Домой Эндокринология Антидоты ов. Антидоты и механизмы их защитного действия Важнейшие антидоты и их применение

Антидоты ов. Антидоты и механизмы их защитного действия Важнейшие антидоты и их применение

Применение антидота позволяет воспрепятствовать воздействию яда на организм, нормализовать основные функции организма или затормозить развивающиеся при отравлении функциональные или структурные нарушения.

Антидоты бывают прямого и непрямого действия.

Антидот прямого действия.

Прямого действия – осуществляется непосредственное химическое или физико – химическое взаимодействие яда и противоядия.

Основные варианты – сорбентные препараты и химические реагенты.

Сорбентные препараты – защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат – снижение концентрации яда, взаимодействующего с биоструктурами , что приводит к ослаблению токсичного эффекта.

Сорбция происходит за счет неспецифических межмолекулярных взаимодействий – водородных и Ван – дер – Ваальсовых связей (не ковалентных!).

Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция ), из крови (гемосорбция , плазмосорбция ). Если яд уже проник в ткани, то применение сорбентов не эффективно.

Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn , ионообменные смолы.

1 грамм активного угля связывает несколько сотен мг стрихнина.

Химические противоядия – в результате реакции между ядом и противоядием образуется нетоскичное или малотоксичное соединение (за счет прочных ковалентных ионных или донорно-акцепторных связей). Могут действовать в любом месте - до проникновения яда в кровь, при циркуляции яда в крови и после фиксации в тканях.

Примеры химических противоядий:

для нейтрализации попавших в организм кислот используют соли и оксиды, дающие в водных растворах щелочную реакцию - K 2 CO 3, NaHCO3, MgO .

при отравлении растворимыми солямисеребра(например AgNO 3) используют NaCl , который образует с солями серебра нерастворимый AgCl .

при отравлении ядами, содержащими мышьяк используют MgO , сульфат железа, которые химически связывают его

при отравлении марганцовокислым калием KMnO 4 , который является сильным окислителем, используют восстановитель - перекись водорода H 2 O 2

при отравлении щелочами используют слабые органические кислоты (лимонная, уксусная)

отравления солями плавиковой кислоты (фторидами) применяют сульфат кальция CaSO 4, при реакции получается мало растворимый CaF 2

при отравлении цианидами (солями синильной кислоты HCN ) применяются глюкоза и тиосульфат натрия, которые связывают HCN . Ниже приведена реакция с глюкозой.

Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (- SH ) группами белков:


Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.

Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH -групп). Механизм их действия представлен на схеме.


Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

Еще один класс антидотов прямого действия - антидоты – комплексоны (комплексообразователи).

Они образуют прочные комплексные соединения с токсичными катионами Hg , Co , Cd , Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

Антидот непрямого действия.

Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).

1) Защита рецепторов от токсичного воздействия.

Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы . Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. Если фермент блокирован, то создается избыток ацетилхолина.

Ацетилхолин соединяется с рецепторами, что подает сигнал к сокращению мышц . При избытке ацетилхолина происходит беспорядочное сокращение мышц – судороги, которые часто приводят к смерти.

Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина. В присутствии ацетилхолина мышцы не сокращюется , судорог не происходит.

2) Восстановление или замещение поврежденной ядом биоструктуры .

При отравлениях фторидами и HF , при отравлениях щавелевой кислотой H 2 C 2 O 4 происходит связывание ионов Са2 + в организме. Противоядие – CaCl 2.

3) Антиоксиданты.

Отравление четыреххлористым углеродом CCl 4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты – вещества, связывающие свободные радикалы (антиоксиданты), например витамин Е.

4) Конкуренция с ядом за связывание с ферментом.

Отравление метанолом:


При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза.

Летальный синтез – превращение в организме в процессе метаболизма менее токсичных соединений в более токсичные .

Этиловый спирт C 2 H 5 OH лучше связывается с ферментом алкогольдегидрогеназой . Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH 3 OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

  • II. Понятие развития имеет ограниченное применение для науки истории и часто служит причиной помех и препятствий
  • Адаптация и дезадаптация при экстремальных ситуациях. Понятие ресурсов.
  • Атаксия, ее виды. Понятие динамической и статистической атаксии.
  • Виды изменчивости бактерий. Фенотипическая и генотипическая изменчивость. Понятие о популяционной изменчивости.
  • Вопрос 1. Понятие и методы диагностики функциональных состояний
  • Гормонанальная регуляция функций организма. Понятие о диффузной эндокринной системе. Гормонов поджелудочной железы и их функции.
  • РЕФЕРАТ

    на тему:

    __________________________________________________________

    Выполнил: студент 23 группы

    А.А.Фирман

    Проверил:

    г.Новосибирск, 2010 г.

    1. Понятие антидота

    2. Отравляющие вещества замедленного действия

    3. Антидотная терапия при поражении веществами замедленного действия

    Понятие антидота

    Противоя́дие или антидо́т (от др.-греч. ἀντίδοτον, букв. - даваемое против) - лекарственное средство, прекращающее или ослабляющее действие яда на организм.

    Антидоты (противоядия) - вещества, способные уменьшать токсичность яда путем физического или химического воздействия на него или конкуренцией с ним при действии на ферменты и рецепторы.

