Домой Кардиология Важный процесс терморегуляции организма человека. Механизмы терморегуляции тела

Важный процесс терморегуляции организма человека. Механизмы терморегуляции тела


Нарушение терморегуляции организма или расстройство постоянства температуры тела провоцируется дисфункцией ЦНС. При нарушении процессов терморегуляции возможны два типа реакции. Если температура тела идет на повышение, периферические сосуды расширяются, начинается потоотделение. Если температура, наоборот, снижается, сосуды сужаются, мышцы сокращаются, конечности холодеют, появляется дрожь.

Обладающие свойством постоянства температуры тела высшие животные имеют систему поддержания температуры в равновесии. Терморегуляция осуществляет баланс между теплообразованием и тепловыделением. Существует два основных вида терморегуляции: химический (главный его механизм - усиление теплообразования при мышечных сокращениях - мышечной дрожи) и физический (усиление теплообмена за счет испарения жидкости с поверхности тела при потоотделении). Кроме того, определенное значение для теплопродукции и теплоотдачи имеет интенсивность обменных процессов и сужение или расширение кожных сосудов.

Центр терморегуляции расположен в стволе головного мозга. Кроме того, в терморегуляции определенную роль играют гормоны желез внутренней секреции, в частности . Нарушение терморегуляции тела, связанное с понижением температуры, именуется гипотермией. Нарушение терморегуляции тела у человека, связанное с повышением температуры, называется гипертермией.

Нарушение процессов терморегуляции: гипертермия

Гипертермия (перегревание) возникает при нарушении механизмов терморегуляции, при котором теплопродукция преобладает над теплоотдачей. Температура тела может достичь 43 °С и более.

Наиболее частыми причинами такого нарушения терморегуляции человека являются повышение температуры внешней среды и появление факторов, препятствующих адекватной теплоотдаче (например, излишне теплая одежда, повышенная влажность воздуха и т.п.).

При появлении этого вида нарушений терморегуляции включаются механизмы адаптации: поведенческие реакции, с помощью которых человек пытается избежать воздействия излишнего тепла (например, включает вентилятор), усиление механизмов теплоотдачи, уменьшение теплопродукции и стресс-реакция. В соответствии с результатами взаимодействия гипертермии и процессов адаптации выделяют стадию компенсации и стадию декомпенсации гипертермии.

В стадии компенсации происходит расширение артериальных сосудов кожи и связанное с этим усиление теплоотдачи. При дальнейшем повышении температуры теплоотдача начинает происходить в основном только за счет потоотделения.

В стадии декомпенсации наблюдается нарушение механизмов адаптации, потоотделение значительно снижается, температура тела может повыситься до 41-43 °С. Возникает нарушение функций и структур клеток в связи с непосредственным повреждающим воздействием высокой температуры, что приводит к выраженным нарушениям функций систем и органов, в первую очередь ЦНС и сердечно-сосудистой системы.

Тепловой удар - это вариант гипертермии, при котором механизмы адаптации быстро истощаются. Это может происходить как при высокой интенсивности теплового фактора, так и в результате низкой эффективности механизмов адаптации конкретного организма. Симптомы такого нарушения терморегуляции такие же, как и в стадии декомпенсации гипертермии в общем, но более тяжелые и значительно быстрее нарастающие, в связи, с чем тепловой удар сопровождается высокой летальностью. Ведущие механизмы патогенеза изменений в организме при этом соответствуют таковым при гипертермии вообще. Но особое значение при таком нарушении терморегуляции организма человека придается интоксикации, острой сердечной недостаточности, остановке дыхания, отеку и кровоизлияниям в головной мозг.

Солнечный удар - это одна из форм гипертермии. Он возникает вследствие непосредственного воздействия тепла солнечных лучей на организм. При такой патологии терморегуляции включаются вышеописанные механизмы гипертермии, но ведущим является повреждение головного мозга.

Патология терморегуляции организма: лихорадка

От гипертермии следует отличать лихорадку. Лихорадка - это реакция организма на раздражители инфекционной и неинфекционной природы, характеризующаяся повышением температуры тела. При лихорадке (в отличие от гипертермии) сохраняется баланс между теплообразованием и теплоотдачей, но на более высоком, чем обычно, уровне.

Причиной такого нарушения терморегуляции является появление в организме пирогенных веществ (пирогенов). Они подразделяются на экзогенные (продукты жизнедеятельности бактерий) и эндогенные (продукты распада поврежденных клеток, измененные белки сыворотки крови и т.п.).

Различают следующие стадии такой патологии терморегуляции человека:

  • стадия повышения температуры;
  • стадия стояния температуры на более высоком уровне, чем в норме;
  • стадия снижения температуры.

Лихорадка до 38 °С называется субфебрильной, до 39 °С умеренной, или фебрильной, до 41 °С - высокой, или пиретической, свыше 41 °С - чрезмерной, или гиперпиретической.

Типы температурных кривых (графики суточных колебаний температуры) могут иметь диагностическое значение, так как нередко значительно отличаются при различных заболеваниях.

