Домой Стоматология Какое изображение на сетчатке. Обманутый глаз

Какое изображение на сетчатке. Обманутый глаз

Фундаментальной опорой химии, наравне с периодической системой Д. И. Менделеева, строением органических соединений А. М. Бутлерова, другими значимыми открытиями, является и теория электролитической диссоциации. В 1887 году она была разработана Сванте Аррениусом для объяснения специфического поведения электролитов в воде, других полярных жидкостях и расплавах. Он нашёл компромисс между двумя категорически разными, существующими на то время теориями о растворах - физической и химической. Первая утверждала, что растворённое вещество и растворитель никак друг с другом не взаимодействуют, образуя простую механическую смесь. Вторая, что между ними происходит химическая связь. Оказалось, что на самом деле растворам присущи и те, и другие свойства.

В последующих этапах развития науки многие учёные продолжали исследования и разработки в этой области, опираясь на имеющиеся сведения о строении атомов и природе химических связей между ними. В частности И. А. Каблуков занимался вопросом сольватационных процессов, В. А. Кистяковский определил зависимость поднятия столба жидкости в капилляре в условиях температуры кипения от молекулярного веса.

Современная трактовка теории

До появления данного открытия многие свойства и обстоятельства процессов расщепления были не изучены, как и сами растворы. Электролитическая диссоциация - это процесс распада вещества на составляющие его ионы в воде или других полярных жидкостях, взаимодействия частиц соединения с молекулами растворителя, появления подвижности катионов и анионов в узлах кристаллической решетки из-за расплавления. В результате этого образованные субстанции получают новое свойство - электрическую проводимость.

Ионы, находясь в свободном состоянии раствора или расплава, взаимодействуют между собой. Одноимённо заряженные отталкиваются, разноименные - притягиваются. Заряженные частицы сольватированы молекулами растворителя - каждая плотно окружена строго ориентированными диполями соответственно силам притяжения Кулона, в частном случае гидратированы, если среда водная. Катионы всегда имеют большие радиусы, чем анионы из-за специфики расположения вокруг них частиц с локализованными по краям зарядами.

Состав, классификация и названия заряженных частиц в свете электролитической диссоциации

Ионом называют атом или группу атомов, которые являются носителями положительного или отрицательного заряда. Им присуще условное подразделение на простые (К (+) , Са (2+) , Н (+) - состоящие из одного химического элемента), сложные и комплексные (ОН (-) , SO 4 (2-) , НСО 3 (-) - из нескольких). Если катион или анион связан с молекулой растворителя, он называется сольватированным, с диполем молекулы Н 2 О - гидратированным.

Когда происходит электролитическая диссоциация воды, образуется две заряженные частицы Н (+) и ОН (-) . Протон водорода принимает на вакантную орбиталь неподелённую электронную пару кислорода из другой молекулы воды, в результате чего образуется ион гидроксония Н 3 О (+) .

Основные положения открытия Аррениуса

Все представители классов неорганических соединений, кроме оксидов, в растворах ориентированных диполей жидкостей распадаются, говоря химическим языком - диссоциируют на составляющие их ионы в большей или меньшей степени. Наличия электрического тока этот процесс не требует, уравнение электролитической диссоциации является его схематической записью.

Попадая в раствор или расплав, ионы могут подвергаться действию электрического тока и направленно двигаться к катоду (отрицательному электроду) и аноду (положительному). Последние притягивают противоположно заряженные атомные агрегаты. Отсюда частицы и получили свои названия - катионы и анионы.

Параллельно и одновременно с распадом вещества идёт обратный процесс - ассоциация ионов в исходные молекулы, поэтому стопроцентного растворения вещества не происходит. Такое уравнение реакции электролитической диссоциации содержит знак равенства между правой и левой его частями. Электролитическая диссоциация, как любая другая реакция, подчиняется законам, регулирующим химическое равновесие, не является исключением и закон действующих масс. Он гласит, что скорость процесса распада на ионы пропорциональна концентрации электролита.

