Домой Гастроэнтерология Эритроциты разрушаются в печени и селезенке. Большая энциклопедия нефти и газа

Эритроциты разрушаются в печени и селезенке. Большая энциклопедия нефти и газа

Старение эритроцитов.

Основные клетки крови человека - эритроциты циркулируют в крови максимум 120 суток, в среднем 60-90 дней. Процесс старения, а в дальнейшем - разрушение эритроцитов у здорового человека связано с угнетением образования в них количества специфического вещества - АТФ в ходе метаболизма глюкозы в этой этих форменных элементах. Сниженное образование АТФ, ее дефицит нарушает в клетке процессы, которые обеспечивают ее энергией, - к ним относятся: восстановление формы эритроцитов, транспорт катионов через их мембрану и защиту содержимого эритроцитов от процессов окисления, их мембрана утрачивает сиаловые кислоты. Старение и разрушение эритроцитов вызывает также изменение мембраны эритроцитов: из первоначальных дискоцитов они превращаются в так называемые эхиноциты, т. е. эритроциты, на поверхности которых образуются многочисленные специфические выступы, и выросты.

Причиной образования эхиноцитов помимо снижения воспроизводства молекул АТФ в клетке эритроцита при его старении является усиленное образование вещества лизолецитина в плазме крови человека, и повышенное содержание в ней жирных кислот. Указанные факторы изменяют соотношение поверхности внутреннего и внешнего слоев мембраны клетки эритроцита за счет увеличения поверхности ее внешнего слоя, что и ведет к появлению выростов эхиноцитов.

По степени выраженности преобразования мембраны и приобретенной формы эритроцитов различают эхиноциты I, II, III классов, а также сфероэхиноциты I и II классов. Во время старении клетка последовательно проходит все этапы превращения в клетку-эхиноцит III класса, она теряет способность изменять и восстанавливать присущую ей дисковидную форму, в конечном итоге превращается в сфероэхиноцит и происходит окончательное разрушение эритроцитов. Устранение дефицита глюкозы в клетке эритроцита легко возвращает эхиноциты I-II классов к исходной форме дискоцита. Клетки эхиноциты начинают появляться по результатам общего анализа крови, например, в консервированной крови, которая сохраняется в течение нескольких недель при температуре 4°С. Это связано с процессом уменьшением образования АТФ внутри консервированных клеток, с появлением в плазме крови вещества лизолецитина, который также ускоряет старение и разрушение эритроцитов. Если произвести отмывание эхиноцитов в свежей плазме, то уровень АТФ в клетке восстанавливается, и уже через несколько минут эритроциты возвращают себе форму дискоцитов.

Разрушение эритроцитов. Место разрушения эритроцитов.

Стареющие эритроциты утрачивают свою эластичность, вследствие чего подвергаются разрушению внутри сосудов (происходит внутрисосудистый гемолиз эритроцитов) или же они становятся добычей макрофагов в селезенке, которые захватывают и разрушают их, и купферовских клетках печени и в костном мозге (это уже внесосудистый или внутриклеточный гемолиз эритроцитов). С помощью внутриклеточного гемолиза в сутки разрушается от 80 до 90 % старых эритроцитов, которые содержат примерно 6-7 г гемоглобина, из них освобождается в макрофагами до 30 мг железа. После процесса отщепления от гемоглобина содержащийся в нем гем превращается в желчный пигмент, называемым билирубином (определяемым биохимическим анализом крови), который поступает с желчью в просвет кишечника и под влиянием его микрофлоры превращается в стеркобилиноген. Это соединение выводится из организма с калом, под влиянием воздуха и света превращаясь в стеркобилин. При преобразовании 1 г гемоглобина образуется около 33 мг билирубина.

Разрушение эритроцитов в 10-20 % происходит с помощью внутрисосудистого гемолиза. В этом случае гемоглобин поступает в плазму, где образует с плазменным гаптоглобином биохимический комплекс гемоглобин-гаптоглобин. В течение десяти минут 50 % данного комплекса поглощается из плазмы клетками паренхимы печени, что предотвращает поступление свободного гемоглобина в почки, где может вызвать тромбирование их нефронов. У здорового человека в составе плазме содержится около 1 г/л гаптоглобина, несвязанный с ним в плазме крови гемоглобин не более 3-10 мг. Молекулы гема, которые высвободились из связи с глобином во время внутрисосудистого гемолизе, связываются уже белком плазмы - гемопексином, которым транспортируются в печень и также поглощаются паренхиматозными клетками этого органа, и подвергаются ферментному преобразованию до билирубина.

Кровообращение

Эритроциты – одни из очень важных элементов крови. Наполнение органов кислородом (О 2) и удаление из них углекислого газа (СО 2) – основная функция форменных элементов кровяной жидкости.