    Выбор антидота определяется типом и характером действия веществ, вызвавших отравление, эффективность применения зависит от того, насколько точно установлено вещество, вызвавшее отравление, а также от того, как быстро оказана помощь.

    В зависимости от механизма действия выделяют несколько групп антидотов:

    · Сорбенты - антидоты, действие которых основано на физических процессах (активированный уголь, вазелиновое масло, полифепан).

    · Антидоты, обезвреживающие яд путем химического взаимодействия с ним (перманганат калия, гипохлорид натрия), что приводит к образованию менее токсичных веществ.

    Антидоты предназначены для того, чтобы влиять на кинетику попавшего в организм токсичного вещества, на его абсорбцию или элиминацию, снижать действие яда на рецепторы, препятствовать опасному метаболизму, устранять угрожающие расстройства функций органов и систем, вызванные отравлением. В клинической практике антидоты и другие лекарства, используемые при отравлениях, применяются параллельно с общереанимационными и детоксикационными методами лечения. И в тех случаях, когда нельзя провести реанимационные мероприятия, жизнь пострадавшего можно спасти только введением антидота.

    В настоящее время антидоты разработаны лишь для ограниченной группы токсикантов. В соответствии с видом антагонизма к токсиканту они могут быть классифицированы на несколько групп (таблица 1).

    Таблица 1. Противоядия, используемые в клинической практике

    Вид антагонизма Противоядия Токсикант
    1.Химический ЭДТА, унитиол и др. Со-ЭДТА и др. азотисто-кислый Na амилнитрит диэтиламинофенол антитела и Fab- фрагменты тяжелые металлы цианиды, сульфиды -//- -//- гликозиды ФОС паракват токсины
    2.Биохимический кислород реактиваторы ХЭ обратим. ингибит. ХЭ пиридоксин метиленовый синий СО ФОС ФОС гидразин метгемоглобино-образователи
    3.Физиологический атропин и др. аминостигмин и др. сибазон и др. флюмазенил налоксон ФОС, карбаматы холинолитики, ТАД, нейролептики ГАМК-литики бензодиазепины опиаты
    4.Модификация метаболизма тиосульфат Na ацетилцистеин этанол 4-метилпиразол цианиды ацетаминофен метанол, этиленгликоль

    Истинных антидотов, то есть веществ, которые полностью нивелировали бы действие яда в организме, нет.

    Учебные вопросы:

    1. Понятие об антидотах. Классификация.

    2. Требования к лечебным и профилактическим антидотам. Требования к антидотам первой медицинской помощи.

    3. Особенности профилактики и лечения острых отравлений.

    4. Радиопротекторы и средства раннего лечения ОЛБ.

    5. Радиопротекторы (радиозащитные средства).

    6. Табельные радиопротекторы и средства раннего лечения.

    7. Разрабатываемые перспективные радиопротекторы.

    9. Средства предупреждения и купирования первичной лучевой радиации.

    При применении антидотов необходимо, с одной стороны, при по­мощи специальных химических препаратов воспрепятствовать действию ядов на организм, а с другой - нормализовать или, по крайней мере, затормозить развивающиеся при этом неблагоприятные функциональные сдвиги в различных органах и системах.

    Единого, общепринятого определения "антидота" до настоящего времени нет. Наиболее приемлемое следующее: противоядия (антидоты) - медицинские средства, способные обезвреживать яд в организме путем физического или химического взаимодействия с ним или же обеспечивающие артогонизм с ядом в действии на ферменты и рецепторы.

    Для оценки действия антидотных средств используется большое количество критериев: разовая и суточная доза, продолжительность действия, фармакологические свойства, тератогенный, мутагенный и т.д. эффекты. Как и любые лекарственные препараты - антидоты ха­рактеризуются по этим признакам. Однако с учетом специфики их ис­пользования обычно применяются и другие характеристики, в част­ности, лечебная (профилактическая) эффективность, продолжитель­ность действия антидота, время его защитного действия, коэффици­ент защиты.

    Существует несколько классификаций антидотных средств. Наи­более удовлетворяющей современным требованиям является классифи­кация антидотов, предложенная С.Н.Голиковым в 1972 г.

    3. 1. Классификация антидотов:

    - антидоты местного действия, обезвреживающие яд при резорб­ции тканями организма путем физических или химичес­ких процессов взаимодействия с ним;

    - антидоты общерезорбтивного действия, применение которых основано на реакциях химического антагонизма между противоядиями и токсическим веществом или его метаболитами, циркулирующими в крови, лимфе, находящимися (депонированными) в тканях организма;

    - антидоты конкурентного действия , вытесняющие и связывающие яд в безвредные соединения, в результате более выраженного хими­ческого сродства противоядия с ферментом, рецепторами, структур­ными элементами клеток;

    - антидоты физиологические антагонисты ОВ , действие которых противоположно действию яда на ту или иную физиологическую систе­му организма, позволяют устранить вызванные ядом нарушения, нор­мализовать функциональное состояние;

    - антидоты иммунологические , предусматривающие использование специфических вакцин и сывороток при отравлении.

    Основные критерии оценки действия антидотов.

    1. Лечебная (профилактическая) эффективность определяется количеством смертельных доз яда, признаки отравления которыми удается предупредить (для профилактических антидотов) или устра­нить (антидот медицинской помощи) в оптимальных условиях приме­нения препарата (рецептуры) или в соответствии с принятым регла­ментом.