Классификация веществ при диссоциации

Химическая терминология подразделяет вещества на нерастворимые, малорастворимые и растворимые. Два последних - это слабые и сильные электролиты. Сведения о растворимости тех или иных соединений сведены в таблицу растворимости. Диссоциация сильных электролитов - это необратимый процесс, они нацело распадаются на ионы. Слабые - лишь частично, им присуще явление ассоциации, а следовательно, равновесность происходящих процессов.

Важно отметить, что прямой зависимости между растворимостью и силой электролита нет. У сильных она может быть слабо выражена. Так же как и слабые электролиты могут быть хорошо растворимы в воде.

Примеры соединений, растворы которых проводят электрический ток

К классу «сильные электролиты» относят все хорошо диссоциирующие кислоты, такие как азотная, соляная, бромная, серная, хлорная и другие. В одинаковой степени и щёлочи - гидроокислы щелочных и отдельные представители группы «щелочноземельные металлы». Интенсивна электролитическая диссоциация солей, кроме определённых цианатов и тиоцианатов, а также хлорида ртути (II).

Класс «слабые электролиты» представляют остальные минеральные и почти все органические кислоты: угольная, сульфидная, борная, азотистая, сернистая, кремниевая, уксусная и другие. А также малорастворимые и углеводородные основания и амфотерные гидроксиды (гидроокиси магния, бериллия, железа, цинка в степени окисления (2+)). В свою очередь, молекулы воды являются очень слабыми электролитами, но всё же распадаются на ионы.

Количественное описание диссоциирующих процессов

Степень электролитической диссоциации фактически характеризует масштабы процесса расщепления. Её можно вычислить - число расщепившихся на ионы частиц необходимо разделить на общую численность молекул растворённого вещества в системе. Обозначают эту величину буквой «альфа».

Логично, что для сильных электролитов «α» равна единице, или ста процентам, так как число распавшихся частиц равно общему их количеству. Для слабых - всегда меньше единицы. Полного распада исходных молекул на ионы в водной среде не происходит, и идёт обратный процесс.

Главные факторы, влияющие на полноту распада

На степень электролитической диссоциации влияет ряд неоспоримых факторов. В первую очередь важна природа растворителя и вещества, распадающегося в нём. Например, все сильные электролиты имеют ковалентный сильно полярный или ионный тип связи между составными частицами. Жидкости представлены диполями, в частности вода, в молекулах имеется разделение зарядов, и в результате их специфической ориентации происходит электролитическая диссоциация растворённого вещества.

На значение «альфа» обратно пропорционально влияет концентрация. При её увеличении значение степени диссоциации уменьшается, и наоборот. Сам процесс всецело эндотермический, то есть для его инициации необходимо определённое количество теплоты. Влияние температурного фактора обосновано так: чем он выше, тем больше степень диссоциации.

Второстепенные факторы

Многоосновные кислоты, такие как фосфорная, и основания в составе с несколькими гидроксильными группами, например, Fe(ОН) 3 , распадаются на ионы ступенчато. Определена зависимость - каждая последующая стадия диссоциации характеризуется степенью, которая в тысячи или десятки тысяч раз меньше предыдущей.

Изменить степень распада может и добавление в систему других электролитов, изменяющих концентрацию одного из ионов основного растворённого вещества. Это влечёт за собой смещение равновесия в сторону, которое определяется правилом Ле Шателье-Брауна - реакция протекает в том направлении, в котором наблюдается нейтрализация влияния, оказанного на систему извне.

Классическая константа равновесного процесса

Для характеристики процесса распада слабого электролита, помимо его степени, применяется константа электролитической диссоциации (К д), которая выражается отношением концентраций катионов и анионов к количественному содержанию в системе исходных молекул. По сути, она является обычной постоянной химического равновесия для обратимой реакции расщепления растворённого вещества на ионы.

Например, для процесса распада соединения на составляющие его частицы константа диссоциации (К д) будет определяться частным постоянных концентраций катионов и анионов в составе раствора, возведённых в степени, соответствующие цифрам, стоящим перед ними в химическом уравнении, и общего числа оставшихся не продиссоциировавших формульных единиц растворённого вещества. Прослеживается зависимость - чем выше (К д), тем больше число катионов и анионов в системе.

Связь концентрации слабого распадающегося соединения, степени диссоциации и константы определяется с помощью закона разведения Оствальда уравнением: К д = α 2 с.

