Домой Эндокринология При переваривании жиров образуются молекулы. Переваривание жиров в желудочно-кишечном тракте человека

При переваривании жиров образуются молекулы. Переваривание жиров в желудочно-кишечном тракте человека

В суточном рационе обычно содержится 80- 100 г жиров. Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений. В желудочном соке содержится липаза, получившая название желудочной, однако роль ее в гидролизе пищевых триглицеридов у взрослых людей невелика. Во-первых, в желудочном соке взрослого человека и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока далек от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы 5,5–7,5). Напомним, что значение рН желудочного сока около 1,5. В-третьих, в желудке отсутствуют условия для эмульгирования триглицеридов, а липаза может активно действовать только на триглицериды, находящиеся в форме эмульсии.

Переваривание жира в организме человека происходит в тонком кишечнике. Жиры предварительно с помощью желчных кислот превращается в эмульсию. В процессе эмульгирования крупные капли жира превращаются в мелкие, что значительно увеличивает их суммарную поверхность. Ферменты сока поджелудочной железы – липазы, являясь белками, не могут проникать внутрь капель жира и расщепляют только молекулы жира, находящиеся на поверхности. Поэтому увеличение общей поверхности капель жира за счет эмульгирования значительно повышает эффективность действия этого фермента. Под действием липазы жир путем гидролиза расщепляется до глицерина и жирных кислот .

СН -~ ОН + R 2 - СООН I
СН -~ ОН + R 2 - СООН I

CH 2 - O - C - R 1 CH 2 OH R 1 - COOH

CH - O - C - R 2 CH - OH + R 2 - COOH

CH 2 - O - C - R 3 CH 2 OH R 3 - COOH

Жир Глицерин

Поскольку в пище присутствуют разнообразные жиры, то в результате их переваривания образуется большое количество разновидностей жирных кислот.

Продукты расщепления жира всасываются слизистой тонкого кишечника. Глицерин растворим в воде, поэтому его всасывание происходит легко. Жирные кислоты, нерастворимые в воде, всасываются в виде комплексов с желчными кислотами (комплексы, состоящие из жирных и желчных кислот, называются холеиновыми кислотами) В клетках тонкой кишки холеиновые кислоты распадаются на жирные и желчные кислоты. Желчные кислоты из стенки тонкого кишечника поступают в печень и затем снова выделяются в полость тонкого кишечника.

Освободившиеся жирные кислоты в клетках стенки тонкого кишечника вновь соединяются с глицерином, в результате чего вновь образуется молекула жира. Но в этот процесс вступают только жирные кислоты, входящие в состав жира человека. Таким образом, синтезируется человеческий жир. Такая перестройка пищевых жирных кислот в собственные жиры называется ресинтезом жира.

Ресинтезированные жиры по лимфатическим сосудам минуя печень поступают в большой круг кровообращения и откладываются в запас в жировых депо. Главные жировые депо организма располагаются в подкожной жировой клетчатке, большом и малом сальниках, околопочечной капсуле.

Изменения жиров при хранении. Характер и степень изменения жиров при хранении зависят от воздействия на них воздуха и воды, температуры и продолжительности хранения, а также от наличия веществ, способных вступать в химическое взаимодействие с жирами. Жиры могут претерпевать различные изменения – от инактивации содержащихся в них биологически активных веществ до образования токсичных соединений.

При хранении различают гидролитическую и окислительную порчу жиров, нередко оба вида порчи протекают одновременно.

Гидролитическое расщепление жиров протекает в процессе изготовления и хранения жиров и жиросодержащих продуктов. Жиры при определенных условиях реагируют с. водой, образуя глицерин и жирные кислоты.

Степень гидролиза жиров характеризуется содержанием свободных жирных кислот, ухудшающих вкус и запах продукта. Реакция гидролиза может быть обратимой и зависит от содержания в реакционной среде воды. Гидролиз протекает ступенчато в 3 стадии. На первой стадии от молекулы триглицерида отщепляется одна молекула жирной кислоты с образованием диглицерида. Затем на второй стадии от диглицерида отщепляется вторая молекула жирной кислоты с образованием моноглицерида. И наконец, на третьей стадии в результате отделения от моноглицерида последней молекулы жирной кислоты образуется свободный глицерин. Ди- и моноглицериды, образующиеся на промежуточных стадиях, способствуют ускорению гидролиза. При полном гидролитическом расщеплении молекулы триглицерида образуется одна молекула глицерина и три молекулы свободных жирных кислот.