Постоянная лихорадка характеризуется суточными колебаниями температуры не более 1 °С. При послабляющей лихорадке разница утренней и вечерней температуры составляет 1-2 °С, а при изнуряющей (гектической) - 3-5 °С. Перемежающаяся лихорадка характеризуется большими размахами утренней и вечерней температуры с периодической ее нормализацией. Возвратная лихорадка сочетает периоды в несколько дней, при которых температура нормальная, и периоды повышенной температуры, которые чередуются друг за другом. При извращенной лихорадке утренняя температура превышает вечернюю, а атипичная лихорадка вообще не имеет каких-либо закономерностей.

При резком снижении температуры говорят о критическом снижении, или кризисе (это может сопровождаться выраженным снижением - коллапсом); постепенное ее снижение называется литическим, или лизисом.

В системах и органах при лихорадке возникает ряд изменений.

Так, в центральной нервной системе при лихорадке наблюдается явление угнетения. Сопутствующим симптомом такого нарушения терморегуляции организма является тахикардия, примерно 8-10 ударов в минуту на каждый градус подъема (впрочем, при некоторых заболеваниях, например, при , может быть брадикардия, что связано с угнетающим воздействием бактериального токсина на сердце). На высоте лихорадки дыхание может быть учащено.

Лихорадка, однако, имеет и положительное значение. Так, при лихорадке тормозится размножение некоторых вирусов, подавляются процессы жизнедеятельности и деления многих бактерий, усиливается интенсивность иммунных реакций, тормозится рост опухолей, повышается устойчивость организма к инфекциям.

При схожих симптомах причины этих нарушений терморегуляции организма различны. Лихорадка вызывается пирогенами, а гипертермия - высокой температурой окружающей среды.

При такой патологии, как лихорадка, механизмы терморегуляции продолжают действовать (происходит переход баланса между теплопродукцией и теплоотдачей на более высокий уровень), при гипертермии возникает срыв механизмов терморегуляции.

Лихорадка - это реакция организма на определенные внешние и внутренние воздействия с определенными позитивными качествами, гипертермия - это, безусловно, патологический, вредный для организма процесс.

Нарушение терморегуляции тела: гипотермия

Гипотермия - это состояние, характеризующееся понижением температуры тела ниже нормы.

Ведущая причина такого нарушения терморегуляции организма - это понижение температуры окружающей среды. Кроме этого к гипотермии на фоне небольшого понижения внешней температуры приводят нарушения механизмов теплообразования: обширные параличи мышц, нарушение производства тепла вследствие снижения интенсивности обмена при пониженной продукции гормонов надпочечников (в том числе при повреждении гипоталамо-гипофизарной области), а также крайняя степень истощения. Гипотермии могут способствовать и следующие факторы: повышенная влажность воздуха, мокрая одежда, погружение в холодную воду, ветер (что способствует усилению теплоотдачи); кроме этого к снижению сопротивляемости организма к переохлаждению приводят голодание, переутомление, алкогольное опьянение, травмы и болезни. Последствиями нарушения терморегуляции могут быть общее переохлаждение и местная холодовая травма - отморожение.

По времени наступления смерти различают острое (в течение часа), подострое (в течение 4 часов), медленное (свыше 4 часов) переохлаждение.

Так же, как и при гипертермии, развитие гипотермии подразделяется на стадию компенсации и стадию декомпенсации.

Стадия компенсации характеризуется поведенческими реакциями (человек пытается согреться), снижением теплоотдачи (сужаются сосуды кожи, прекращается потоотделение), повышением продукции тепла (повышается АД, ЧСС, увеличивается кровоток во внутренних органах и интенсивность обменных процессов в органах и тканях, появляется мышечная дрожь). Температура тела снижается незначительно.

Если холод продолжает действовать, а механизмы адаптации не могут справиться с его патогенным воздействием, то наступает стадия декомпенсации. Происходит срыв системы терморегуляции, угнетение центров регуляции головного мозга, что ведет к падению сердечной деятельности, ослаблению интенсивности дыхания, гипоксии и ацидозу, расстройству функций органов и тканей, а также микроциркуляции. Следствием этого являются нарушение обмена воды электролитов и появление отека головного мозга. Смерть наступает из-за остановки кровообращения и дыхания вследствие нарастающего угнетения регуляторных центров ЦНС.

Отморожению обычно подвергаются не защищенные или плохо защищенные одеждой участки тела (нос, уши, пальцы кистей и стоп). В ответ на воздействие холода возникают такие признаки нарушения терморегуляции, как спазм кожных сосудов, сменяющийся их расширением и артериальной гиперемией; при продолжающемся воздействии холода может возникнуть вторичный спазм сосудов, что приводит к ишемии тканей и их повреждению вплоть до некроза кожи и глубже лежащих тканей.

Статья прочитана 12 302 раз(a).

Теплообмен

Теплота способна переходить только из области более высокой температуры в область более низкой. Поэтому поток тепловой энергии от живого организма в окружающую среду не прекращается до тех пор, пока температура тела выше, чем температура среды.