Вода как слабо диссоциирующее вещество

Дипольные молекулы в крайне небольшой степени распадаются на заряженные частицы, так как это энергетически невыгодно. Всё же идёт расщепление на катионы водорода и гидроксильные анионы. С учётом гидратационных процессов можно говорить об образовании из двух молекул воды иона гидроксония и ОН (-) .

Постоянная диссоциация определяется отношением произведения протонов водорода и гидроксидных групп, называемого ионным произведением воды, к равновесной концентрации не распавшихся молекул в растворе.

Электролитическая диссоциация воды обуславливает наличие в системе Н (+) , которые характеризуют её кислотность, а присутствие ОН (-) - основность. Если концентрации протона и гидроксильной группы равны, такая среда называется нейтральной. Существует так называемый водородный показатель - это отрицательный логарифм от общего количественного содержания Н (+) в растворе. рН меньше 7 говорит о том, что среда кислая, больше - о её щелочности. Это очень важная величина, по её экспериментальному значению анализируют биологические, биохимические и химические реакции различных водных систем - озёр, прудов, рек и морей. Неоспорима также актуальность водородного показателя для промышленных процессов.

Запись реакций и обозначения

Уравнение электролитической диссоциации с помощью химических знаков описывает процессы распада молекул на соответствующие частицы и называется ионным. Оно в разы проще стандартного молекулярного и имеет более общий вид.

При составлении такого уравнения нужно учитывать, что вещества, осаждающиеся или удаляющиеся из реагирующей смеси в составе паров газа в ходе реакции, всегда необходимо записывать только в молекулярной форме, в отличие от соединений электролитов, сильные представители которых только в расщепившемся на ионы виде входят в состав растворов. Электролитическая диссоциация для них - необратимый процесс, так как ассоциация невозможна в силу образования не расщепляющихся веществ или газов. Для такого типа уравнения действуют те же правила, что и для прочих химических реакций - суммы коэффициентов левых и правых частей обязательно должны быть равны друг другу для соблюдения материального баланса.

Электролитическая диссоциация кислот и оснований может идти в несколько стадий, если вещества многоосновные или многокислотные. Для каждой подреакции записывается своё уравнение.

Роль в химической науке и её развитии

Величайшее значение создание теории Сванте Аррениуса имело для общего процесса становления физической и, в частности, электрохимической науки. На основе открытия такого явления, как электролитическая диссоциация, интенсивное развитие получили электродные процессы, специфика прохождения токов через различные среды, теория наведения катодно-анодных потенциалов. Кроме этого, значительно продвинулась вперёд теория растворов. Небывалые открытия ждали и химическую кинетику, область коррозии металлов и сплавов, а также работы по поиску новых средств защиты от неё.

В современном мире ещё так много нового и неизвестного. С каждым днём учёные продвигаются всё дальше в познании такой великой дисциплины, как химия. Электролитическая диссоциация, а также её создатели и последователи навсегда заняли почётное место в контексте развития мировой науки.