3. Катаболизм жиров.

Использование жира в качестве источника энергии начинается с его выхода из жировых депо в кровяное русло. Этот процесс называется мобилизация жира . Мобилизация жира ускоряется под действием симпатической нервной системы и гормона адреналина.

Расщепление жира на глицерин и высшие жирные кислоты осуществляется под влиянием фермента липазы. Для воздействия липазы на жир необходимо его предварительное эмульгирование, достигаемое путем перемешивания в кишечнике пищевой кашицы с желчью.

В ротовой полости жиры не подвергаются химическим изменениям. В желудке присутствует липаза, однако ее активность невелика из-за отсутствия условий, необходимых для эмульгирования жира. В желудке гидролизуются только эмульгированные жиры — жиры молока и яичного желтка. В основном переваривание жира происходит в кишечнике и в первую очередь в двенадцатиперстной кишке, куда по протокам попадают вместе с желчью соли желчных кислот, обладающие мощным эмульгирующим действием.

Желчные кислоты образуют тончайшую пленку на жировых каплях, которая препятствует слиянию отдельных капелекжира вболее крупные капли. Это приводит к резкому увеличению поверхности соприкосновения жира с ферментом липазой и, следовательно, скорости гидролитического распада жира. К желчным кислотам относятся холевая, дезоксихолевая и другие. По своему строению они близки к холестерину. В желчи эти кислоты образуют с глицином (гликоколлом) или таурином парные соединения — глико- или таурохолевую, глико- или тауродезоксихолевую и другие желчные кислоты, присутствующие в виде натриевых солей.

В клетках кишечного эпителия из продуктов гидролиза пищевых жиров вновь ресинтезируются жиры, или липоиды, специфичные для данного вида животных. Синтезированные липиды транспортируются в жировые депо. При необходимости из жировых депо жиры могут переходить в кровь и использоваться тканями в качестве энергетического материала.

МЕХАНИЗМ ОКИСЛЕНИЯ НЕЙТРАЛЬНОГО ЖИРА В ТКАНЯХ

Поступивший в клетки нейтральный жир под действием тканевых липаз расщепляется на глицерин и высшие жирные кислоты. В дальнейшем жирные кислоты и глицерин окисляются в тканях на СО2 и H2O, при этом освобождающаяся энергия накапливается в макроэргических связях АТФ.

ОКИСЛЕНИЕ ЖИРНЫХ КИСЛОТ В ТКАНЯХ. В основе современных представлений о распаде жирных кислот в тканях лежит теория b-окисления, выдвинутая впервые Кноопом в 1904 г. Согласно этой теории, окисление жирных кислот происходит у углеродного атома, находящегося в b-положении по отношению к карбоксильной группе, с последующим разрывом углеродной цепочки жирной кислоты между a- и b-углеродными атомами. В дальнейшем эта теория была уточнена и дополнена.

В настоящее время установлено, что окислению жирных кислот в тканях предшествует их активация при участии коэнзима А и АТФ. Этот процесс катализируется ферментом тиокиназой.

Активированная жирная кислота (ацилкофермента А) подвергается дегидрированию, в результате чего возникает двойная связь между a- и b-атомами углерода. Этот процесс протекает с участием ацилдегидрогеназ, которые в качестве простетической группы содержат ФАД. Затем к ненасыщенной кислоте (a, b-не насыщенному производному ацил-КоА) присоединяется молекула воды и образуется b-гидроксикислота (b-гидроксиацил-КоА) . Далее снова происходит процесс дегидрирования с образованием b-кетокислоты (b-кетоацил-КоА). Этот процесс катализируется ацилдегидрогеназами, коферментом которых является НАД+.И на последнем этапе b-кетоацил-КоА, взаимодействуя со свободным КоА, расщепляется на ацетил-КоА и ацил-КоА. Последний укорочен по сравнению с первоначальным на два углерода.