    2. Продолжительность действия антидота (применяется только в отношении антидотов, предназначенных для оказания медицинской помощи).

    3. Время в течение которого проявляется лечебное действие пре­парата у отравленных (в зависимости от степени тяжести интокси­кации).

    3. Время защитного действия антидота. Определяется временем с момента применения антидота до отравления, в течение которого предупреждаются клинические признаки интоксикации.

    Антидот - (1) применяемое при лечении острого отравления лекарственное средство, способное обезвреживать токсичное вещество, предупреждать или устранять вызываемый им токсический эффект. Условно можно выделить следующие механизмы действия антидотов (по С.А. Куценко, 2004): 1) химический, 2) биохимический, 3) физиологический, 4) модификация процессов метаболизма токсичного вещества (ксенобиотика).

    Химический механизм действия антидотов основан на способности антидота «нейтрализовать» токсикант в биосредах. Антидоты непосредственно связываясь с токсикантом, образуют нетоксичные или малотоксичные соединения, которые достаточно быстро выводятся из организма. Антидоты связываются не только со «свободно» расположенным в биосредах токсикантом (например, циркулирующим в крови) или находящемся в депо, но могут вытеснять токсикант из его связи со структурой-мишенью. К числу таких антидотов относятся, например, комплексообразователи, используемые при отравлениях солями тяжелых металлов, с которыми они образуют водорастворимые малотоксичные комплексы. Антидотный эффект унитиола при отравлении люизитом также основан на химическом механизме.

    Биохимический механизм антидотного действия можно условно раз¬делить на следующие виды: I) вытеснение токсиканта из его связи с биомолекулами-мишенями, что приводит к восстановлению поврежденных биохимических процессов (например, реактиваторы холинэстеразы, используемы при острых отравлениях фосфорорганическими соединениями); 2) поставка ложной мишени (субстрата) для токсиканта (например, использование мет- гемоглобинобразовагелей для создания больших количеств Fe при остром отравлении цианидами); 3) компенсация нарушенного токсикантом количества и качества биосубстрата.

    Физиологический механизм подразумевает способность антидота нормализовать функциональное состояние организма. Эти препараты не вступают с ядом в химическое взаимодействие и не вытесняют его из связи с ферментами. Основными видами физиологического действия антидотов являются: 1) стимуляция противоположной (уравновешивающей) функции (например, применение холиномимтетиков при отравлений холинолитиками и наоборот); 2) «протезирование» утраченной функции (например, при отравлении угарным газом проведение оксигенобарогерапии для восстановления доставки кислорода тканям за счет резкого увеличения кислорода, растворенного в плазме.

    Модификаторы метаболизма либо 1) препятствуют процессу токсификации ксенобиотика - превращению в организме индифферентного ксенобиотика в высокотоксичное соединение («летальный синтез»); либо наоборот - 2) резко ускоряют биодетоксикацию вещества. Так, с целью блокирования процесса токсификации используется этанол при остром отравлении метанолом. Примером антидота, способного ускорять процессы детоксикации, может выступать тиосульфат натрия при отравлении цианидами.

    Следует помнить, что любой антидот - это химическое веществ, обладающее кроме антидотного и другими эффектами. Поэтому использование антидота должно быть обоснованным и адекватным как по времени назначения с момента отравления, так и по дозе. Использование антидотов при отсутствии в организме специфического токсиканта может привести, по сути, к отравлению антидотом. С другой стороны, наибольшую эффективность антидоты проявляют в ближайшее время с момента острого отравления (поражения). Для максимально быстрого введения антидотов в условиях массовых поражений созданы антидоты первой помощи (само и взаимопомощи). Такие антидоты обладают не только высокой эффективностью, но прекрасной переносимостью, в том числе они не вызывают тяжелой интоксикации при ошибочном их использовании (при отсутствии поражения). Для использования на этапах медицинской эвакуации разработаны врачебные антидоты - более мощные препараты, требующие специальных профессиональных знаний для их применения. Так, например, антидотом первой помощи при поражении фосфорорганическими соединениями является афин, а врачебным антидотом - атропин.

    Для некоторых высокотоксичных и опасных веществ разработаны профилактические антидоты. Такие антидоты используют для заблаговременной защиты при высокой степени вероятности химического поражения. Например, для защиты от поражений фосфорорганическими соединениями существует профилактический антидот П-10. Основу защитного действия этого препарата составляет обратимый ингибитор холинэстеразы, который «экранирует» фермент от атаки фосфорорганическим соединением. Препарат П-10 должен применяться персоналом лечебного учреждения (этапа эвакуации) при массовом поступлении пораженных фосфорорганическими соединениями, например ФОВ

    29. Медицинская радиобиология как наука: предмет, цели и задачи. Источники контакта человека с ионизирующими излучениями. Возможные причины экстремальных (сверхнормативных) воздействий ионизирующих излучений на население.

    Предметом мед. Радиобиологии как науки является изучение общих механизмов билогического действия ионизирующих излучений на организм человека, т.е. предметом медицинской радиобиологии выступает система «радиационный фактор- здоровье человека» . Целью медицинской радиобиологии как науки является обоснование системы медицинских противорадиационных мероприятий, обеспечивающих сохранение жизни, здоровья и профессиональной работоспособности отдельного человека и населения в целом в условиях неизбежно необходимого (производственного, медицинского и проч.) контакта с ионизирующими излучениями и при чрезвычайных ситуациях, сопровождающихся сверхнормативным воздействием факторов радиационной природы.