зависимости от механизма прохождения тока через проводники различают проводники первого и второго рода. К проводникам 1-го рода, обладающим электронной проводимостью, относят металлы, оксиды, сульфиды, уголь. Проводники 2-го рода - это вещества, распадающиеся при определенных условиях на ионы: они обладают ионной проводимостью. Вещества, растворы или расплавы которых проводят электрический ток, называются электролитами. Вещества, растворы или расплавы которых не проводят электрического тока, называются неэлектролитами; К электролитам относят кислоты, основания и почти все соли, к неэлектролитам - большинство органических соединений. В растворе или расплаве электролиты распадаются на ионы. Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией. Диссоциация в растворах протекает под действием полярных молекул растворителя. В расплавах диссоциация протекает вследствие нагревания вещества. Теория электролитической диссоциации была разработана знаменитым шведским химиком С. Аррениусом (1887 г.). Основные положения современной теории электролитической диссоциации: |Т] При растворении в воде электролиты распадаются (диссоциируют) на положительные и отрицательные частицы (ионы), которые находятся в растворе в хаотическом движении. 1 К°> " Для второй ступени диссоциации HS" <± Н+ + S2" значение константы диссоциации KD равно: n2s К D Для полной диссоциации H9S 7=* 2Н+ + S2" н,s значение константы диссоциации KDr равно произведению констант диссоциации по первой и второй ступени: KH2S V^i® . V D Dl Da . При прочих равных условиях KDj > >... KD . » тогда как отрыв протона от нейтральной молекулы всегда протекает легче, чем от отрицательно заряженных ионов. Важным процессом диссоциации является диссоциация воды: Н20 т± Н+ + ОН". Константа для этого процесса при 25 °С равна: н3о [Н*][ОН~] К° " [Н20] " Поскольку концентрация недиссоциированных молекул воды может быть принята равной общему числу моль воды в 1 л, т. е. [Н20] = 1000/18 - 55,56 моль, то [Н+] [ОН"] -= 10~14. Отсюда и произведение концентрации ионов Н+ и ОН" при данной температуре постоянно. Это произведение называют ионным произведением воды (Kj^q) Поскольку в воде концентрация гидратированных ионов водорода и гидроксид ионов равны, то [Н+] = [ОН"] -= 10~7 моль/л. Раствор с равными концентрациями ионов называют нейтральным; раствор, в котором [Н+] > [ОН~] - кислым; раствор, в котором [Н+] < [ОН"] - щелочным (основным). На практике использование концентрации ионов водорода для характеристики кислотности среды неудобно. Обычно для этой цели применяют величину отрицательного десятичного логарифма концентрации водородных ионов, которую называют водородным показателем рН («пэ аш»): pH--lg. Тогда для нейтральной среды рН = -lglO"7 = 7, для кислых растворов рН < 7, для щелочных рН > 7. Пример 1 Определите концентрации ионов водорода и гидроксид ионов в 5 10~4 М растворе соляной кислоты. Дано: См(НС1) « 5 10"4 М Найти: [Н+]; [ОН"] Решение: Так как НС1 - сильный электролит, то [Н+] будет равной молярной концентрации кислоты, т. е. Сн+ = 5 10~4 моль/л, Ю"14 10"14 = WT ~ 5 > Ю-4 " 2 "10 М0ЛЬ/Л-Ответ: [Н+] = 5 10~4 моль/л; [ОН"] = 2 10"п моль/л. Пример 2 Определите рН 0,01 М раствора КОН. Дано: Найти: рН(р-ра) Решение: КОН - сильный электролит, и поэтому [ОН~] будет равна концентрации щелочи, т. е. [ОН"]= 10"2 моль/л. 1(Г14 КГ1 моль/л" рН - -lg = -lglO"12 = 12. Ответ: рН = 12.

Вещества, растворы (или расплавы) которых проводят электрический ток, называются э л е к т р о л и т а м и. Нередко электролитами называют и сами растворы этих веществ. Эти растворы (расплавы) электролитов являются проводниками второго рода, так как передача электричества осуществляется в них движением и о н о в - заряженных частиц. Частица, заряженная положительно называется катионом (Са +2), частица несущая отрицательный заряд - анионом (ОН ־). Ионы могут быть простые (Са +2 , Н +) и сложные (РО 4 ־ 3 , НСО 3 ־ 2).

Основоположником теории электролитической диссоциации является шведский ученый С. Аррениус. Согласно теории электролитической диссоциацией называется распад молекул на ионы при их растворении в воде, причем это происходит без воздействия электрического тока. Однако эта теория не отвечала на вопросы: какие причины обусловливают появление в растворах ионов и почему положительные ионы, сталкиваясь с отрицательными, не образуют нейтральных частиц.

Свой вклад в развитие этой теории внесли русские ученые: Д.И. Менделеев, И. А. Каблуков – сторонники химической теории растворов, обращавшие внимание на влияние растворителя в процессе диссоциации. Каблуков утверждал, что растворенное вещество взаимодействует с растворителем (процесс с о л ь в а т а ц и и ) образуя продукты переменного состава (с о л ь в а т ы ).