Температура тела определяется соотношением скорости метаболической теплопродукции клеточных структур и скорости рассеивания образующейся тепловой энергии в окружающую среду. Следовательно, теплообмен между организмом и средой является неотъемлемым условием существования теплокровных организмов. Нарушение соотношения этих процессов приводит к изменению температуры тела.

Жизнь может протекать в узком диапазоне температур.

Возможность протекания процессов жизнедеятельности ограничена узким диапазоном температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25°с и её увеличение выше 43°с, как правило, смертельно. Особенно чувствительны к изменениям температуры нервные клетки.

Ядро и внешняя оболочка тела

С точки зрения терморегуляции, тело человека можно представить состоящим из двух компонентов: внешней оболочки, и внутреннего, ядра. Ядро – это часть тела, которая имеет постоянную температуру, а оболочка – часть тела, в которой имеется температурный градиент. Через оболочку идёт теплообмен между ядром и окружающей средой.

Терморегуляция

Терморегуляция – это совокупность физиологических процессов, направленных на поддержание относительного постоянства температуры ядра в условиях изменения температуры среды с помощью регуляции теплопродукции и теплоотдачи. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если подобные нарушения уже произошли, и осуществляется нервно-гуморальным путём.

Виды терморегуляции

Терморегуляцию можно разделить на два основных вида:

Химическую и физическую терморегуляцию. Они, в свою очередь, также подразделяются на несколько видов:

  1. Химическая терморегуляция

    Сократительный термогенез
    - Несократительный термогенез

  2. Физическая терморегуляция

Излучение
-Теплопроведение (кондукция)
-Конвекция
-Испарение

Рассмотрим эти виды терморегуляции подробнее.

Химическая терморегуляция

Регулирование объёма теплопродукции

Химическая терморегуляция теплообразования – осуществляется за счёт изменения уровня обмена веществ, что приводит к изменению образования тепла в организме. Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиз АТФ.

При расщеплении питательных веществ часть освобождённой энергии аккумулируется в АТФ, часть рассеивается в виде тепла (первичная теплота – 65–70% энергии). При использовании макроэргических связей молекул АТФ часть энергии идёт на выполнение полезной работы, а часть рассеивается (вторичная теплота). Таким образом, два потока теплоты – первичной и вторичной – являются теплопродукцией.

При необходимости повысить теплопродукцию, помимо возможности получения тепла извне, в организме используются механизмы, увеличивающие производство тепловой энергии.

К таким механизмам относятся сократительный и несократительный термогенез.

Сократительный термогенез

Этот вид терморегуляции работает если нам холодно и необходимо поднять температуру тела. Заключается этот метод в сокращении мышц.

При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата, в основном, возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3–5 раз по сравнению с величиной основного обмена.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса (волосы на теле "встают дыбом", появляются "мурашки") . С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25–40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы головы и шеи.

При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь . Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция повышается. Считается, что теплопродукция при холодовой дрожи в 2,5 раз выше, чем при произвольной мышечной деятельности.

Описанный механизм работает на рефлекторном уровне, без участия нашего сознания. Но поднять температуру тела можно и при помощи сознательной двигательной активности.

При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5–15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15–30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

Несократительный термогенез

Этот вид терморегуляции может приводить, как повышению, так и к понижению температуры тела.

Он осуществляется путём ускорения или замедления катаболических процессов обмена веществ. А это, в свою очередь, будет приводить к снижению или увеличению теплопродукции. За счёт этого вида термогенеза теплопродукция может вырасти в 3 раза.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной и мозгового слоя надпочечников.

Физическая терморегуляция

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Различают несколько механизмов отдачи тепла в окружающую среду.

  1. Излучение
  2. – отдача тепла в виде электромагнитных волн инфракрасного диапазона. За счёт излучения отдают энергию все предметы, температура которых выше абсолютного нуля. Электромагнитная радиация свободно проходит сквозь вакуум, атмосферный воздух для неё тоже можно считать «прозрачным». Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тела, не покрытой одеждой) и градиенту температуры. При температуре окружающей среды 20°с и относительной влажности воздуха 40–60% организм взрослого человека рассеивает путём излучения около 40–50% всего отдаваемого тепла.
  3. Теплопроведение (кондукция)
  4. – способ отдачи тепла при непосредственном соприкосновении тела с другими физическими объектами. Количество тепла, отдаваемого в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади соприкасающихся поверхностей, времени теплового контакта и теплопроводности.
  5. Конвекция
  6. – теплоотдача, осуществляемая путём переноса тепла движущимися частицами воздуха (воды). Воздух, соприкасающийся с кожей, нагревается и поднимается, его место занимает «холодная» порция воздуха и т. д. В условиях температурного комфорта этим способом тело теряет до 15% всего отдаваемого тепла.
  7. Испарение – отдача тепловой энергии в окружающую среду за счёт испарения пота или влаги с поверхности кожи и слизистых дыхательных путей. За счёт испарения организм в условиях комфортной температуры отдаёт около 20% всего рассеиваемого тепла. Испарение делится на 2 вида.