Значительны и другие свойства кровяных клеток. Знание того, что такое эритроциты, сколько живут, где разрушаются и других данных, позволяет человеку следить за здоровьем и вовремя его корректировать.

Общее определение эритроцитов

Если рассматривать кровь под сканирующим электронным микроскопом, то можно увидеть, какую форму и размер имеют эритроциты.



Кровь человека под микроскопом

Здоровые (неповрежденные) клетки – это маленькие диски (7-8 мкм), вогнутые с двух сторон. Их еще называют красными кровяными тельцами.

Количество эритроцитов в кровяной жидкости превышает уровень лейкоцитов и тромбоцитов. В одной капле крови человека имеется около 100 млн. этих клеток.

Зрелый эритроцит покрыт оболочкой. Он не имеет ядра и органелл, кроме цитоскелета. Внутренность клетки заполнена концентрированной жидкостью (цитоплазмой). Она насыщена пигментом гемоглобином.

В химический состав клетки, кроме гемоглобина, входят:

  • Вода;
  • Липиды;
  • Белки;
  • Углеводы;
  • Соли;
  • Ферменты.

Гемоглобин – это белок, состоящий из гема и глобина . Гем содержит атомы железа. Железо в гемоглобине, связывая в легких кислород, окрашивает кровь в светло-красный цвет. Она становится темной, когда кислород высвобождается в тканях.

Кровяные тельца имеют большую поверхность за счет своей формы. Повышенная плоскость клеток улучшает обмен газов.

Красная кровяная клетка эластична. Очень маленький размер эритроцита и гибкость позволяют ему легко проходить через мельчайшие сосуды – капилляры (2-3 мкм).

Сколько живут эритроциты

Продолжительность жизни эритроцитов – 120 дней. За это время они выполняют все свои функции. Затем разрушаются. Место отмирания – печень, селезенка.

Красные кровяные тельца разлагаются быстрее, если меняется их форма. При появлении у них выпуклостей образуются эхиноциты, углублений – стоматоциты . Пойкилоцитоз (изменение формы) приводит клетки к гибели. Патология формы диска возникает от повреждения цитоскелета.

Видео — функции крови. Эритроциты

Где и как образуются

Жизненный путь эритроциты начинают в красном костном мозге всех костей человека (до пятилетнего возраста).

У взрослого, после 20 лет, красные кровяные клетки вырабатываются в:

  • Позвоночнике;
  • Грудине;
  • Ребрах;
  • Подвздошной кости.


Их образование проходит под влиянием эритропоэтина – почечного гормона.

С возрастом эритропоэз, то есть процесс образования эритроцитов, снижается.

Образование кровяной клетки начинается с проэритробласта. В результате многократного деления создаются зрелые клетки.

От единицы, образующей колонию, эритроцит проходит следующие этапы:

  1. Эритробласт.
  2. Пронормоцит.
  3. Нормобласты разных видов.
  4. Ретикулоцит.
  5. Нормоцит.

Первородная клетка имеет ядро, которое сначала становится меньше, а затем вообще покидает клетку. Цитоплазма ее постепенно наполняется гемоглобином.

Если в крови наряду со зрелыми эритроцитами находятся ретикулоциты, это нормальное явление. Более ранние виды эритроцитов в крови указывают на патологию.

Функции эритроцитов

Эритроциты реализуют в организме свое главное предназначение – являются переносчиками дыхательных газов – кислорода и углекислого газа.

Этот процесс осуществляется в определенном порядке:


Кроме газообмена, форменные элементы выполняют и другие функции:


В норме каждый эритроцит в кровотоке – свободная в движении клетка. При увеличении показателя кислотности крови рН и других негативных факторах возникает склеивание красных кровяных клеток. Их склеивание называется агглютинацией.

Такая реакция возможна и очень опасна при переливании крови от одного человека к другому. Чтобы в этом случае предупредить слипание эритроцитов, нужно знать группу крови пациента и его донора.

Реакция агглютинации послужила основой для деления крови людей на четыре группы. Они отличаются друг от друга сочетанием агглютиногенов и агглютининов.

С особенностями каждой группы крови познакомит следующая таблица:

При определении группы крови ошибаться ни в коем случае нельзя. Знать групповую принадлежность крови особенно важно при ее переливании. Не каждая подходит определенному человеку.

Чрезвычайно важно! Перед переливанием крови обязательно нужно определить ее совместимость. Вливать человеку несовместимую кровь нельзя. Это опасно для жизни.

При введении несовместимой крови возникает агглютинация эритроцитов . Это происходит при таком сочетании агглютиногенов и агглютининов: Аα, Вβ. При этом у больного появляются признаки гемотрансфузионного шока.

Они могут быть такими:

  • Головная боль;
  • Беспокойство;
  • Покрасневшее лицо;
  • Пониженное артериальное давление;
  • Учащенный пульс;
  • Стеснение в груди.