Сольват представляет собой ион, окруженный молекулами растворителя (сольватная оболочка), которых может быть разное количество (именно за счет этого достигается переменный состав). Если растворителем является вода, то процесс взаимодействия молекул растворенного вещества и растворителя называется г и д р а т а ц и е й, а продукт взаимодействия - г и д р а т о м.

Таким образом, причиной электролитической диссоциации является сольватация (гидратация). И именно сольватация (гидратация) ионов препятствует обратному соединению в нейтральные молекулы.

Количественно процесс диссоциации характеризуется величиной степени электролитической диссоциации ( α ), которая представляет собой отношение количества распавшегося на ионы вещества к общему количеству растворенного вещества. Отсюда следует, что для сильных электролитов α = 1 или 100 % (в растворе присутствуют ионы растворенного вещества), для слабых электролитов 0 < α < 1 (в растворе присутствуют наряду с ионами растворенного вещества и его недиссоциированные молекулы), для неэлектролитов α = 0 (ионы в растворе отсутствуют). Помимо природы растворенного вещества и растворителя величина α зависит от концентрации раствора и температуры.

Если растворителем является вода, к сильным электролитам относятся:

1) все соли;

2) следующие кислоты: HCl, HBr, HI, H 2 SO 4 , HNO 3 , HClO 4 ;

3) следующие основания: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 .

Процесс электролитической диссоциации является обратимым, следовательно, его можно охарактеризовать величиной константы равновесия, которая, в случае слабого электролита, называется константой диссоциации (К Д ) .

Чем больше эта величина, тем легче электролит распадается на ионы, тем больше его ионов в растворе. Например: HF ═ H + + F־

Эта величина постоянная при данной температуре и зависит от природы электролита, растворителя.

Многоосновные кислоты и многокислотные основания диссоциируют ступенчато. Например, молекулы серной кислоты в первую очередь отщепляют один катион водорода:

H 2 SO 4 ═ Н + + HSO 4 ־ .

Отщепление второго иона по уравнению

HSO 4 ־ ═ Н + + SO 4 ־ 2

идет уже значительно труднее, так как ему приходится преодолевать притяжение со стороны двухзарядного иона SO 4 ־ 2 , который, конечно, притягивает к себе ион водорода сильнее, чем однозарядный ион HSO 4 ־ . Поэтому вторая ступень диссоциации происходит в гораздо меньшей степени, чем первая.

Основания, содержащие более одной гидроксильной группы в молекуле, тоже диссоциируют ступенчато. Например:

Ba(OH) 2 ═ BaOH + + OH - ;

BaOH + = Ba 2+ + OH - .

Средние (нормальные) соли всегда диссоциируют на ионы металлов и кислотных остатков:

CaCl 2 = Ca 2+ + 2Cl - ;

Na 2 SO 4 = 2Na + + SO 4 2- .

Кислые соли, подобно многоосновным кислотам, диссоциируют ступенчато. Например:

NaHCO 3 = Na + + HCO 3 - ;

HCO 3 - = H + + CO 3 2- .

Однако степень диссоциации по второй ступени очень мала, так что раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли диссоциируют на ионы основных и кислотных остатков. Например:

Fe(OH)Cl 2 = FeOH 2+ + 2Cl - .

Вторичной диссоциации ионов основных остатков на ионы металла и гидроксила почти не происходит.

1. ЭЛЕКТРОЛИТЫ

1.1. Электролитическая диссоциация. Степень диссоциации. Сила электролитов

Согласно теории электролитической диссоциации, соли, кислоты, гидроксиды, растворяясь в воде, полностью или частично распадаются на самостоятельные частицы – ионы.

Процесс распада молекул веществ на ионы под действием полярных молекул растворителя называют электролитической диссоциацией . Вещества, диссоциирующие на ионы в растворах, называют электролитами. В результате раствор приобретает способность проводить электрический ток, т.к. в нем появляются подвижные носители электрического заряда. Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называют катионами ; к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами ; к ним принадлежат ионы кислотных остатков и гидроксид-ионы.

Для количественной характеристики процесса диссоциации введено понятие степени диссоциации. Степенью диссоциации электролита (α) называется отношение числа его молекул, распавшихся в данном растворе на ионы ( n ), к общему числу его молекул в растворе ( N ), или

α = .