Расщепление нейтральных жиров осуществляет группа ферментов известных под общим названием липаза.

Виды липаз

  1. желудочная
  2. панкреатическая
  3. кишечная
  4. клеточная

Они обладают неодинаковой ферментной актив­ностью, но результат их воздействия на триглицериды однотипный - триглицериды расщепляются на глицерин и высшие жирные кислоты.

В слюне липаза отсутствует, поэтому в ротовой полости перева­ривание жиров не происходит. Начинается процесс пищеварительно­го расщепления триглицеридов в желудке под воздействием желу­дочной липазы. Но активность ее невелика из-за сильно кислой реак­ции содержимого желудка и отсутствия условий для эмульгирования жиров. Поэтому желудочная липаза воздействует только на хорошо эмульгированные жиры, а в таком виде в желудок могут поступать только жиры молока и яичного желтка. Желудочная липаза имеет пре­имущественное значение у детей грудного возраста при вскармливании молоком.

Основное расщепление триглицеридов происходит в верхних отделах тонкого кишечника под действием липазы, продуцируемой поджелудоч­ной железой. В этом процессе принимает участие также кишечная ли­паза, но активность ее незначительная. Поджелудочная железа выде­ляет в кишечник сок богатый бикарбонатами, что создает оптимальную для липазы слабо щелочную реакцию среды.

Панкреатическая липаза выделяется в кишечник в неактивном состоянии. Ее активация проис­ходит под влиянием желчных кислот, поступающих в кишечник в соста­ве желчи из печени.

К основным желчным кислотам относят: холевую, дезоксихолевую, хенодезоксихолевую, литохолевую. Как правило, в желчи они присут­ствуют в виде конъюгатов с аминокислотами глицином и таурином.

Конъюгаты называются соответственно:

  1. гликохолевая,
  2. гликодезоксихолевая,
  3. гликохенодезоксихолевая,
  4. гликолитохолевая или таурохолевая,
  5. тауродезоксихолевая,
  6. таурохенодезоксихолевая,
  7. тауролитохолевая кис­лоты.

Но только активацией липазы роль желчных кислот в перева­ривании липидов не ограничивается. Желчные кислоты обеспечивают эмульгирование жиров в результате чего образуется тонкая водно-жи­ровая эмульсия обладающая большой поверхностью соприкосновения с активной липазой.

Липаза, воздействуя на триглицериды пищи, расщеп­ляет их на глицерин и высшие жирные кислоты. Глицерин, как легко растворяющийся в воде, беспрепятственно всасывается кишечной стен­кой.

Несколько сложнее осуществляется процесс всасывания жирных кислот.

Нерастворимые в воде жирные кислоты реагируют с имеющи­мися в кишечнике в достаточном количестве ионами натрия и калия, образуя соответствующие соли жирных кислот или иначе - мыла. По­следние соединяются с желчными кислотами, в ходе чего возникают холеиновые комплексы, хорошо растворимые в воде и поэтому способ­ные всасываться кишечной стенкой. Всосавшись, они распадаются на исходные компоненты. Освободившиеся из этих комплексов желчные кислоты по системе воротной вены поступают в печень и вновь до­ставляются в желчный пузырь. Жирные кислоты и глицерин в клетках кишечного эпителия реагируют между собой с образованием триглицеридов, но уже специфических для данного организма, это, так назы­ваемый, первичный синтез триглицеридов, которые иначе называются экзогенными.

Фосфолипиды гидролизуются в тонком кишечнике под воздействием панкреатических фосфолипаз на составные компоненты: спирт, жирные кислоты, азотистое основание и фосфорную кислоту. Процесс всасыва­ния жирных кислот в кишечнике аналогичен приведенному выше. Ос­тальные компоненты, более или менее, легко всасываются кишечной стенкой.