Агглютинация завершается гемолизом, то есть в организме происходит разрушение эритроцитов.

Небольшое количество крови или эритроцитарной массы можно переливать таким образом:

Справка. При любом заболевании назначается клинический анализ крови. Он дает представление о содержании гемоглобина, уровне эритроцитов и скорости их оседания (СОЭ). Кровь сдается утром, на голодный желудок.

Нормальная величина гемоглобина:

  • У мужчин – 130-160 единиц;
  • У женщин – 120-140.

Наличие красного пигмента сверх нормы может говорить о:

  1. Большой физической активности;
  2. Повышение вязкости крови;
  3. Потери влаги.

У жителей высокогорья, любителей частого курения гемоглобин также повышен. Низкий уровень гемоглобина возникает при малокровии (анемии).

Количество безъядерных дисков:

  • У мужчин (4,4 х 5,0 х 10 12 /л) — выше, чем у женщин;
  • У женщин (3,8 – 4,5 х 10 12 /л.);
  • У детей свои нормы, которые определяются возрастом.

Уменьшение количества красных телец или его увеличение (эритроцитоз) показывают, что в деятельности организма возможны нарушения.

Так при анемии, потери крови, понижении скорости формирования красных телец в костном мозге, быстрой их гибели, увеличенном содержании воды уровень эритроцитов понижается.

Увеличенная цифра красных телец может обнаружиться во время приема некоторых лекарств, например кортикостероидов, мочегонных средств. Следствием незначительного эритроцитоза является ожог, диарея.

Эритроцитоз также происходит при таких состояниях, как:

  • Синдром Иценко-Кушинга (гиперкортицизм);
  • Раковые образования;
  • Поликистоз почек;
  • Водянка почечных лоханок (гидронефроз) и др.

Важно! У беременных женщин нормальные показатели кровяных клеток меняются. Это чаще всего связано с зарождением плода, появлением у ребенка собственной кровеносной системы, а не с болезнью.

Показателем сбоя в работе организма является и скорость оседания эритроцитов (СОЭ).

Не рекомендуется на основании анализов ставить себе диагнозы. Только специалист после тщательного обследования с применением различных методик может сделать правильные выводы и назначить эффективное лечение.

Cтраница 1


Разрушение эритроцитов может быть вызвано уменьшением осмотического давления, что вначале приводит к набуханию, а затем к разрушению эритроцитов - это так называемый осмотический гемолиз. Мерой осмотической стойкости (резистентности) эритроцитов является концентрация NaCl, при которой начинается гемолиз. У человека это происходит в 0 4 % растворе, а в 0 34 % растворе разрушаются все эритроциты. При некоторых заболеваниях осмотическая стойкость эритроцитов уменьшается, и гемолиз наступает при больших концентрациях NaCl в плазме.  

Разрушение эритроцитов происходит 3 путями. Одним из них является фрагментов - разрушение эритроцитов вследствие механической травматизации при циркуляции по сосудам. Полагают, что таким путем гибнут только что вышедшие из костного мозга молодые эритроциты. За счет фрагментоза организм проводит селекцию (выбраковку) механически неполноценных эритроцитов. Значительная часть эритроцитов подвергается фагоцитозу клетками мононуклеарной фагоцитарной системы (МФС), которых особенно много в печени и селезенке. Эти органы называют кладбищем эритроцитов.  

Разрушению эритроцитов в селезенке способствует и выделение клетками этого органа гемолизинов. Хотя разрушение эритроцитов происходит во всех органах и тканях, где имеются клетки лимфоретикулогистиоцитарной системы, оно наиболее интенсивно протекает в селезенке.  

Отсутствие гемосидервна указывает на разрушение эритроцитов в кровяном русле.  

Если в организме происходит усиленное разрушение эритроцитов, то желчные пигменты, особенно билирубин, образуются в таких количествах, что печень не успевает выводить их из организма.  

Вся патология сводится к разрушению эритроцитов.  

Путь образования билирубина из гемоглобина после разрушения эритроцитов (гемолиз) изображен на фиг.  

ГА) характеризуются преждевременным внутриклеточным или внутрисосудистым разрушением эритроцитов. Обычно эритроциты живут более 100 дней. При ГА продолжительность их жизни укорачивается. Повышается уровень молодых эритроцитов (ретикулоцитов), билирубина, увеличивается количество красных ядерных клеток в костном мозге, иногда увеличивается селезенка, нередко появляются камни в желчном пузыре. ГА делят на наследственные и приобретенные. Наследственные ГА в зависимости от генетич. Среди мембранопатии наиболее часто встречается наследственный сфе-роцитоз. При этой форме ГА лечебный эффект достигается удалением селезенки. Среди ферментопатии очень распространена ГА, связанная с дефицитом фермента глюкозо-б-фосфатдегидроге-назы. При этом теряется способность противостоять воздействию окислителей на мембрану эритроцитов. Сульфаниламидные, противомалярийные и многие др. лекарства, а также некоторые бобовые также могут вызвать ГА. Она чаще встречается у мужчин, проживающих в Средиземноморье, в Азербайджане, Дагестане. В этих же районах наблюдается талассемия, при которой нарушено образование гемоглобина.  