    Достижение цели радиобиологических исследований осуществляется решением следующих задач:

    Познанием закономерностей биологического действия ионизирующих излучений на организм человека;

    Прогнозирование последствий для человека и популяции радиационных воздействий;

    Нормированием радиационных воздействий;

    Обоснованием и разработкой противорадиационных защитных мероприятий при вынужденном сверхнормативном воздействием ионизирующих излучений;

    Разработкой средств и методов медикаментозной профилактики радиационных поражений (средств медицинской противорадиационной защиты);

    Обоснованием неотложных мероприятий первой помощи и последующего лечения при радиационных поражениях;

    Обоснованием и разработкой рациональных режимов диагностического и терапевтического использования облучения и др.

    По происхождению источники ИИ подразделяются на естественные и искусственные.

    Искусственные (техногенные) источники ИИ включают в себя рентгеновские трубки, ускорители заряженных частиц, а также устройства, содержащие радионуклиды, которые подразделяются на скрытые (имеющие непосредственный контакт с атмосферой) и закрытые (заключённые в герметичную оболочку) источники ИИ.

    Совокупность потоков ИИ, происходящих из естественных источников, называется природным радиационным фоном Земли. На организм воздействует, преимущественно, γ-излучение, источником которогоявляются радиоактивные вещества, присутствующие в земной коре. В каменных зданиях интенсивность внешнего γ-облучения в несколько раз ниже, чем на открытой местности, что объясняется экранирующими свойствами конструкционных материалов. Используя специальные приёмы экранирования, удаётся практически полностью устранить внешнее γ-облучение организма. По мере увеличения высоты над поверхностью моря роль земных источников внешнего облучения уменьшается. При этом возрастает космическая составляющая природного радиационного фона.

    Атомная энергетика составляет основу промышленного потенциала развитых стран. Ядерно-энергетический комплекс представляетсобой производственный цикл, который включает добычу и обогащение природного материала до “ядерного топлива”, производство технологических элементов для ядерных энергетических установок (ЯЭУ), сбор и хранение отработанного ядерного топлива и других радиоактивных технологических конструкций (твердых и жидких радиоактивных отходов). На сегодня промышленность не может отказаться от ядерной энергетики, тем не менее следует признать, что радиационный фактор стал фактором, во многом определяющим качество среды обитания человека. Во-первых, радиоактивные отходы имеют длительный (порой - многовековой) период своего распада, что требует размещения их в специальных хранилищах- “могильниках”, - которые в некоторых регионах (например, сейсмooпacныx) представляют постоянную угрозу. Во-вторых, как показал более чем полувековой опыт эксплуатации объектов ядерно-энергетического комплекса, к сожалению, исключить полностью аварии на энергетических установках не представляется возможным. В разных странах возникали радиационные аварии, при которых персонал получал высокие, порой смертельные дозы облучения, а обширные территории подвергались загрязнению радиоактивными продуктами в опасных для здоровья человека количествах.

    Широко используются ионизирующие излучения в медицинской практике. Это и рентгенодиагностические, и радиоизотопные виды исследований. Активно применяются различные виды лучевой терапии в онкологической практике.

    Люди подвергаются облучению в процессе профессиональной деятельности, при применении радиоактивных источников в промышленном производстве и научных исследованиях.

    К сожалению, до тех пор, пока существуют запасы ядерного оружия, полностью исключить вероятность его применения не представляется возможным. Человечество получило наглядный урок последствий применения ядерного оружия: 6 и 9 августа 1945 г. США произвели ядерную бомбардировку японских городов Хиросима и Нагасаки.

    В современном мире характер угроз насилия изменился. Появился новый вид гуманитарного насилия - международный терроризм. В части касающейся радиационного фактора нельзя исключить попытки террористических организаций применить с целью устрашения или насилия радиоактивные вещества или другие источники ионизирующего излучения.

    Таким образом, в настоящее время основными источниками радиоактивного загрязнения окружающей среды являются:

    Урановая промышленность, которая занимается добычей, переработкой, обогащением и приготовлением ядерного топлива. Основным сырьём для этого топлива является уран - 235. Аварийные ситуации могут возникнуть при изготовлении, хранении и транспортировке тепловыделяющих элементов. Однако вероятность их незначительная;

    Ядерные реакторы разных типов, в активной зоне которых сосредоточены большие количества радиоактивных веществ;

    Радиохимическая промышленность, на предприятиях которой производится регенерация (переработка и восстановление) отработанного ядерного топлива. Они периодически сбрасывают сточные радиоактивные воды, хотя и пределах допустимых концентраций, но, тем не менее, в окружающей среде неизбежно могут накапливаться радиоактивные загрязнения. Кроме того, некоторое количество радиоактивного газообразного йода (йод-131) всё-таки попадает в атмосферу;

    Места переработки и захоронения радиоактивных отходов из-за случайных аварий, связанных с разрушением хранилищ, также могут явиться источниками загрязнения окружающей среды;

    Использование радионуклидов в народном хозяйстве в виде закрытых радиоактивных источников в промышленности, медицине, геологии, сельском хозяйстве и других отраслях. При нормальном хранении и транспортировке этих источников загрязнения окружающей среды маловероятно. Однако в последнее время появилась определённая опасность в связи с использованием радиоактивных источников в космических исследованиях и астронавтике. При запуске ракет-носителей, а также при посадке спутников и космических кораблей возможны аварийные ситуации. Так при аварии Челенджера (США) сгорели радионуклидные источники тока, работающие на стронции-90. Также произошло загрязнение атмосферы над Индийским океаном в июне 1969 г., когда сгорел американский спутник, на котором генератор тока работал на плутонии-238. Тогда в атмосферу попали радионуклиды с активностью 17 тыс. кюри.