Этерифицированный холестерин расщепляется панкреатической и кишечной холестеролэстеразами на свободный холестерин и жирные кислоты. Нерастворимый в воде холестерин всасывается в кишечнике подобно жирным кислотам.

В клетках кишечного эпителия происходит ресинтез специфических фосфолипидов и частичная этерификация холестерина.

Продукты первичного синтеза:

  1. триглицериды,
  2. фосфолипиды,
  3. холесте­рин,

там же в клетках кишечника соединяются с небольшим коли­чеством белка и образуют хиломикроны.

Хиломикроны - это стабильные сферичес­кие частички диаметром от 100 до 5000 нм. Содержание триглицери­дов в хиломикронах преобладает и может достигать до 80% всей их массы. Из-за относительно крупного диаметра хиломикроны вначале поступают в лимфатические сосуды кишечника, затем в грудной лимфа­тический проток и оттуда в венозную кровь. Лишь небольшая часть наиболее мелких хиломикронов, состоящих из липидов с короткими ра­дикалами жирных кислот, могут непосредственно всасываться через капиллярную стенку кровеносных сосудов кишечника и поступать в си­стему воротной вены печени.

Насыщение крови хиломикронами - али­ментарная гиперлипемия, наступает уже через 1-2 часа после приема пищи и достигает максимума через 2-3 часа. Если в это время взять кровь из вены, то сыворотка будет иметь молочновидный характер, это так называемая хилезная сыворотка.

Хилезность обусловлена рассея­нием света крупными жировыми шариками какими являются хило­микроны. Просветляется сыворотка крови т. е. освобождается от хило­микронов, приблизительно через 3-4 часа после приема пищи. Время просветления зависит от количества жиров принятых с пищей. Наиболь­шую роль в этом процессе, как и в жировом обмене вообще, играют печень и жировая ткань.

Переваривание жиров в желудочно-кишечном тракте was last modified: Октябрь 5th, 2017 by Мария Салецкая


Жир, попадая в организм, проходит через желудок почти нетронутым и попадает в тонкую кишку, где есть большое количество ферментов, перерабатывающих жиры в жирные кислоты. Эти ферменты называются липазы. Они функционируют в присутствии воды, но для переработки жиров это проблематично, т. к. жиры не растворяются в воде.

Для того чтобы иметь возможность утилизировать , наш организм производит желчь. Желчь разъединяет комки жира и позволяет ферментам, находящимся на поверхности тонкой кишки, расщепить триглицериды на глицерол и жирные кислоты.

Транспортеры для жирных кислот в организме называются липопротеины . Это специальные белки, способные упаковывать и транспортировать жирные кислоты и холестерин по кровеносной системе. Далее жирные кислоты упаковываются в жировых клетках в довольно компактном виде, т. к. для их комплектации (в отличие от полисахаридов и белков) не требуется вода .

Доля всасывания жирной кислоты зависит от того, какую позицию она занимает относительно глицерина. Важно знать, что только те жирные кислоты, которые занимают позицию Р2, хорошо всасываются. Это связано с тем, что липазы имеют разную степень воздействия на жирные кислоты в зависимости от расположения последних.

Не все поступившие с пищей жирные кислоты полностью всасываются в организме, как ошибочно полагают многие диетологи. Они могут частично или полностью не усвоиться в тонком кишечнике и быть выведены из организма.

Например, в сливочном масле 80% жирных кислот (насыщенных) находятся в позиции Р2, то есть они полностью всасываемы. Это же относится к жирам, входящим в состав молока и всех не проходящих процесс ферментации молочных продуктов.

Жирные кислоты, присутствующие в зрелых сырах (особенно сырах длительной выдержки), хоть и являются насыщенными, находятся все же в позициях Р1 и Р3, что делает их менее абсорбируемыми.

Кроме того, в большинстве своём сыры (особенно твердые) богаты кальцием. Кальций соединяется с жирными кислотами, образуя «мыла», которые не всасываются и выводятся из организма. Вызревание сыра способствует переходу входящих в него жирных кислот в положение P1 и P3, что свидетельствует о слабой их всасываемости . Высокое потребление насыщенных жиров также коррелирует с некоторыми типами рака, включая рак толстой кишки, и инсультом.

