.

Диметрическая проекция. При построении прямоугольной диметрической проекции коэффициент искажения по осям X и Z, равный 0,94, а по оси Y – 0.47. На диметрическую проекцию упрощенно выполняют без искажения по осям X и Z и с коэффициентом искажения по оси Y = 0,5. Окружность, параллельная фронтальной плоскости проекций, проецируется на нее в виде эллипса с большой осью, равной 1,06d и малой осью, равной 0,95d, где d – диаметр исходной окружности. Окружности, параллельные двум другим аксонометрическим плоскостям, проецируются на них в виде эллипсов с осями, равными соответственно 1.06d и 0,35d.

Косоугольные проекции. Фронтальная изометрическая проекция. При построении фронтальной изометрической проекции стандартом установлен оптимальный угол наклона оси Y к горизонтали 45 градусов. Допускаются углы наклона оси Y к горизонтали - 30 и 60 градусов. Коэффициент искажения по осям X, Y и Z равен 1. Окружность 1, расположенная фронтальной плоскости проекций, проецируется на нее без искажений. Окружности, параллельные горизонтальной и профильной плоскостям проекций, выполняются в виде эллипсов 2 и 3 с большой осью, равной 1.3d и малой осью, равной 0,54d, где d – диаметр исходной окружности.

Горизонтальная изометрическая проекция. Горизонтальная изометрическая проекция детали (узла) строится на аксонометрических осях, расположенных, как показано на рис. 7. Допускается изменять угол между осью Y и горизонталью на 45 и 60 градусов, оставляя неизменным угол 90 градусов между осями Y и X. Коэффициент искажения по осям X, Y, Z равен 1. Окружность, лежащая в плоскости, параллельной горизонтальной плоскости проекций, проецируется в виде окружности 2 без искажения. Окружности, параллельные фронтальной и профильной плоскостям проекций, вид эллипсов 1 и 3. Размеры осей эллипсов связаны с диаметром d исходной окружности следующими зависимостями:
эллипс 1 – большая ось равна 1,37d, малая ось – 0, 37d; эллипс 3 – большая ось равна 1,22d, малая ось – 0.71d.

Фронтальная диметрическая проекция. Косоугольная фронтальная диметрическая проекция детали (узла) строится на аксонометрических осях, подобных осям фронтальной изометрической проекции, но от нее коэффициентом искажения по оси Y, который равен 0,5. По осям X и Z коэффициент искажения равен 1. Также допустимо изменение угла наклона оси Y к горизонтали до значений 30 и 60 градусов. Окружность, лежащая в плоскости, параллельной фронтальной аксонометрической плоскости проекций, проецируется на нее без искажений. Окружности, параллельные плоскостям проекций горизонтальной и профильной, вычерчиваются в виде эллипсов 2 и 3. Размеры эллипсов от размера диаметра окружности d выражаются зависимостью:
большая ось эллипсов 2 и 3 равна 1,07d; малая ось эллипсов 2 и 3 равна 0,33d.

Видео по теме

Обратите внимание

Аксонометрическая проекция (от др.-греч. ἄξων «ось» и др.-греч. μετρέω «измеряю») - способ изображения геометричеук4уеских предметов на чертеже при помощи параллельных проекций.

Полезный совет

Плоскость, на которую производится проецирование, называется аксонометрической или картинной. Аксонометрическая проекция называется прямоугольной, если при параллельном проецировании проецирующие лучи перпендикулярны картинной плоскости (=90) и косоугольной, если лучи составляют с картинной плоскостью угол 0

Источники:

  • Справочник по черчению
  • аксонометрическая проекция окружности

Изображение предмета на чертеже должно давать полное представление о его форме и конструкторских особенностях и может быть выполнено при помощи прямоугольного проецирования, линейной перспективы и аксонометрической проекции.

Инструкция

Помните, что диметрия является одним из видов аксонометрической проекции предмета, при котором изображение жестко привязывают к натуральной системе координат Oxyz. Диметрия тем, что два коэффициента искажения по осям собой равны и отличны от третьего. Диметрия прямоугольной и фронтальной.

При прямоугольной диметрии ось z вертикально, ось х с горизонтальной линией угол 7011`, а угол y – 410 25`. Приведенный коэффициент искажения по оси у ky = 0,5 (реальный 0,47), kx = kz = 1 (реальные 0,94). ГОСТ 2.317–69 рекомендует пользоваться только приведенными коэффициентами при построении изображений в прямоугольной диметрической проекции.