Степень электролитической диссоциации принято выражать либо в долях единицы, либо в процентах.

Электролиты со степенью диссоциации больше 0,3 (30%) обычно называют сильными, со степенью диссоциации от 0,03 (3%) до 0,3 (30%)-средними, менее 0,03 (3%)-слабыми электролитами. Так, для 0,1 M раствора CH 3 COOH α = 0,013 (или 1,3 %). Следовательно, уксусная кислота является слабым электролитом. Степень диссоциации показывает, какая часть растворенных молекул вещества распалась на ионы. Степень электролитической диссоциации электролита в водных растворах зависит от природы электролита, его концентрации и температуры.

По своей природе электролиты можно условно разделить на две большие группы: сильные и слабые . Сильные электролиты диссоциируют практически полностью (α = 1).

К сильным электролитам относятся:

1) кислоты (H 2 SO 4 , HCl , HNO 3 , HBr , HI , HClO 4 , H М nO 4 );

2) основания – гидроксиды металлов первой группы главной подгруппы (щелочи) – LiOH , NaOH , KOH , RbOH , CsOH , а также гидроксиды щелочноземельных металлов – Ba (OH ) 2 , Ca (OH ) 2 , Sr (OH ) 2 ;.

3) соли, растворимые в воде (см. таблицу растворимости).

Слабые электролиты диссоциируют на ионы в очень малой степени, в растворах они находятся, в основном в недиссоциированном состоянии (в молекулярной форме). Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами.

К слабым электролитам относятся:

1) неорганические кислоты ( H 2 CO 3 , H 2 S , HNO 2 , H 2 SO 3 , HCN , H 3 PO 4 , H 2 SiO 3 , HCNS , HСlO и др.);

2) вода (H 2 O );

3) гидроксид аммония ( NH 4 OH );

4) большинство органических кислот

(например, уксусная CH 3 COOH, муравьиная HCOOH);

5) нерастворимые и малорастворимые соли и гидроксиды некоторых металлов (см. таблицу растворимости).

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация соляной кислоты (НС l ) записывается следующим образом:

HCl → H + + Cl – .

Основания диссоциируют с образованием катионов металла и гидроксид-ионов. Например, диссоциация КОН

КОН → К + + ОН – .

Многоосновные кислоты, а также основания многовалентных металлов диссоциируют ступенчато. Например,

H 2 CO 3 H + + HCO 3 – ,

HCO 3 – H + + CO 3 2– .

Первое равновесие – диссоциация по первой ступени – характеризуется константой

.

Для диссоциации по второй ступени:

.

В случае угольной кислоты константы диссоциации имеют следующие значения: K I = 4,3 × 10 –7 , K II = 5,6 × 10 –11 . Для ступенчатой диссоциации всегда K I >K II >K III > ... , т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Средние (нормальные) соли, растворимые в воде, диссоциируют с образованием положительно заряженных ионов металла и отрицательно заряженных ионов кислотного остатка

Ca(NO 3) 2 → Ca 2+ + 2NO 3 –

Al 2 (SO 4) 3 → 2Al 3+ +3SO 4 2– .

Кислые соли (гидросоли) – электролиты, содержащие в анионе водород, способный отщепляться в виде иона водорода Н + . Кислые соли рассматривают как продукт, получающийся из многоосновных кислот, в которых не все атомы водорода замещены на металл. Диссоциация кислых солей происходит по ступеням, например:

KHCO 3 K + + HCO 3 – (первая ступень)

Электролиты и неэлектролиты

Из уроков физики известно, что растворы од­них веществ способны проводить электрический ток, а других - нет.

Вещества, растворы которых проводят электрический ток, называются электролитами .

Вещества, растворы кото­рых не проводят электрический ток, называются неэлектролитами . Например растворы сахара, спирта, глюкозы и некоторых других веществ не проводят элек­трический ток.

Электролитические диссоциация и ассоциация

Почему же растворы элек­тролитов проводят электри­ческий ток?

Шведский ученый С. Ар­рениус, изучая электропро­водность различных веществ, пришел в 1877 г. к выводу, что причиной электропровод­ности является наличие в растворе ионов , которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называ­ется электролитической диссоциацией .