На усвоение жирных кислот влияет их происхождение и химический состав:

- Насыщенные жирные кислоты (мясо, сало, омары, креветки, яичный желток, сливки, молоко и молочные продукты, сыр, шоколад, топленый жир, растительный шортенинг, пальмовое, кокосовое и сливочное масла), а также (гидрогенизированный маргарин, майонез) имеют тенденцию откладываться в жировые запасы, а не сразу сжигаться в процессе энергетического обмена.

- Мононенасыщенные жирные кислоты (мясо птицы, оливки, авокадо, кешью, арахис, арахисовое и оливковое масла) преимущественно используются непосредственно после всасывания. Кроме того, они способствуют снижению гликемии, что уменьшает выработку инсулина и тем самым ограничивает формирование жировых запасов.

- Полиненасыщенные жирные кислоты , в особенности Омега-3 (рыба, подсолнечное, льняное, рапсовое, кукурузное, хлопковое, сафлоровое и соевое масла), всегда расходуются непосредственно после всасывания, в частности, за счёт повышения пищевого термогенеза – энергозатрат организма на переваривание пищи. Кроме того, они стимулируют липолиз (расщепление и сжигание жировых отложений), способствуя тем самым похудению. В последние годы наблюдается целый ряд эпидемиологических исследований и клинических испытаний, которые ставят под сомнение предположение, что обезжиренные молочные продукты здоровее, чем полноценные. Они не просто реабилитируют молочные жиры, они все чаще находят связь между полноценными молочными продуктами и улучшением здоровья.

Недавнее исследование показало, что у женщин появление сердечно-сосудистых заболеваний полностью зависит от типа потребляемых молочных продуктов. Потребление сыра было обратно пропорционально связано с риском сердечного приступа, в то время как масло, намазанное на хлеб, повышает риск. Другое исследование показало, что ни обезжиренные, ни полные жира молочные продукты не связаны с сердечно-сосудистыми заболеваниями.

Тем не менее, цельные кисломолочные продукты защищают от сердечно-сосудистых заболеваний. Молочный жир содержит более 400 «видов» жирных кислот, что делает его самым сложным естественным жиром. Не все из этих видов были изучены, но есть доказательства того, что, по крайней мере, несколько из них оказывают благотворное влияние.

Человек потребляет в день около 60-100 г жиров. Всасываемость и усвояемость жиров зависит от состава жирных кислот и температуры их плавления.

В зависимости от температуры плавления жиры можно разделить на три группы по степени усвояемости:

1)жиры, температура плавления которых ниже 37 0 С, а усвояемость составляет 97-98 %. К ним относят все жидкие растительные жиры, жиры молока, свиное, топленое и гусиное сало, жиры птиц и различных рыб;

2)жиры, температура плавления которых равна 37-50 0 С, а усвояемость составляет около 90 %. К ним относится тканевый жир рогатого скота;

3)жиры, температура плавления которых равна 50-60 0 С, а усваиваются они плохо. К ним относится бараний и говяжий жир.

Примерно 89-90% жиров пищи – это триглицериды, большую часть которых составляют липиды, содержащие жирные кислоты с длинной цепью (16,18 атомов углерода). Очень небольшую часть составляют триглицериды с короткой (2-4 ат. углерода) и средней цепью (6-8 ат. углерода). Остальные 9-10% жиров пищи приходится на фосфолипиды, эфиры холестерола и жирорастворимые витамины.

Переваривание липидов происходит в тех отделах ЖКТ, где имеются обязательные условия:

· наличие липолитических ферментов, гидролизующих липиды;

· условия для эмульгирования липидов;

· оптимальный рН (нейтральная или слабощелочная) среды для действия липолитических ферментов.

В желудке жир дробится на капельки размером около 100 нм. У взрослого человека сильнокислая среда инактивирует желудочную липазу. В кишечнике нейтрализуется поступающая из желудка пища, и жир подвергается эмульгированию. А именно, попадая в двенадцатиперстную кишку, жир и соляная кислота вызывают выброс соответственно холецистокинина и секретина, стимулирующих выделение желчи и панкреатического сока. Компоненты этих двух секретов - желчные кислоты с одной стороны, липаза и колипаза панкреатического сока с другой - обеспечивают переваривание и всасывание жиров.