Чтобы начертить прямоугольную диметрическую проекцию, отметьте на чертеже вертикальную ось Оz. Для построения оси х изобразите на чертеже прямоугольник с катетами 1 и 8 единиц, вершиной которого является точка О. Гипотенуза прямоугольника станет осью х, которая отклоняется от горизонта на угол 7011`. Для построения оси у также изобразите прямоугольный треугольник с вершиной в точке О. Величина катетов в данном случае 7 и 8 единиц. Полученная гипотенуза будет осью у, отклоняющейся от горизонта на угол 410 25`.

При построении диметрической проекции размер предмета получается увеличенным в 1,06 раз. При этом изображение проецируются в эллипс в координатных плоскостях хОу и уО с большей осью, равной 1.06d, где d – диаметр проецируемой окружности. Малая ось эллипса равна 0.35 d.

Видео по теме

Обратите внимание

Во многих отраслях промышленности используются чертежи. Правила изображения предметов и оформления чертежей регламентируются "Единой системой конструкторской документации" (ЕСКД).

Чтобы сделать любую деталь, необходимо спроектировать ее и выпустить чертежи. На чертеже должны быть представлены основные и вспомогательные виды детали, которые при грамотном прочтении дают всю необходимую информацию о форме и размерах изделия.

Инструкция

Как , проектирование новых деталей изучение государственных и отраслевых стандартов, по которым выполняется конструкторская документация. Найдите все ГОСТы и ОСТы, которые понадобятся при выполнении чертежа детали. Для этого вам нужны номера стандартов, по которым вы сможете их найти в интернете в электронном виде или в архиве предприятия в бумажном виде.

Перед тем, как начать выполнять чертеж, подберите необходимый листа, на котором он будет располагаться. Учитывайте количество проекций детали, которые вам нужно изобразить на чертеже. Для деталей простой формы (особенно для тел вращения) достаточно бывает основного вида и одной проекции. Если проектируемая деталь имеет сложную форму, большое количество сквозных и глухих отверстий, пазов, то желательно сделать несколько проекций, а также дать дополнительные местные виды.

Начертите главный вид детали. Выберите тот вид, который будет давать наиболее полное представление о форме детали. Сделайте другие виды, если это необходимо. Нанесите разрезы и сечения, показывающие внутренние отверстия и пазы детали.

Нанесите размеры в соответствии с ГОСТ 2.307-68. Габаритные размеры лучше всего величину детали, поэтому проставьте эти размеры так, чтобы их легко можно было обнаружить на чертеже. Все размеры проставляйте с допусками или указывайте квалитет, по которому должна быть изготовлена деталь. Помните о том, что в реальной , на , изготовить деталь с точными размерами. Всегда будет отклонение в большую или меньшую сторону,которое должно в интервал допуска на размер.

Обязательно указывайте шероховатость поверхностей детали в соответствии с ГОСТ 2.309-73. Это очень важно, особенно для точных деталей приборостроения, которые входят в состав сборочных единиц и соединяются по посадке.

Напишите технические требования, предъявляемые к детали. Укажите ее изготовления, обработки, нанесения покрытия, эксплуатации и хранения. В основной надписи чертежа не забудьте указать материал, из которого изготовлена деталь.

Видео по теме

При проектировке и практической отладке систем электроснабжения приходится пользоваться различными схемами. Иногда они даются в готовом виде, прилагаемом к технической системе, но в некоторых случаях схему приходится чертить самостоятельно, восстанавливая ее по монтажу и соединениям. От правильного вычерчивания схемы зависит, насколько она будет доступной для понимания.

Инструкция

Используйте для вычерчивания схемы электроснабжения компьютерную программу “Visio”. Для накопления вначале можно схему абстрактной питающей цепи, включающей произвольный набор элементов. В соответствии со стандартами и требованиями единой системы конструкторской принципиальная вычерчивается в однолинейном изображении.

Выберите настройки параметров страницы. В меню «Файл» воспользуйтесь соответствующей командой, а в открывшемся окне установите требуемый формат будущего изображения, например, А3 или А4. Выберите также книжную или альбомную ориентацию чертежа. Масштаб установите 1:1, а единицу измерения – миллиметры. Завершите выбор нажатием на кнопку “OK”.