Неощущаемая перспирация – испарение воды со слизистых дыхательных путей (через дыхание) и воды, просачивающейся через эпителий кожного покрова (Испарение с поверхности кожи. Оно идёт даже в случае, если кожа сухая.).

За сутки через дыхательные пути испаряется до 400 мл воды, т.е. организм теряет до 232 ккал в сутки. При необходимости эта величина может быть увеличена за счёт тепловой одышки.

Через эпидермис в среднем за сутки просачивается около 240 мл воды. Следовательно, этим путём организм теряет до 139 ккал в сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.

Ощущаемая перспирация – отдача тепла путём испарения пота . В среднем за сутки при комфортной температуре среды выделяется 400–500 мл пота, следовательно, отдаётся до 300 ккал энергии. Однако при необходимости объём потоотделения может увеличиться до 12 л в сутки, т.е. путём потоотделения можно потерять до 7000 ккал в сутки.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность, тем выше эффективность потоотделения как механизма отдачи тепла. При 100% влажности испарение невозможно.

Управление терморегуляцией

Гипоталамус

Система терморегуляции состоит из ряда элементов с взаимосвязанными функциями. Информация о температуре поступает от терморецепторов и при помощи нервной системы попадает в мозг.

Основную роль в терморегуляции играет гипоталамус. Разрушение его центров или нарушение нервных связей ведёт к утрате способности регулировать температуру тела. В переднем гипоталамусе расположены нейроны, управляющие процессами теплоотдачи. При разрушении нейронов переднего гипоталамуса организм плохо переносит высокие температуры, но физиологическая активность вусловиях холода сохраняется. Нейроны заднего гипоталамуса управляют процессами теплопродукции. При их повреждении нарушается способность к усилению энергообмена, поэтому организм плохо переносит холод.

Эндокринная система

Гипоталамус управляет процессами теплопродукции и теплоотдачи, посылая нервные импульсы к железам внутренней секреции, главным образом щитовидной и надпочечникам.

Участие щитовидной железы в терморегуляции обусловлено тем, что влияние пониженной температуры приводит к усиленному выделению её гормонов, ускоряющих обмен веществ и, следовательно, теплообразование.

Роль надпочечников связана с выделением ими в кровь катехоламинов, которые, усиливая или уменьшая окислительные процессы в тканях (например, мышечной), увеличивают или уменьшают теплопродукцию и сужают или увеличивают кожные сосуды, меняя уровень теплоотдачи.

Основными параметрами, обеспечивающими процесс теплообмена человека с окружающей сре­дой, являются параметры микроклимата. В естественных условиях на поверхности Земли эти параметры изменяются в существенных пределах. Так, температура окружающей среды изменяется от -88 до +60 °С; подвижность воздуха - от 0 до 100 м/с; относительная влажность - от 10 до 100% и атмосферное давление - от 680 до 810 мм рт. ст.

Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются термо­регуляцией. Она позволяет сохранять температуру внутренних органов постоянной, близкой к 36,5 °С.

Процессы регулирования тепловыделений осуще­ствляются в основном тремя способами :

1. Биохими­ческим путем.

2. Путем изменения интенсивности кровообращения.

3. За счет интенсивности потовыделения.

Терморегуляция биохимическим путем заклю­чается в изменении интенсивности происходящих в организме окислительных процессов. Например, мышечная дрожь, возникающая при сильном ох­лаждении организма, повышает выделение тепло­ты до 125...200 Дж/с.

Терморегуляция путем изменения интенсивно­сти кровообращения заключается в способности организма регулиро­вать подачу крови (которая является в данном случае теплоносителем) от внутренних органов к поверхности тела путем сужения или расши­рения кровеносных сосудов.

Перенос теплоты с потоком крови имеет большое значение вследствие низких коэффициентов теплопроводно­сти тканей человеческого организма.

При высоких температурах окружающей среды кровеносные сосуды кожи расширяются, и к ней от внутренних органов притекает большое количество крови и, следовательно, больше теплоты отдается окружа­ющей среде.

При низких температурах происходит обратное явление: сужение кровеносных сосудов кожи, уменьшение притока крови к кожному покрову и, следовательно, меньше теплоты отдается во внешнюю среду.

Кровоснабжение при высокой температуре среды может быть в 20 - 30 раз больше, чем при низкой. В пальцах кровоснабжение может изменяться даже в 600 раз.

Терморегуляция путем изменения интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения

Параметры микроклимата воздушной среды, которые обуславливают оптимальный обмен веществ в организме, и, при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными .

Зона, в которой окру­жающая среда полностью отводит теплоту, выделяемую организмом, и нет напряжения системы терморегуляции, называется зоной комфорта.

Условия, при которых нормальное тепловое состояние человека нару­шается, называются дискомфортными .


Гигиеническое нормирование параметров микроклимата производст­венных помещений.

Нормы производственного микроклимата установ­лены системой стандартов безопасности труда ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны». Они едины для всех производств и всех климатических зон с некото­рыми незначительными отступлениями.