Желчные кислоты образуются в печени из холестерина в количестве 0,2-0,6 г/сутки и попадают в желчь в конъюгированном виде (с глицином и таурином). В основном образуются конъюгаты холевой кислоты и хенодезоксихолевой кислоты. В подвздошной кишке всасывается до 90% поступивших туда конъюгированных желчных кислот. Затем они попадают в воротную вену и возвращаются в печень: происходит кишечно-печеночный кругооборот. За сутки весь запас желчных кислот (3-4 г) проходит через кишечник 5-10 раз (то есть в двенадцатиперстную кишку в сутки поступает 20-30 г желчных кислот), но лишь 0,2-0,6 г выводится с калом.

При заболеваниях или резекции подвздошной кишки всасывание желчных кислот нарушается и возрастает их потеря с калом. В итоге их концентрация в кишечнике падает, что приводит к нарушению всасывания жира.



Желчные кислоты обладают высокой поверхностной активностью. Неполярные (гидрофобные) группы их молекул присоединяются к жирам, и в результате капли жира становятся окруженными слоем желчных кислот, полярные (гидрофильные) группы которых обращены наружу. Благодаря этому на молекулы жиров, расположенные на поверхности этих капель, может действовать гидрофильная липаза. Кроме того, желчные кислоты очищают поверхность капли жира от экзогенных и эндогенных белков.

Колипаза (белок панкреатического сока, присутствующий в нем в виде проколипазы) удерживает липазу у поверхности капли. Без колипазы липаза «смывалась» бы желчными кислотами. Липаза, колипаза и желчные кислоты вместе образуют комплекс, гидролизующий жир. Основные конечные продукты гидролиза - 2-моноглицериды и жирные кислоты, менее 5% жира остается в виде ди- и триглицеридов. При той концентрации желчных кислот, которая создается в кишечнике на высоте пищеварения (5-15 ммоль/л), они соединяются в так называемые мицеллы. В них проникают жирные кислоты и моноглицериды, образуя смешанные мицеллы. Это способствует удержанию жирных кислот и моноглицеридов в растворе (именно поэтому взвесь триглицеридов мутная, а смешанных мицелл - прозрачная). Образование мицелл лучше всего идет при участии конъюгированных желчных кислот и при нормальном рН кишечного содержимого.

В составе смешанных мицелл моноглицериды и жирные кислоты свободно проходят через неподвижный слой жидкости, покрывающей энтероцит, а затем диффундируют в клетку, покидая мицеллу.

В двенадцатиперстной кишке одновременно существуют крупные смешанные мицеллы, насыщенные продуктами липолиза, и еще более крупные жидкокристаллические липосомы, насыщенные свободными жирными кислотами и желчными кислотами. Эти состояния могут переходить друг в друга. Попав в энтероцит, жирные кислоты связываются с особыми белками, и дальнейшая их судьба зависит от длины цепи.

Длинноцепочечные жирные кислоты (16 и 18 ат. углерода) и содержащие их моноглицериды сразу этерифицируются в триглицериды ферментами эндоплазматического ретикулума. Далее вместе с холестерином, фосфолипидами и апопротеинами они образуют хиломикроны и ЛПОНП, которые накапливаются в аппарате Гольджи и секретируются в лимфатические капилляры.

До 30% триглицеридов содержащих жирные кислоты с короткой и средней длиной цепи углеродных атомов, захватываются клетками в интактном виде. Внутри клетки жирные кислоты отщепляются под действием эстераз и вместе с жирными кислотами, поступившими в энтероциты в свободном виде, диффундируют из клеток и поступают через капилляры в воротную вену. Этерифицируется и участвует в образовании липопротеидов лишь небольшая их часть.