При помощи меню «Открыть» найдите библиотеку трафаретов. Откройте набор основных надписей и перенесите на лист будущего чертежа рамку, форму надписи и дополнительные графы. Заполните графы необходимыми , поясняющими схему.

Собственно схему питающей цепи вычертите, применив трафареты из программы, или же используйте другие имеющиеся в вашем распоряжении заготовки. Удобно использовать специально разработанный комплект для черчения электрических схем различных питающих цепей.

Поскольку многие компоненты схемы питания отдельных групп часто однотипны, изобразите сходные методом копирования уже начерченных элементов, а после этого внесите корректировки. При этом элементы группы выделите «мышью» и переместите скопированный фрагмент на нужное место в схеме.

В завершение работы переместите из набора трафаретов компоненты схемы ввода. Аккуратно заполните пояснительные надписи к схеме. Сохраните изменения под необходимым именем. При необходимости готовый схемы электроснабжения выведите на печать.

Построение изометрической проекции детали позволяет получить максимально подробное представление о пространственных характеристиках объекта изображения. Изометрия с вырезом части детали дополнительно к внешнему виду показывает внутреннее устройство предмета.

Вам понадобится

  • - набор чертежных карандашей;
  • - линейка;
  • - угольники;
  • - транспортир;
  • - циркуль;
  • - ластик.

Инструкция

Начертите оси тонкими линиями так, чтобы изображение разместилось по центру листа. В прямоугольной изометрии углы между осями составляют сто градусов. В горизонтальной косоугольной изометрии углы между осями X и Y составляют девяносто градусов. А между осями X и Z; Y и Z - сто тридцать пять градусов.

Начните выполнять с верхней поверхности изображаемой детали. От углов горизонтальных поверхностей проведите вниз вертикальные линии и отложите на этих линиях соответствующие линейные размеры с чертежа детали. В изометрии линейные размеры по всем трем осям остаются единице. Последовательно соедините полученные точки на вертикальных линиях. Внешний контур детали готов. Выполните изображения имеющихся на гранях детали отверстий, пазов и пр.

Помните, что при изображении предметов в изометрии видимость криволинейных элементов будет искажаться. Окружность в изометрии изображается как эллипс. Расстояние между точками эллипса по осям изометрии равно диаметру окружности, а оси эллипса не совпадают с осями изометрии .

Все действия должны выполняться с помощью чертежных инструментов - линейки, карандаша, циркуля и транспортира. Используйте несколько карандашей разной твердости. Твердый - для тонких линий, твердо- - для пунктирных и штрихпунктирных линий, мягкий - для основных линий. Не забудьте начертить и заполнить основную надпись и рамку в соответствии с ГОСТ. Также построение изометрии можно выполнять в специализированном программном обеспечении, таком как Компас, AutoCAD.

Источники:

  • черчение в изометрии

Не так уж много найдется в наше время людей, которым ни разу в жизни не приходилось чертить или рисовать что-то на бумаге. Умение выполнить простейший чертеж какой-либо конструкции иногда бывает очень полезным. Можно потратить уйму времени, объясняя «на пальцах», как сделана та или иная вещь, в то время как бывает достаточного одного взгляда на ее чертеж, чтобы понять это без всяких слов.

Вам понадобится

  • – лист ватмана;
  • – чертежные принадлежности;
  • – чертежная доска.

Инструкция

Выберите формат листа, на котором будет выполняться чертеж – в соответствии с ГОСТ 9327-60. Формат должен быть таким, чтобы на листе можно было разместить основные виды детали в соответствующем масштабе, а также все необходимые разрезы и сечения. Для несложных деталей выбирают формат А4 (210х297 мм) или А3 (297х420 мм). Первый может располагаться своей длинной стороной только вертикально, второй – вертикально и горизонтально.

Начертите рамку чертежа, отступив от левого края листа 20 мм, от остальных трех – 5 мм. Начертите основную надпись – таблицу, в которую заносятся все данные о детали и чертеже. Ее размеры определяются ГОСТ 2.108-68. Ширина основной надписи является неизменной – 185 мм, высота варьируется от 15 до 55 мм в зависимости от назначения чертежа и вида учреждения, для которого он выполняется.