В этих нормах отдельно нормируется каждый компонент микро­климата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способ­ности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции ) и акклиматизации организма в разное время года введено понятие периода года.

Разли­чают теплый и холодный период года. Теплый период года характери­зуется среднесуточной температурой наружного воздуха +10 °С и выше, холодный - ниже +10 °С.

В рабочей зоне производственного помещения могут быть установлены оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические усло­вия - это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия - это такое сочетания параметров микроклимата, которое при длительном и систематическом воздействии на человека может вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиоло­гических приспособительных возможностей.

Методы снижения неблагоприятного влияния производственного микроклимата регламентируются «Санитарными правилами по орга­низации технологических процессов и гигиеническими требованиями к производственному оборудованию» и осуществляются комплексом технологических, санитарно-технических, организационных и меди­ко-профилактических мероприятий.

Ведущая роль в профилактике вредного влияния высоких темпе­ратур и инфракрасного излучения принадлежит технологическим ме­роприятиям:

1. Замена старых и внедрение новых технологических процессов и оборудования, способствующих оздоровлению неблагоп­риятных условий труда.

2. Внедрение автома­тизации и механизации дает возможность пребывания рабочих вдали от источника радиационной и конвекционной теплоты.

К группе санитарно-технических мероприятий относится приме­нение коллективных средств защиты :

1. Локализация тепловыделений, теплоизоляция поверхностей, экранирование источников либо рабочих мест.

2. Воздушное душирование, радиационное охлаждение, мелкодисперсное распыление воды.

3. Общеобменная вентиляция или кондиционирование воздуха.

Теплоизоляция поверхностей источников излучения (печей, сосудов и трубопроводов с горячими газами и жидкостями) снижает темпера­туру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационное.

Конструктивно теплоизоляция может быть мастичной, оберточ­ной, засыпной, из штучных изделий и смешанной.

Мастичная изоля­ция осуществляется нанесением мастики (штукатурного раствора с теплоизоляционным наполнителем) на горячую поверхность изолиру­емого объекта.

Оберточную изоляцию изготовляют из волокнистых материалов - асбестовой ткани, минеральной ваты, войлока и др. Наиболее пригодна оберточная изоляция для трубопроводов.

Засыпную изоляцию приме­няют реже, так как необходимо устанавливать кожух вокруг изолиру­емого объекта

Теплоизоляцию штучными или формованными изделиями, скорлупами применяют для облегчения работ.

Смешанная изоляция состоит из нескольких различных слоев.

При выборе материала для изоляции необходимо принимать во внимание механические свойства материалов, а также их способность выдерживать высокую температуру. Многие теплоизоляционные мате­риалы берут в их естественном состоянии, например, асбест, слюда, торф, земля, но большинство получают в результате специальной обработки естественных материалов и представляют собой различные смеси.

Теплозащитные экраны применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место.

В зависимости от того, какая способность экрана более выражена, различают теплоотражающие, теплопоглощающие и теплоотводящие экраны.

По степени прозрач­ности экраны делят на три класса: непрозрачные, полупрозрачные и прозрачные.

К первому классу относят металлические водоохлаждаемые и фу­терованные асбестовые, альфолиевые, алюминиевые экраны.

Ко вто­рому - экраны из металлической сетки, цепные завесы, экраны из стекла, армированного металлической сеткой; все эти экраны могут орошаться водяной пленкой.

Третий класс составляют экраны из различных стекол: силикатного, кварцевого и органического, бесцвет­ного, окрашенного и металлизированного, пленочные водяные завесы, свободные и стекающие по стеклу, вододисперсные завесы.

При воздействии на работающего теплового облучения применяют воздушное душирование (подачу воздуха в виде воздушной струи, направленной на рабочее место). Воздушное душирование уст­раивают также для производственных процессов с выделением вредных газов или паров и при невозможности устройства местных укрытий.

Охлаждающий эффект воздушного душирования зависит от разно­сти температур тела работающего и потока воздуха, а также от скорости обтекания воздухом охлаждаемого тела.

Воздушные завесы предназначены для защиты от прорыва холодного воздуха в помещение через проемы здания (ворота, двери и т.п.). Воздушная завеса представляет собой воздушную струю, направленную под углом навстречу холодному потоку воздуха.

Согласно СНиП 2.04.05-91 воздушные завесы необходимо устанавливать у проемов отапливаемых помещений, открывающихся не реже, чем один раз в час либо на 40 мин единовременно при температуре наружного воздуха -15 °С и ниже.

Воздушные оазисы предназначены для улучшения метеорологиче­ских условий труда (чаще отдыха на ограниченной площади). Для этого разработаны схемы кабин с легкими передвижными перегородками, которые затапливаются воздухом с соответствующими параметрами.

Мероприятия по профилактике неблагоприятного воздействия хо­лода должны предусматривать предупреждение выхолаживания произ­водственных помещений, использование средств индивидуальной защиты, подбор рационального режима труда и отдыха. Спецодежда должна быть воздухо- и влагонепроницаемой (хлопчатобумажная, льняная, грубошерстное сукно), иметь удобный покрой.