С. Аррениус, который придерживался физиче­ской теории растворов, не учитывал взаимодей­ствия электролита с водой и считал, что в раство­рах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяков- ский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита про­исходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы . Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е. «одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угло­вую форму. Молекула воды схематически представ­лена ниже.

Как правило, легче всего диссоциируют веще­ства с ионной связью и, соответственно, с ионной кристаллической решеткой, так как они уже состо­ят из готовых ионов. При их растворении диполи во­ды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения . В ре­зультате связь между ионами ослабевает, и про­исходит переход ионов из кристалла в раствор. Очевидно, что последовательность про­цессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

1) ориентация молекул (диполей) воды около ио­нов кристалла;

2) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

3) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно от­разить с помощью следующего уравнения:

Аналогично диссоциируют и электролиты, в мо­лекулах которых ковалентная связь (например, мо­лекулы хлороводорода HCl, смотри ниже); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ион­ную; последовательность процессов, происходящих при этом, будет такой:

1) ориентация молекул воды вокруг полюсов моле­кул электролита;

2) гидратация (взаимодействие) молекул воды с молекулами электролита;

3) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

4) диссоциация (распад) молекул электролита на гидратированные ионы.


Упрощенно процесс диссоциации соляной кис­лоты можно отразить с помощью следующего урав­нения:

Следует учитывать, что в растворах электро­литов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Ассоциация в растворах происходит параллельно с диссоциацией, поэтому в уравнени­ях реакций ставят знак обратимости.


Свойства гидратированных ионов отличаются от свойств негидратированных. Например, негидрати­рованный ион меди Cu 2+ - белый в безводных кри­сталлах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами во­ды Cu 2+ nH 2 O. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Степень электролитической диссоциации

В растворах электролитов наряду с ионами при­сутствуют и молекулы. Поэтому растворы электро­литов характеризуются степенью диссоциации , ко­торая обозначается греческой буквой а («альфа»).

Это отношение числа частиц, распавшихся на ионы (N g), к общему числу растворенных частиц (N p).

Степень диссоциации электролита определяется опытным путем и выражается в долях или про­центах. Если а = 0, то диссоциация отсутствует, а если а = 1, или 100 %, то электролит полностью распадается на ионы. Различные электролиты име­ют различную степень диссоциации, т. е. степень диссоциации зависит от природы электролита. Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.

По степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные электролиты - это электролиты, кото­рые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов зна­чение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: H 2 SO 4 , HCl, HNO 3 ;

3) все щелочи, например: NaOH, KOH.

Слабые электролиты - это такие электроли­ты, которые при растворении в воде почти не дис­социируют на ионы. У таких электролитов значе­ние степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты - H 2 S, H 2 CO 3 , HNO 2 ;

2) водный раствор аммиака NH 3 H 2 O;

4) некоторые соли.

Константа диссоциации

В растворах слабых электролитов вследствие их неполной диссоциации устанавливается динамичес­кое равновесие между недиссоциированными моле­кулами и ионами . Например, для уксусной кислоты:

Можно применить к этому равновесию закон действующих масс и записать выражение констан­ты равновесия:

Константу равновесия, характеризующую про­цесс диссоциации слабого электролита, называют константой диссоциации .

Константа диссоциации характеризует способ­ность электролита (кислоты, основания, воды) диссо­циировать на ионы . Чем больше константа, тем лег­че электролит распадается на ионы, следовательно, тем он сильнее. Значения констант диссоциации для слабых электролитов приводятся в справочниках.

Основные положения теории электролитической диссоциации

1. При растворении в воде электролиты диссо­циируют (распадаются) на положительные и отри­цательные ионы.

Ионы - это одна из форм существования хими­ческого элемента. Например, атомы металла натрия Na 0 энергично взаимодейству­ют с водой, образуя при этом щелочь (NaOH) и водород Н 2 , в то время как ионы натрия Na + таких продуктов не обра­зуют. Хлор Cl 2 имеет желто­зеленый цвет и резкий запах, ядовит, а ионы хлора Cl — бесцветны, не ядовиты, лишены запаха.