Выберите масштаб главного изображения. Возможные масштабы определяются ГОСТ 2.302-68. Их следует выбрать такими, чтобы на чертеже хорошо просматривались все основные элементы детали . Если при этом некоторые места просматриваются не достаточно ясно, их можно вынести отдельным видом, показав с необходимым увеличением.

Выберите главное изображение детали . Оно должно представлять собой такое направление взгляда на деталь (направление проецирования), с которого ее конструкция раскрывается наиболее полно. В большинстве случаев главным изображением является положение, в котором деталь находится на станке во время выполнения основной операции. Детали, имеющие ось вращения, располагаются на главном изображении, как правило, таким образом, чтобы ось имела горизонтальное положение. Главное изображение располагается в верхней части чертежа слева (если имеется три проекции) или близко к центру (при отсутствии боковой проекции).

Определите расположение остальных изображений (вида сбоку, сверху, сечений, разрезов). Виды детали образуются ее проецированием на три или две взаимно перпендикулярные плоскости (метод Монжа). При этом деталь должна располагаться таким образом, чтобы большинство или все ее элементы проецировались без искажения. Если какой-то из этих видов является информационно излишним, не выполняйте его. Чертеж должен иметь только те изображения, которые необходимы.

Выберите разрезы и сечения, которые необходимо выполнить. Их отличие друг от друга состоит в том, что на показывается и то, что находится за секущей плоскостью, в то время как на сечении отображает только то, что располагается в самой плоскости. Секущая плоскость может быть ступенчатой и ломаной.

Приступите непосредственно к черчению. При начертании линий руководствуйтесь ГОСТ 2.303-68, в котором определяются виды линий и их параметры. Располагайте изображения друг от друга на таком расстоянии, чтобы оставалось достаточно места для простановки размеров. Если плоскости разрезов проходят по монолиту детали , штрихуйте сечения линиями, идущими под углом 45°. Если при этом линии штриховки совпадают с основными линиями изображения, можно чертить их под углом 30° или 60°.

Начертите размерные линии и проставьте размеры. При этом руководствуйтесь следующими правилами. Расстояние от первой размерной линии до контура изображения должно быть не менее 10 мм, расстояние между соседними размерными линиями – не менее 7 мм. Стрелки должны иметь длину около 5 мм. Написание цифр осуществляйте в соответствии с ГОСТ 2.304-68, их высоту принимайте равной 3,5-5 мм. Цифры размещайте ближе к середине размерной линии (но не на оси изображения) с некоторым смещением относительно цифр, проставленных на соседних размерных линиях.

Видео по теме

Источники:

  • Электронный учебник по инженерной графике

Соотношение углов и плоскостей любого предмета визуально меняется в зависимости от положения объекта в пространстве. Именно поэтому деталь на чертеже обычно выполняется в трех ортогональных проекциях, к которым добавлено пространственное изображение. Обычно это . При ее выполнении не используются точки схода, как при построении фронтальной перспективы. Поэтому размеры по мере удаления от наблюдателя не меняются.

Вам понадобится

  • - линейка;
  • - циркуль;
  • - лист бумаги.

Инструкция

Определите осей. Для этого начертите из точки О окружность произвольного радиуса. Центральный угол ее равен 360º. Разделите окружность на 3 равные , использовав в качестве базового радиуса ось ОZ. При этом угол каждого сектора будет равен 120º. Два радиуса как раз и представляют собой нужные вам оси ОX и OY.

Определите положение . Разделите углы между осями пополам. Соедините точку О с этими новыми точками тонкими линиями. Положение центра окружности зависит от условий . Отметьте его точкой и проведите к ней в обе стороны перпендикуляр. Эта линия определит положение большого диаметра.

Вычислите размеры диаметров. Они зависят от того, применяете вы коэффициент искажения или нет. В этот коэффициент по всем осям составляет 0,82, но довольно часто его округляют и принимают за 1. С учетом искажения большой и малый диаметры эллипса составляют соответственно 1 и 0,58 от исходного. Без применения коэффициента эти размеры составляют 1, 22 и 0, 71 диаметра первоначальной окружности.

Видео по теме

Обратите внимание

Для создания объемного изображения можно построить не только изометрическую, но и диметрическую проекцию, а также фронтальную или линейную перспективу. Проекции используются при построении чертежей деталей, а перспективы - в основном в архитектуре. Окружность в диметрии тоже изображается как эллипс, но там другое расположение осей и другие коэффициенты искажения. При выполнении различных видов перспектив учитываются изменения размеров при удалении от наблюдателя.