Для работы в экстремальных условиях (ликвидация пожаров и др.) применяют спе­циальные костюмы, обладающие повышенной теплосветоотдачей. Для защиты головы от излучения применяют дюралевые, фибровые каски, войлочные шляпы; для защиты глаз - очки темные или с прозрачным слоем металла, маски с откидным экраном.

Действительно, нарушение теплового равновесия возникает вследствие повреждения внутренних органов, задействованных в регуляции тепла.

В норме температура человека должна сохраняться в пределах 36,2-37 градусов. Терморегуляция организма человека – это возможность тела контролировать теплообмен, чтобы температура не превышала допустимого показателя. Тепловое равновесие достигается такими способами: путем изменения объема кровообращения и количества выделяемого пота, за счет биохимических процессов. При этом за нормализацию баланса отвечают все виды теплообмена сразу, отличается лишь степень их вовлеченности.

Механизм регулирования обмена

Теплообмен химическим способом осуществляется благодаря вырабатыванию энергии. В этот процесс вовлечены все органы особенно, когда через них проходит кровь. Максимальное количество энергии производится в полосатых поперечных мышцах и печени. Контроль баланса температуры тела за счет выброса тепловой энергии – это физическая регуляция тепла. Она осуществляется при помощи прямого обмена тепла с холодными предметами, воздухом, инфракрасным излучением. Сюда также можно включить дыхание и испарение пота с кожного покрова.

Как сохраняется тепловое равновесие

Внутренняя температура контролируется специальными чувствительными рецепторами. Большая часть их размещена в кожном покрове, слизистой рта, верхних дыхательных путях. Если условия внешней среды не соответствуют норме, рецепторы подают сигнал в головной мозг и появляется чувство перегрева или переохлаждения. Процессы выработки или отдачи тепла запускаются центром терморегуляции.
Стоит отметить, что механизмы образования энергии происходят также за счет определенных гормонов. Например, тироксин повышает производство тепла за счет ускорения обменных процессов. Адреналин имеет такое же действие, но оно осуществляется благодаря ускорению процессов окисления. К тому же адреналин сужает кровеносные сосуды в коже, что также способствует сохранению тепла.

Биохимический способ

Биохимическим путем тепловое равновесие достигается за счет увеличения процессов окисления, которые происходят в человеческом организме. Внешне такое явление проявляется дрожью в мышцах, которая появляется, если организм переохлажден. Как результат организму подается большее количество тепла для достижения равновесия. Если при понижении температуры внешней среды выработка тепла не осуществляется, то это указывает на нарушение баланса.

Усиление кровообращения

Нарушение равновесия тепла регулируется также изменением интенсивности объема подаваемой крови, которая переносит энергию от органов к поверхности тела. Кровообращение усиливается благодаря расширяющимся/сужающимся сосудам. Если температуру нужно уменьшить, происходит расширение. Для увеличения тепла – сужение. Объем подаваемой крови может меняться в тридцать раз, внутри пальцев – до шестисот раз.

Интенсивность выделения пота

Физическая регуляция теплообмена может происходить и за счет усиления выделения пота. В этом случае равновесие тепла достигается благодаря испарению. Механизмы испарительного охлаждения тела крайне важны для организма. К примеру, если температура окружающей среды находиться на показателе 36 градусов, теплообмен от человека во внешнюю атмосферу производиться преимущественно за счет выделения пота и его испарения.

Допустимый диапазон параметров внешней среды

При различных пределах параметров окружающей среды механизмы терморегуляции справляются с поддержанием теплового равновесия. При условиях воздушной среды, когда физическая терморегуляция определяет оптимальный уровень интенсивности обмена веществ у человека, не возникает напряженность и прочие негативные ощущения. Такие условия считаются оптимальными или комфортными.

Зона, в которой внешняя среда практически полностью забирает тепло, выделяемое организмом, но при этом механизмы регуляции держат температуру тела под контролем, считается допустимо комфортной.

Условия, при которых происходит нарушение теплового равновесия организма, считаются дискомфортными. Если механизмы терморегуляции работают в незначительном напряжении, то условия определяются, как допустимо дискомфортные. Такая среда характеризуется метеорологическими параметрами, не превышающими допустимой нормы.

Если параметры превышают установленные значения, то системы регуляции тепла работают в усиленном (напряженном) режиме. Такие условия вызывают ощутимый дискомфорт, происходит нарушение теплового баланса. Возникает переохлаждение тела или его перегрев, зависимо от того, в какую сторону нарушено тепловое равновесие, в плюс или минус.

Причины нарушения теплового баланса

Небольшие изменения выработки тепловой энергии и ее передачи в атмосферу возникают при физическом напряжении. Это не нарушение, так как в спокойном состоянии, в процессе отдыха, все процессы терморегуляции быстро приходят в норму.

Нарушение в тепловом обмене, как правило, появляется как следствие системных заболеваний, сопровождающихся воспалительными процессами в организме. Тем не менее ситуации, какие стали причиной сильного повышения температуры тела при воспалениях, неправильно считать патологическими.