    Вместе с тем, наибольшее загрязнение окружающей среды всё же создаёт сеть радиоизотопных лабораторий (которые имеются в очень многих странах мира), занимающихся использованием радионуклидов в открытом виде для научных и производственных целей. Сбросы радиоактивных отходов в сточные воды даже при концентрациях, меньше допустимых, с течением времени приведут к постепенному накоплению радионуклидов во внешней среде;

    Ядерные взрывы и возникающее после взрыва радиоактивное загрязнение местности (могут быть как локальные, так и глобальные выпадения радиоактивных осадков). Масштабы и уровни радиоактивных загрязнений при этом зависят от типа ядерных боеприпасов, вида взрывов, мощности заряда, топографических и метеорологических условий.

    К активным методам экстренной детоксикации организма при острых отравлениях принадлежит специфическая антидотная терапия. Цель ее — связывание яда, циркулирующего в организме, соответствующими веществами (антидотами). Кроме того, с целью значительного ограничения действия яда на соответствующие рецепторы используют лекарственные средства, которые проявляют антагонистическое, т.е. конкурентное для токсического агента, воздействие на эти рецепторы (фармакологические антагонисты). Антидоты при отравлениях и фармакологические антагонисты применяют только тогда, когда точно установлено, какое именно вещество вызвало острое отравление.

    Существующее мнение о наличии противоядий для любого токсичного вещества не подтверждается действительностью. Относительно селективные эффективные антидоты существуют лишь для немногих классов токсичных веществ. Основные антидоты и антагонисты представлены в таблице.

    Основные антидоты при отравлениях

    Основные антидоты и фармакологические антагонисты, применяемые при острых отравлениях химическими агентами — таблица