В изометрической проекции все коэффициенты равны между собой:

к = т = п;

3 к 2 = 2,

k = yj 2УЗ - 0,82.

Следовательно, при построении изометрической проекции размеры предмета, откладываемые по аксонометрическим осям, умножают на 0,82. Такой перерасчет размеров неудобен. Поэтому изометрическую проекцию для упрощения, как правило, выполняют без уменьшения размеров (искажения) по осям х, у, I, т.е. принимают приведенный коэффициент искажения равным единице. Получаемое при этом изображение предмета в изометрической проекции имеет несколько большие размеры, чем в действительности. Увеличение в этом случае составляет 22% (выражается числом 1,22 = 1: 0,82).

Каждый отрезок, направленный по осям х, у, z или параллельно им, сохраняет свою величину.

Расположение осей изометрической проекции показано на рис. 6.4. На рис. 6.5 и 6.6 показаны ортогональные (а) и изометрические (б) проекции точки А и отрезка Л В.

Шестигранная призма в изометрии. Построение шестигранной призмы по данному чертежу в системе ортогональных проекций (слева на рис. 6.7) приведено на рис. 6.7. На изометрической оси I откладывают высоту Н, проводят линии, параллельные осям хиу. Отмечают на линии, параллельной оси х, положение точек / и 4.

Для построения точки 2 определяют координаты этой точки на чертеже - х 2 и у 2 и, откладывая эти координаты на аксонометрическом изображении, строят точку 2. Таким же образом строят точки 3, 5 и 6.

Построенные точки верхнего основания соединяют между собой, проводят ребро из точки / до пересечения с осью х, затем -

ребра из точек 2 , 3, 6. Ребра нижнего основания проводят параллельно ребрам верхнего. Построение точки Л, расположенной на боковой грани, по координатам х А (или у А) и 1 А очевидно из

Изометрия окружности. Окружности в изометрии изображаются в виде эллипсов (рис. 6.8) с указанием величин осей эллипсов для приведенных коэффициентов искажения, равных единице.

Большая ось эллипсов расположена под углом 90° для эллипсов, лежащих В ПЛОСКОСТИ хС>1 к ОСИ у, В ПЛОСКОСТИ у01 К ОСИ X, в плоскости хОу К ОСИ?.


При построении изометрического изображения от руки (как рисунка) эллипс выполняют по восьми точкам. Например, лоточкам 1, 2, 3, 4, 5, 6, 7 и 8 (см. рис. 6.8). Точки 1, 2, 3 и 4 находят на соответствующих аксонометрических осях, а точки 5, 6, 7 и 8 строят по величинам соответствующих большой и малой осей элипса. При вычерчивании эллипсы в изометрической проекции можно заменять овалами и строить их следующим образом 1 . Построение показано на рис. 6.8 на примере эллипса, лежащего в плоскости xOz. Из точки / как из центра, делают засечку радиусом R = D на продолжении малой оси эллипса в точке О, (строят также аналогичным образом и симметричную ей точку, которая на чертеже не показана). Из точки О, как из центра проводят дугу CGC радиуса D, которая является одной из дуг, составляющих контур эллипса. Из точки О, как из центра проводят дугу радиуса O^G до пересечения с большой осью эллипса в точках О у Проводя через точки О р 0 3 прямую, находят в пересечении с дугой CGC точку К, которая определяет 0 3 К - величину радиуса замыкающей дуги овала. Точки К являются также точками сопряжения дуг, составляющих овал.

Изометрия цилиндра. Изометрическое изображение цилиндра определяется изометрическими изображениями окружностей его основания. Построение в изометрии цилиндра высотой Н по ортогональному чертежу (рис. 6.9, слева) и точки С на его боковой поверхности показано на рис. 6.9, справа.


Предложено Ю.Б. Ивановым.

Пример построения в изометрической проекции круглого фланца с четырьмя цилиндрическими отверстиями и одним треугольным приведен на рис. 6.10. При построении осей цилиндрических отверстий, а также ребер треугольного отверстия использованы их координаты, например координаты х 0 и у 0 .




Новое на сайте

>

Самое популярное