Лихорадка и жар появляются, чтобы остановить рост клеток, пораженных бактериями, вирусами. По сути, данные структуры являются естественной защитной реакцией иммунитета, и лечение здесь не требуется.

Действительно, нарушение теплового равновесия возникает вследствие повреждения внутренних органов, задействованных в регуляции тепла – гипоталамуса, мозга (спинного и головного), гипофиза.

Физическая и биохимическая регуляция теплообмена нарушается, если имеется механические повреждения тела, образование опухолей, кровоизлияния. Дополнительно увеличивают нарушение болезни сердечно-сосудистой и эндокринной системы, сбои гормонального уровня, физический перегрев/переохлаждение.

Лечение патологии

Для восстановления корректного протекания механизмов теплорегуляции требуется соответствующее лечение, которое назначается после выяснения причин возникшего нарушения в выработке и отдаче тепловой энергии. Врач, прежде чем определить какое требуется лечение, выдаст направление к неврологу, порекомендует сдать лабораторные анализы и пройти назначенные медицинские исследования. Только такой подход позволит спланировать правильное лечение, которое поможет восстановить системы естественной терморегуляции.

Биология и генетика

Различают несколько механизмов отдачи тепла в окружающую среду. Излучение отдача тепла в виде электромагнитных волн инфракрасного диапазона. Количество тепла рассеиваемого организмом в окружающую среду излучением пропорционально площади поверхности излучения площади поверхности тела не покрытой одеждой и градиенту температуры. При температуре окружающей среды 20с и относительной влажности воздуха 4060 организм взрослого человека рассеивает путём излучения около 4050 всего отдаваемого тепла.

Терморегуляция, виды терморегуляции.

Терморегуляция – это совокупность физиологических процессов, деятельность которых направлена на поддержание относительного постоянства температуры ядра в условиях изменения температуры среды с помощью регуляции теплопродукции и теплоотдачи. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если подобные нарушения уже произошли, и осуществляется нервно-гуморальным путём.

Терморегуляцию можно разделить на два основных вида: химическую и физическую терморегуляцию.

Они, в свою очередь, также подразделяются на несколько видов:

  1. Химическая терморегуляция

Сократительный термогенез

Несократительный термогенез.

  1. Физическая терморегуляция

Излучение.

Теплопроведение (кондукция)

Конвекция

Испарение

Рассмотрим эти виды терморегуляции подробнее.

Химическая терморегуляция

Сократительный термогенез

Этот вид терморегуляции работает если нам холодно и необходимо поднять температуру тела. Заключается этот метод в сокращении мышц.

При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата, в основном, возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3–5 раз по сравнению с величиной основного обмена.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса (волосы на теле "встают дыбом", появляются "мурашки") . С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25–40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы головы и шеи.

При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь . Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция повышается. Считается, что теплопродукция при холодовой дрожи в 2,5 раз выше, чем при произвольной мышечной деятельности.

Описанный механизм работает на рефлекторном уровне, без участия нашего сознания. Но поднять температуру тела можно и при помощи сознательной двигательной активности.

При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5–15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15–30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

Несократительный термогенез

Этот вид терморегуляции может приводить, как повышению, так и к понижению температуры тела.

Он осуществляется путём ускорения или замедления катаболических процессов обмена веществ. А это, в свою очередь, будет приводить к снижению или увеличению теплопродукции. За счёт этого вида термогенеза теплопродукция может вырасти в 3 раза.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной и мозгового слоя надпочечников.

Физическая терморегуляция

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Различают несколько механизмов отдачи тепла в окружающую среду.

  1. Излучение – отдача тепла в виде электромагнитных волн инфракрасного диапазона. За счёт излучения отдают энергию все предметы, температура которых выше абсолютного нуля. Электромагнитная радиация свободно проходит сквозь вакуум, атмосферный воздух для неё тоже можно считать «прозрачным». Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тела, не покрытой одеждой) и градиенту температуры. При температуре окружающей среды 20°с и относительной влажности воздуха 40–60% организм взрослого человека рассеивает путём излучения около 40–50% всего отдаваемого тепла.
  2. Теплопроведение (кондукция) – способ отдачи тепла при непосредственном соприкосновении тела с другими физическими объектами. Количество тепла, отдаваемого в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади соприкасающихся поверхностей, времени теплового контакта и теплопроводности.
  3. Конвекция – теплоотдача, осуществляемая путём переноса тепла движущимися частицами воздуха (воды). Воздух, соприкасающийся с кожей, нагревается и поднимается, его место занимает «холодная» порция воздуха и т. д. В условиях температурного комфорта этим способом тело теряет до 15% всего отдаваемого тепла.
  4. Испарение – отдача тепловой энергии в окружающую среду за счёт испарения пота или влаги с поверхности кожи и слизистых дыхательных путей. За счёт испарения организм в условиях комфортной температуры отдаёт около 20% всего рассеиваемого тепла. Испарение делится на 2 вида.