Ионы - это положительно или отрицательно заряженные частицы, в которые превращаются атомы или группы атомов одного или нескольких химических элементов в результате отдачи или присоединения электронов.

В растворах ионы беспорядочно передвигаются в различных направлениях.

По составу ионы делятся на простые - Cl — , Na + и сложные - NH 4 + , SO 2 — .

2. Причиной диссоциации электролита в вод­ных растворах является его гидратация, т. е. взаи­модействие электролита с молекулами воды и раз­рыв химической связи в нем.

В результате такого взаимодействия образуются гидратированные, т. е. связанные с молекулами во­ды, ионы. Следовательно, по наличию водной обо­лочки ионы делятся на гидратированные (в раствоpax и кристаллогидратах) и негидратированные (в безводных солях).

3. Под действием электрического тока положитель­но заряженные ионы движутся к отрицательному по­люсу источника тока - катоду и поэтому называют­ся катионами, а отрицательно заряженные ионы движутся к положительному полюсу ис­точника тока - аноду и по­этому называются анионами.

Следовательно, существу­ет еще одна классификация ионов - по знаку их заряда .

Сумма зарядов катионов (Н + , Na + , NH 4 + , Cu 2+) равна сумме зарядов анионов (Cl — , OH — , SO 4 2-), вследствие че­го растворы электролитов (HCl, (NH 4) 2 SO 4 , NaOH, CuSO 4) остаются электронейтральными.

4. Электролитическая диссоциация - процесс обратимый для слабых электролитов.

Наряду с процессом диссоциации (распад элек­тролита на ионы) протекает и обратный процесс - ассоциация (соединение ионов). Поэтому в уравне­ниях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

5. Не все электролиты в одинаковой мере диссо­циируют на ионы.

Зависит от природы элек­тролита и его концентрации. Химические свойства растворов электролитов определяются свойствами тех ионов, которые они образуют при диссоциации.

Свойства растворов слабых электролитов об­условлены молекулами и ионами, образовавшими­ся в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул CH 3 COOH, кислый вкус и изменение окра­ски индикаторов связаны с наличием в растворе ионов H + .

Свойства растворов сильных электролитов опре­деляются свойствами ионов, которые образуются при их диссоциации.

Например, общие свойства кислот, такие как кислый вкус, изменение окраски индикаторов и др., обусловлены наличи­ем в их растворах катионов водорода (точнее, ионов оксония H 3 O +). Общие свойства щелочей, такие как мылкость на ощупь, изменение окраски индикаторов и др. связаны с присутствием в их рас­творах гидроксид-ионов OH — , а свойства солей - с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Согласно теории электролитической диссоциа­ции все реакции в водных растворах электролитов являются реакциями между ионами . Этим обуслов­лена высокая скорость многих химических реак­ций в растворах электролитов.

Реакции, протекающие между ионами, называ­ют ионными реакциями , а уравнения этих реак­ций - ионными уравнениями .

Реакции ионного обмена в водных растворах мо­гут протекать:

1. Необратимо , до конца.

2. Обратимо , то есть протекать одновременно в двух противоположных направлениях. Реакции обмена между сильными электролита­ми в растворах протекают до конца или практи­чески необратимы, когда ионы, соединяясь друг с другом, образуют вещества:

а) нерастворимые;

б) малодиссоциирующие (слабые электролиты);

в) газообразные.

Приведем несколько примеров молекулярных и сокращенных ионных уравнений:

Реакция необратима , т. к. один из ее про­дуктов - нерастворимое вещество.

Реакция нейтрализации необратима , т. к. об­разуется малодиссоциирующее вещество - вода.

Реакция необратима , т. к. образуется газ CO 2 и малодиссоциирующее вещество - вода.

Если среди исходных веществ и среди продуктов реакции имеются слабые электролиты или мало­растворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают.

В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.

Например:

Равновесие смещается в сторону образования более слабого электролита - H 2 O. Однако до конца такая реакция протекать не будет: в растворе оста­ются недиссоциированные молекулы уксусной кис­лоты и гидроксид-ионы.

Если исходные вещества - сильные электро­литы, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при сме­шивании растворов образуется смесь ионов.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости



Новое на сайте

>

Самое популярное