В тонком кишечнике происходит образование и так называемых эндогенных триглицеридов (то есть тех, которые синтезируются из эндогенных жирных кислот), однако их главным источником является печень, откуда они секретируются в форме липопротеинов очень низкой плотности (ЛПОНП). В норме всасывается свыше 90% триглицеридов. Это означает, что ежедневно в кровь попадает около 70-150 г экзогенных триглицеридов.

Спектр остатков жирных кислот, обнаруживаемых в триглицеридах хиломикрон и ЛПОНП, в значительной степени зависит от набора жирных кислот триглицеридов, поступающих с пищей. Если в ней, к примеру, оказывается недостаточное количество линолевой кислоты, то в организме может возникать ее дефицит, особенно у пациентов, страдающих нарушениями всасывания. Время полужизни триглицеридов в плазме относительно невелико - они быстро гидролизуются и захватываются различными органами, главным образом, жировой тканью. Эти процессы протекают с участием липолитических ферментов. После приема жирной пищи уровень триглицеридов заметно повышается и остается высоким в течение нескольких часов. В норме все триглицериды хиломикрон должны быть удалены из кровотока в течение 12 часов.

Одновременно с распадом триглицеридов происходит гидролиз холестеридов до холестерина и свободных жирных кислот под действием холестеразы, для которой оптимум рН 6,6 - 8. Холестераза действует главным образом на ненасыщенные жирные кислоты.

В составе хиломикронов и ЛПОНП холестерин попадает в лимфу. Независимо от того, сколько холестерина попадает в организм с пищей, усваивается в среднем 35-40%, причем процесс всасывания опосредуется лимфатической системой. Всасывание холестерина пищи и реабсорбция желчных кислот играют важную роль в ограничении скорости синтеза холестерина клетками печени.

Панкреатическая липаза гидролизует эфиры холестерина, содержащиеся в пище и желчи. Гидролиз завершает холестеринэстераза микроворсинок, всасывается только свободный холестерин. В энтероците большая часть его этерифицируется. Кроме того, энтероциты синтезируют часть эндогенного холестерина.

Фосфолипиды (преимущественно лецитин) расщепляется фосфолипазами А и В. Фосфолипаза А выделяется поджелудочной железой в виде зимогена и в дальнейшем активируется трипсином. Она специфически действует на эфирные связи (в положении 2) лецитина, вызывая его гидролитическое расщепление на лизолецитин и жирные кислоты.

Всасывание витамина A, витамина D, витамина Е и витамина К изучено неполно.

После переноса в энтероцит (или образования в энтероците из бета-каротина) витамин A соединяется в основном с пальмитиновой кислотой, в составе хиломикронов попадает в лимфу и запасается в печени в виде пальмитата.

Витамин D , витамин Е и К также попадают в хиломикроны, но для их транспорта этерификация, очевидно, не требуется.

В различных отделах кишечника вода и электролиты всасываются по-разному. Они могут проходить как через энтероциты (пересекая две мембраны - апикальную и базолатеральную), так и между ними, в обоих случаях попадая в межклеточное пространство. Апикальные отделы соседних клеток связаны плотными контактами, между которыми находятся поры. Обычно закрытые, поры расширяются при всасывании. Апикальная мембрана энтероцитов, образующая микроворсинки, содержит белки-переносчики.

Вода и минеральные соли .

Вода и соли всасываются главным образом в верхних отделах тонкого кишечника. Здесь всасывается большая часть воды, поступившей при питье и в составе пищевых продуктов, а также выделившейся с пищеварительными соками.

В среднем за сутки через тонкий кишечник проходит около 9 л жидкости. Приблизительно 2 л поступает из крови, 7 л с эндогенными секретами желез и слизистой кишечника. Более 80% этой жидкости всасывается обратно в тонком кишечнике – около 60% в двенадцатиперстной кишке и 20% в подвздошной кишке. Остальная жидкость всасывается в толстом кишечнике и только 1% выделяется из кишечника с каловыми массами.