    1 2 3
    Алокс ФОС (тиофос, хлорофос, карбофос, армин и др..) Подкожно 2-3 мл 0,1% раствора атропина сульфата в сочетании с Алокс-ом (внутримышечно по 1 мг / кг) повторно. При тяжелой интоксикации — внутривенно атропина сульфат по 3 мл повторно, до появления признаков «атропинизации», + Алокс по 0,075 г внутримышечно каждые 13 ч
    Амилнитрит Цианидная кислота и ее соли (цианиды) Ингаляция содержания 2-3 ампул
    Антихолинэстеразные средства (физостигмина салицилат, озерин и др..) Атропин, амитриптилин, тубокурарин Подкожно по 1 мл 0,1% раствора физостигмина салицилата или по 1 мл 0,05% раствора прозерина. Противопоказания: отравление трициклическими антидепрессантами
    Антидот, фармакологический антагонист Наименование токсического агента Дозы и способы использования антидотов и фармакологических антагонистов
    1 2 3
    Атропина сульфат Пилокарпин и другие м холинорецепторы миметики, анти-холинестеразные средства, ФОС (хлорофос, карбофос, тиофос, метафос, дихлофос) Подкожно по 2-3 мл 0,1% раствора повторно. Во второй стадии отравления фосфорорганическими инсектицидами — внутривенно по 3 мл 0,1% раствора (с раствором глюкозы) повторно, к ликвидации бронхореи и появления сухости слизистых оболочек в III стадии — внутривенно капельно в 30-50 мл 0,1% раствора в сутки до исчезновения бронхореи
    Ацетилцистеин Парацетамол Внутрь 140 мг / кг (ударная доза), затем по 70 мг / кг каждые 4 ч (до 17 доз или до тех пор, пока уровень парацетамола в плазме не станет нулевым).
    Бемегр Барбитураты, средства для наркоза (при легкой интоксикации) Внутривенно медленно 2-5 мл 0,5% раствора 1-3 раза в сутки или капельно в течение 12-15 мин до 5070 мл 0,5% раствора. При появлении судорог конечностей введение прекращается.
    Викасол Антикоагулянты непрямого действия (неодикумарин, фенилин и др.). Внутривенно медленно 5 мл 1% раствора (под контролем протромбинового времени).
    Уголь активированный Все токсичные вещества, кроме цианидов, соединений железа, лития Внутрь по 3-5 столовых ложек и более, в виде водной кашицы.
    Уголь активированный «СКН» Внутрь по 10 г 3 раза в день в промежутках между приемами пищи. Детям до 7 лет — 5 г, от 7 до 14 лет — по 7,5 г на прием
    Дефероксамин Препараты железа Для связывания железа, которое не всосалось в желудке, — внутрь по 5-10 г дефероксамина, растворенного в воде, повторно (30-40 г), для удаления железа Всосавшееся — внутримышечно по 10-20 мл 10 % раствора каждые 3-10 час. 100 мг дефероксамина связывает 8,5 мг железа
    Антидот, фармакологический антагонист Наименование токсического агента Дозы и способы использования антидотов и фармакологических антагонистов
    1 2 3
    Диетиксим При появлении первых проявлений интоксикации — внутримышечно 3-5 мл 10% раствора, при средней тяжести — 5 мл 10% раствора 2-3 раза в сутки до стойкого повышения активности холинэстеразы в крови. В тяжелых случаях доза растет. Лечение проводят в сочетании с атропином
    Димеркапрол Соединения мышьяка, ртути, золота, свинца (при наличии энцефалопатии) Внутримышечно сначала 5 мг / кг, затем по 2,5 мг / кг 1-2 раза в сутки в течение 10 дней. Целесообразно сочетать с тетацин-кальцием и пеницилламином
    Дипироксим ФОС (Хлорофос, карбофос, метафос, дихлофос и др..) В начальной стадии отравления — внутримышечно 1 мл 15% раствора, при необходимости, повторно, при тяжелой интоксикации — внутривенно по 1 мл 15% раствора через 1-2 ч (до 3-4мл), а в тяжелых случаях — до 7-10 мл 15 % раствора. Следует комбинировать с атропина сульфатом
    Энтеросорбент «СКН» Алкалоиды, гликозиды, соли тяжелых металлов Внутрь по 10 г 3-4 раза в день в промежутках между приемами пищи
    Карболонг Алкалоиды, гликозиды, соли тяжелых металлов Внутрь по 5-10 г 3 раза в день в промежутках между приемами пищи
    Кислород Угарный газ, цианидная кислота, хром, фосген и др.. Ингаляционно, при помощи специальных масок, катетеров, барокамер и др.
    Налоксон Наркотические анальгетики Внутримышечно или внутривенно по 0,4-0,8 мг (содержимое 1-2 ампул) повторно, до нормализации дыхания
    Налтрексон Наркотические анальгетики Внутрь по 0,25 г ежедневно
    Натрия гидрокарбонат Кислоты, спирт этиловый, трициклические антидепрессанты, хинидин и др.. Внутривенно капельно до 1500 мл 4% раствора в сутки
    Антидот, фармакологический антагонист Наименование токсического агента Дозы и способы использования антидотов и фармакологических антагонистов
    1 2 3
    Натрия тиосульфат Соединения ртути, мышьяка, свинца, йода, цианидная кислота и ее соединения При отравлениях солями металлов — внутривенно 5-10 мл 30% раствора, при отравлениях цианидный кислотой и цианидами — внутривенно 50-100 мл 30% раствора (после введения метиленового синего или натрия нитрита)
    Натрия хлорид Серебра нитрат Промывание желудка 2% раствором
    Пеницилламин Соли меди, ртути, свинца, мышьяка, золота Внутрь 1 г в сутки перед едой
    Пиридоксин Изониазид и другие производные гидразида изоникотиновой кислоты Внутривенно по 10 мл 5% раствора 2-4 раза в сутки
    Протамина сульфат Гепарин Внутривенно капельно 1-5 мл 1% раствора (1 мл его нейтрализует 1000 ЕД гепарина)
    Спирт этиловый Спирт метиловый, этиленгликоль Внутривенно 10 мл 30% раствора струйно или капельно 5% раствор (1 мл / кг в сутки) внутрь 100-150 мл 30% раствора
    Сукцимер Ртуть, свинец, мышьяк Внутрь по 0,5 г 3 раза в день в течение 7 дней внутримышечно по 0,3 г 2 раза в день в течение 7 дней
    Таблетки угля активированного «КМ» Все токсичные вещества, кроме цианидов, соединений железа, малатиона, ДДТ Внутрь по 1-1,5 г 2-4 раза в день через 1-2 ч после еды
    Тетацин-кальций Соли свинца, никеля, кобальта, ртути, сердечные гликозиды При острой интоксикации внутривенно капельно по 10-20 мл 10% раствора в 250-500 мл 0,9% раствора натрия хлорида или 5% раствора глюкозы в сутки при хронической интоксикации — внутрь по 0,25 г 8 раз в сутки или по 0 , 5 г 4 раза в сутки, через 1-2 дня (курс лечения 20-30 дней)
    Антидот, фармакологический антагонист Наименование токсического агента Дозы и способы использования антидотов и фармакологических антагонистов
    1 2 3
    Тримефацин Уран, бериллий Внутривенно или ингаляционно в виде 5% раствора или 2,5% раствора в растворе кальция хлорида
    Фероцин Радиоизотопы цезия и рубидия, а также продукты деления урана Внутрь по 1 г в виде водной суспензии (в 1/2 стакана воды) 2-3 раза в течение 10 дней
    Унитиол Соединения мышьяка, соли ртути, висмута и других тяжелых металлов, сердечные гликозиды, анаприлин, амитриптилин т.д. Подкожно, внутримышечно или внутривенно по 5-10 мл 5% раствора (по 1 мл на 10 кг массы тела): в 1-й день — через каждые 6-8 ч, на 2-й день — через 8-12 ч, в последующие дни — по 1-2 инъекции в сутки в течение 6-7 дней и более
    Цитохром С Снотворные препараты, оксид углерода Внутривенно капельно 20-40 мл 0,25% раствора в 250-500 мл изотонического раствора натрия хлорида или глюкозы (после биологической пробы — 0,1 мл 0,25% раствора внутрикожно)

    Таблица основных антидотов и приравниваемых к ним средств для лечения отравлений

    Комплексоны

    Наиболее эффективными антидотами при отравлениях металлами следует считать комплексоны (хелатные соединения). Из-за наличия в их структуре таких функциональных групп, как ОН,-SH и -NH, они могут отдавать электроны для связи с катионами металлов, т.е. образовывать координационно-ковалентные связи. В таком виде токсичные соединения выводятся из организма.