Неощущаемая перспирация – испарение воды со слизистых дыхательных путей (через дыхание) и воды, просачивающейся через эпителий кожного покрова (Испарение с поверхности кожи. Оно идёт даже в случае, если кожа сухая.).

За сутки через дыхательные пути испаряется до 400 мл воды, т.е. организм теряет до 232 ккал в сутки. При необходимости эта величина может быть увеличена за счёт тепловой одышки.

Через эпидермис в среднем за сутки просачивается около 240 мл воды. Следовательно, этим путём организм теряет до 139 ккал в сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.

Ощущаемая перспирация – отдача тепла путём испарения пота . В среднем за сутки при комфортной температуре среды выделяется 400–500 мл пота, следовательно, отдаётся до 300 ккал энергии. Однако при необходимости объём потоотделения может увеличиться до 12   л в сутки, т.е. путём потоотделения можно потерять до 7000 ккал в сутки.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность, тем выше эффективность потоотделения как механизма отдачи тепла. При 100% влажности испарение невозможно.


А также другие работы, которые могут Вас заинтересовать

35444. Проблемы административного расследования в таможенных органах в период реформирования таможенного законодательства 484.5 KB
Объектом дипломного исследования являются общественные отношения, складывающиеся в процессе производства по делам об административных правонарушениях, связанные с проведением административного расследования, предметом - административное расследование в механизме производства по делам об административных правонарушениях.
35445. Хирургия. Шпаргалка 451 KB
Предраковые заболевания толстой и прямой кишки. Дивертикулы дивертикулез ободочной кишки. Полипозное поражение ободочной кишки облигатный предрак которое может быть в виде: Одиночных полипов аденоматозный ворсичатый которые малигнизируются в 45 случаев особенно полипы величиной более 2 см; ворсинчатые полипы озлокачествляются чаще. Множественного полипоза ободочной кишки который.
35446. ПСИХИАТР, ПСИХОТЕРАПЕВТ, ПСИХОЛОГ – WHO ЕСТЬ КТО 35.5 KB
В тот день я подумал идя домой что одна из главных проблем всех заинтересованных в этом споре сторон определиться в терминах к примеру понятие параноидный для психиатра это не совсем то что вкладывает в него психолог и нет числа этим трудностям перевода. При этом все и психиатры и психологи занимаются психотерапией на вполне законных основаниях и порой небезуспешно Еще одна проблема илиили: двух мнений быть не может существует только единственно правильное учение и психотерапевт который его исповедует а все...
35447. СТРОЕНИЕ, РАЗВИТИЕ И ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ РАЗЛИЧНЫХ ОТДЕЛОВ НЕРВНОЙ СИСТЕМЫ 15.49 KB
В центре спинного мозга расположено серое вещество скопление нервных клеток нейронов окруженное белым веществом образованным нервными волокнами. Рефлексы мочеиспускания и дефекации рефлекторного набухания полового члена л иззержснчс семени у мужчины эрекция и ЭЯКУЛЯЦИЯ также связаны с функцией спинного мозга.Спинной мозг осуществляет и проводниковую функцию нервные волокна составляющие основную массу белого вещества образуют проводящее SjTH сииндаго мозга.Деятельность спинного мозга у человека в значительной подчинена координирующим...
35448. My Favourite Film Romeo and Juliet 14.76 KB
And Ill try to tell you about this film. In the town of Verona there were two rich families, the Capulets and the Montagues. There was an old quarrel between those two families. One day Capulet made a great supper. At that supper Romeo saw Juliet and fell in love with her at ones.
35449. Gone with the wind. My Favourite Film 17.43 KB
I don"t like horror films nd I find them quite disgusting. Sometimes I my wtch police drm or historicl film but I"m not very keen on these types of films. Now let me tell you bout one of my fvourite films Gone with the wind by the novel by Mrgret Mitchell.
35450. Высшая нервная деятельность детей на протяжении первых 3 лет жизни 13.23 KB
Высшая нервная деятельность детей раннего возраста характеризуется неуравновешенностью двух основных нервных процессов: процессы возбуждения преобладают над процессами торможения. В поведении детей много широко разлитых иррадиированных реакций. Поэтому нельзя требовать от детей быстрого прекращения начатого ими действия или выполнения какоголибо движения и быстрого переключения с одного действия на другое.
35451. Условные и безусловные рефлексы 10.8 KB
Безусловные рефлексы природный запас готовых стереотипных реакций организма. Безусловные рефлексы одинаковы у всех особей одного вида. Условные рефлексы Но поведение высших животных и человека характеризуется не только врожденными т.
35452. Мотивация и емоции 10.94 KB
На основании мотиваций формируется поведения ведущее к удовлетворению исходной потребности. Под эмоциями следует понимать определенное состояние организма человека и высших животных которое формируется под влиянием внешней или внутренней потребности или мысленного представления и сопровождается комплексом соматических и вегетативных сдвигов имеющих адаптационное значение. Таким образом эмоции следует рассматривать в качестве своеобразной приспособительной реакции которая формируется в процессе эволюции.


Новое на сайте

>

Самое популярное