Когда секреция воды и электролитов в тонкой или толстой кишке превышает их всасывание, возникает понос. Вода может диффундировать по обе стороны кишечной стенки как в тонком кишечнике и толстом кишечнике, так (в меньшей степени) и в желудке. Поэтому содержимое кишечника изотонично по отношению к плазме крови. В том случае, когда химус быстро поступает в двенадцатиперстную кишку, ее содержимое может временно становиться гипертоничным, что приводит к всасыванию воды в двенадцатиперсную кишку. Напротив, когда в процессе пищеварения осмотически активные вещества всасываются из кишечника, вода следует за ними по градиенту осмотического давления.

Всасывание Na + одна из чрезвычайно важных функций тонкого кишечника. Именно за счет ионов Na + создается в основном электрический и осмотический градиенты; кроме того, они участвуют в сопряженном транспорте других веществ. Всасывание Na + в кишечнике происходит как за счет активного, так и за счет пассивного механизмов, в том числе путем электрогенного транспорта, сопряженного с переносом незаряженных соединений, электронейтрального обмена и конвекции.

При электрогенном транспорте ионы Na + переносятся через базолатеральную область мембраны в межклеточное пространство с помощью натриевого насоса, получающего энергию за счет гидролиза АТФ. Это главный механизм всасывания ионов Na + в кишечнике.

При сопряженном транспорте ионов Na + незаряженные вещества (D –гексозы, L- аминокислоты, водорастворимые витамины) переносятся в клетку вместе с ионами Na + общими переносчиками. Таким образом, активный транспорт Na + косвенным путем обеспечивает энергией процесс, всасывания органических веществ.

При электронейтральном транспорте NaCl в клетку одновременно переносятся ионы Na + и Сl - , в результате чего процесс и является электронейтральным.

Исключительно важную роль во всасывании ионов Na + в тонком кишечнике играет пассивный транспорт путем конвекции. Благодаря довольно значительной проницаемости эпителия до 85% ионов Na + поглощается по механизму «следования за растворителем». При определенной концетрации глюкозы ее всасывание создает ток воды, с которым ионы Na + и переносятся через межклеточное пространство.

Ионы К + в отличие Na + всасываются преимущественно за счет пассивного транспорта по градиенту концентраций. Ионы Сl - всасываются частично вместе с ионами Na + , этому процессу способствует трансэпителиальный электрический градиент. Около 40% ионов Са 2+ всасываются в верхнем отделе тонкого кишечника. При низких концентрациях Са 2+ всасывание происходит путем активного транспорта, а при высоких концетрациях включается механизм пассивного транспорта. Механизмы всасывания Mg 2+ аналогичны всасыванию кальция. Mg 2+ подавляет всасывание кальция по типу конкурентного ингибирования, что, возможно, свидетельствует о наличии общей системы переноса этих ионов.

Баланс железа в организме целиком зависит от его всасывания в кишечнике, т.к. специального механизма регуляции его выведения не существует. Железо, поступившее с пищей, всасывается преимущественно в двухвалентном виде. В пищевых продуктах содержатся восстанавливающие вещества, которые могут превращать трехвалентное железо в двухвалентное.

Железо всасывается в верхних отделах тонкого кишечника путем активного транспорта. В энтероцитах железо соединяется с белком апоферритином, образуя ферритин, который служит основным депо железа в организме.

Железо может всасываться, только когда оно находится в виде растворимых комплексов. В кислой среде желудка образуются комплексы железа с аскорбиновой кислотой, желчными кислотами, аминокислотами, моно- и дисахаридами; они остаются в растворенном виде и при более высоком рН двенадцатиперстной и тощей кишок.

В сутки с пищей поступает 15-25 мг железа, а всасывается лишь 0,5-1 мг у мужчин, 1-2 мг у женщин детородного возраста.

Витамин В 1 и витамин В 2 , видимо, всасываются путем простой диффузии.

Контрольные вопросы

1.Назовите и охарактеризуйте основные процессы всасывания и усвоения углеводов?

2. Назовите и охарактеризуйте основные процессы всасывания и усвоения белков?

3. Назовите и охарактеризуйте основные процессы ж всасывания и усвоения жиров?

4. Охарактеризуйте особенности процесса всасывания воды и минеральных веществ в ЖКТ?



Новое на сайте

>

Самое популярное