    Эффективность хелатного соединения в значительной мере определяется количеством лиганд в его основе, способных связываться с металлом. Чем их больше, тем более стабильный и менее токсичен метало хелатный комплекс. Следует помнить, что комплексоны как антидоты имеют невысокую избирательность действия. Наряду с токсичными агентами они могут связывать необходимые для организма эндогенные ионы, например кальция и цинка.

    Конечный результат такого взаимодействия определяется аффинитетом токсичных экзогенных и эссенциальных (эндогенных) металлов в хелатных соединений. Для того чтобы наступило значительное снижение уровня эндогенных металлов, их родство с комплексонами должен превышать аффинитет к эндогенным лиганд. В свою очередь, относительная скорость обмена металла между эндогенными лигандами и хелатных соединений должна превышать скорость элиминации комплексонов в комплексе с металлами. Если комплексоны выводится быстрее, чем комплекс металоэндогенных лиганд, его концентрация может не достичь того уровня, который необходим для эффективной конкуренции с эндогенными местами связывания.

    Этот фактор особенно весомый в случае, когда вывод осуществляется через образование тройного комплекса, т.е. эндогенный лиганд-металоэкзогенный комплекс.

    К комплексонам относятся:

    • дефероксамин,
    • тетацин-кальций,
    • димеркапрол,
    • пеницилламин,
    • унитиол и др..

    Дефероксамин (десферал) — комплексон, который активно связывает железо, в незначительной степени — эссенциальные микроэлементы. Может быть использован для ускорения выделения алюминия из организма при почечной недостаточности. Конкурируя за слабо связано железо в таких железосодержащих белках, как гемосидерин и ферритин дефероксамин не в состоянии конкурировать за то железо, которое содержится в биологических хелатных комплексах: микросомальных и митохондриальных цитохромах, гемопротеины т.п..

    Фероксамин (комплекс железа с дефероксамином) представлен для демонстрации его функциональных групп. Здесь железо активно содержится в замкнутой системе. Димеркапрол, по сукцимер, захватывает металл (м) в стабильное гетероциклическое кольцо ковалентной связью.

    Две молекулы пенициламина способны связывать одну молекулу меди или другого металла.

    Продукты метаболизма дефероксамина выделяются почками, окрашивая мочу в темно-красный цвет. В процессе лечения дефероксамином могут возникнуть аллергические реакции (крапивница, кожная сыпь), коллапс (при быстром введении в вену), глухота, нарушение зрения, помутнение хрусталика. Встречается также коагулопатия, печеночная и почечная недостаточность, инфаркт кишечника.

    Тетацин-кальций (кальций-динатриевая соль этилен-диаминтет-раоцтовой кислоты) — эффективный комплексон для многих двух-и трехвалентных тяжелых металлов и редкоземельных элементов, в частности для свинца, кадмия, кобальта, урана, иттрия, цезия и др.. Относительно плохо проникает через клеточные мембраны, поэтому более эффективно связывает внеклеточные ионы металла. Высокополярные ионные свойства тетацин-кальция препятствуют более или менее значительно энтеральному его всасыванию, поэтому он используется преимущественно для медленного внутримышечного или внутривенного введения.

    В тетацин-кальции кальций замещается только ионами тех металлов и редкоземельных элементов, образующих более прочный комплекс (свинец, торий и др.), чем сам кальций. Барий и стронций, константа устойчивости комплекса которых ниже, чем кальция, не вступают в реакцию с тетацин-кальцием. Использование антидота тетацин-кальция для мобилизации ртути также неэффективно, видимо, из-за незначительного поступления этого комплексона в те ткани, где концентрируется ртуть, а также через менее успешную конкуренцию ее со связанным кальцием.

    В больших дозах тетацин-кальций может вызвать повреждение почек, особенно их канальцев.

    Пентацин — кальций-тринатриевая соль диетилентриамин-пентаоцтовой кислоты также эффективен как комплексон. В отличие от тетацин-кальция, он не влияет на выделение урана, полония, радия и радиоактивного стронция. При длительном введении элиминация металлов из организма снижается.

    После введения пентацина возможно головокружение, головная боль, боли в груди и конечностях, поражение почек.

    Димеркапрол (2,3-димеркаптопропанол, британский антилюизит, БАЛ) . Выпускается в виде 10% раствора в арахисовом масле; вводится внутримышечно, инъекции болезненны. Своими SH-группами димеркапрол образует прочные хелатные комплексы с ионами ртути, мышьяка, свинца и золота, ускоряет их выведение из организма и восстановление функциональных белков, подавленных ядом. Эффективность этого антидота возрастает при минимальных сроках его применения после отравления. Он неэффективен, если лечение проводится через 24 ч и более.

    Поэтому считают, что лечебные эффекты БАЛ обусловлены скорее предупреждением связывания металлов с компонентами клеток, крови и тканевой жидкости, а не удалением уже связанного яда.

    Менее токсичными оказались некоторые производные димеркапрола, в частности сукцимер (димеркапрол сукцинат) и 2,3-димеркапропропан-1-сульфонат. Они более полярные, чем БАЛ; распределяются преимущественно во внеклеточной жидкости, поэтому в меньшей степени повреждают клеточные структуры крови и тканей.

    Пеницилламин — Д-3 ,3-диметилцистеин гидрохлорид (купренил) — водорастворимый продукт метаболизма пенициллина. Д-изомер его относительно нетоксичен. Устойчив к метаболической деградации. Используется преимущественно при отравлении соединениями меди или для предупреждения их кумуляции, а также для лечения болезни Вильсона.

    Как вспомогательное средство пеницилламин иногда применяют при лечении отравлений свинцом, золотом и мышьяком. Как и препараты золота, этот антидот тормозит прогрессирование деструкции костей и хрящей, поэтому используется в лечении ревматоидного артрита. Может быть причиной появления аллергических реакций, диспепсии, тромбоцитопении, лейкопении, анемии и т.д..

    Натрия тиосульфат — серосодержащий антидот. В отличие от предыдущих препаратов, с металлами комплексных соединений не образует. Нейтрализует галоиды, цианиды, соединения мышьяка, ртути, свинца.

    Как антидоты широкое распространение получили также окислители, адсорбенты. Слабые растворы кислот, обычно органических, ранее широко применяли для нейтрализации щелочей, а луга (натрия гидрокарбонат, магния оксид) — при отравлениях кислотами. Теперь преимущество предоставляется не нейтрализации кислот и щелочей, а их разведению.

    Калия перманганат эффективен при отравлении морфином и другими алкалоидами, фосфором; танин — алкалоидами и тяжелыми металлами. Уголь активированный широко применяют при пероральном отравлении различными лекарственными средствами, а также алкалоидами, солями тяжелых металлов, бактериальными токсинами и т.д.. Он не адсорбирует железо, литий, калий и лишь в незначительной степени — алкоголь и цианиды. Совсем неэффективное при отравлении кислотами и щелочами, кислотой борной, тольбутамидом т.п..

    Повторные приемы активированного угля через каждые 4 ч эффективны при отравлениях карбамазепином, дигитоксином, теофиллином и т.д..

    Энтеросорбенты

    В последние годы с целью ликвидации экзогенной (как и эндогенной) интоксикации начали использовать энтеросорбенты. Эти лекарственные препараты имеют свойство сорбировать (удерживать на своей поверхности) токсичные агенты, находящиеся в просвете желудочно-кишечного тракта. Сюда токсичные вещества могут попадать извне, выделяться путем диффузии из крови, находиться в составе пищеварительных соков и желчи или здесь образовываться. Энтеросорбенты, не являясь в полной мере антидотами, способствуют уменьшению уровня интоксикации, тем самым защищают организм от повреждения ядом.

    Кроме того, энтеросорбенты улучшают пищеварение в желудке и кишечнике, так как способствуют более рациональной действия пищеварительных ферментов на элементы пищи, особенно белки. Они способствуют обезвреживанию ядовитых агентов в печени, улучшают окислительные процессы, процессы распада перекисных соединений и т.д.. Доказана их высокая эффективность при острой интоксикации микробными токсинами, атропином, сибазоном, грибами, бензином.

    В медицинской практике используются как антидоты в основном углеродистые и полимерные сорбенты, в частности углеродные СКН (сферический карбонит насыщенный) и кремниевые — Полисорб, энтеросгель.

    Клинический опыт показывает, что энтеросорбция эффективна при пищевых, медикаментозных, промышленных отравлениях. Энтеросорбенты эффективны также при заболеваниях, сопровождающихся эндотоксикозом, в частности органов пищеварения, сердечно-сосудистой, дыхательной и эндокринной систем, аллергических заболеваниях, токсикозах беременности.

    Фармакологические антагонисты многих лекарственных средств

    В частности, при отравлении препаратами, оказывающими угнетающее влияние на ЦНС, используют стимуляторы ЦНС и аналептики:

    • кофеин-бензоат натрия,
    • эфедрина гидрохлорид,
    • кордиамин,
    • бемегрид,
    • цититон и др..

    В случае интоксикации ядами, возбуждающих ЦНС, как антагонисты используют препараты с подавляющим типом действия, в частности эфир для наркоза, нередко барбитураты, сибазон и т.д.. При отравлении холиномиметическими или Антихолинестеразными средствами применяют холинолитики (чаще атропина сульфат, скополамина гидробромид), а при отравлении атропином и ганглиолитикамы — антихолинэстеразные препараты (особенно прозерин).

    • Антагонистом морфина и других наркотических болеутоляющих средств является налоксон;
    • оксида углерода, сероводорода, сероуглерода и др. — кислород в ингаляции.

    Налоксон назначается в начальной дозе 1-2 мг парентерально. Дозы увеличивают при интоксикации кодеином и фентанилом. Противопоказано использование физостигмина салицилата при отравлении трициклическими антидепрессантами.



    Новое на сайте

    >

    Самое популярное