Абсолютная эритропения развивается вследствие пониженного образования, усиленного разрушения эритроцитов или после кровопотери.  


У крыс влияет на работу мышечной и репродуктивной систем, препятствует разрушению эритроцитов.  

Эритроциты у человека функционируют в крови максимум 120 дней, в среднем 60-90 дней. Старение эритроцитов связано с уменьшением образования в эритроците количества АТФ в ходе метаболизма глюкозы в этой клетке крови. Уменьшенное образование АТФ, ее дефицит нарушает в эритроците процессы, обеспечиваемые ее энергией, - восстановление формы эритроцитов, транспорт катионов через его мембрану и защиту компонентов эритроцитов от окисления, их мембрана теряет сиаловые кислоты. Старение эритроцитов вызывает изменения мембраны эритроцитов: из дискоцитов они превращаются в эхиноциты, т. е. эритроциты, на поверхности мембраны которых образуются многочисленные выступы, выросты. Причиной формирования эхиноцитов помимо уменьшения воспроизводства молекул АТФ в эритроците при старении клетки является усиленное образование лизолецитина в плазме крови, повышенное содержание в ней жирных кислот. Под влиянием перечисленных факторов изменяется соотношение поверхности внешнего и внутреннего слоев мембраны эритроцита за счет увеличения поверхности внешнего слоя, что и приводит к появлению выростов на мембране. По степени выраженности изменений мембраны и формы эритроцитов различают эхиноциты I, И, III классов и сфероэхиноциты I и II классов. При старении эритроцит последовательно проходит этапы превращения в эхиноцит III класса, теряет способность изменять и восстанавливать дисковидную форму, превращается в сфероэхиноцит и разрушается. Устранение дефицита глюкозы в эритроците легко возвращает эхиноциты I-II классов к форме дискоцита. Эхиноциты начинают появляться, например, в консервированной крови, сохраняемой в течение нескольких недель при 4°С, или в течение 24 ч, но при температуре 37 °С. Это связано с уменьшением образования АТФ внутри клетки, с появлением в плазме крови лизолецитина, образующегося под влиянием лецитин-холестерол-ацетилтранс-ферразы, ускоряющих старение клетки. Отмывание эхиноцитов в свежей плазме от содержащегося в ней лизолецитина или активация в них гликолиза, восстанавливающей уровень АТФ в клетке, уже через несколько минут возвращает им форму дискоцитов.

Разрушение эритроцитов

Гемолиз (от греческого слова haima - кровь, lysis - разрушение) - физиологическое разрушение клеток гемопоэза вследствие их естественного старения. Стареющие эритроциты становятся менее эластичными, вследствие чего разрушаются внутри сосудов (внутрисосудистый гемолиз) или же становятся добычей захватывающих и разрушающих их макрофагов в селезенке, купферовских клетках печени и в костном мозге (внесосудистый или внутриклеточный гемолиз). В норме наблюдается главным образом внутриклеточный гемолиз. При внутриклеточном гемолизе 80-90 % старых эритроцитов разрушается путем фрагментации (эритрорексиса) с последующим лизисом и эритрофагоцитозом в органах ретикулоэндотелиальной системы (ГЭС), преимущественно в селезенке, частично в печени. Нормальный эритроцит проходит синусы селезенки благодаря своему свойству изменять форму. По мере старения эритроциты теряют способность деформироваться, задерживаются в синусах селезенки и секвестрируются. Из поступившей в селезенку крови 90% эритроцитов проходит, не задерживаясь и не подвергаясь фильтрационному отбору. 10% эритроцитов попадает в систему сосудистых синусов и вынуждены выбираться из них, профильтровываясь через поры (фенестры), размер которых на порядок меньше (0,5-0,7 мкм), чем диаметр эритроцита. У старых эритроцитов изменяется ригидность мембраны, они застаиваются в синусоидах. В синусах селезенки снижен рН и концентрация глюкозы, поэтому при задержке в них эритроцитов, последние подвергаются метаболическому истощению. Макрофаги расположены по обеим сторонам синусов, их основная функция элиминировать старые эритроциты. В макрофагах РЭС заканчивается разрушение эритроцита (внутриклеточный гемолиз). В нормальном организме с помощью внутриклеточного гемолиза разрушается почти 90% эритроцитов. Механизм распада гемоглобина в клетках РЭС начинается с одновременного отщепления от него молекулы глобина и железа. В оставшемся тетрапиррольном кольце под действием фермента гемоксигеназы происходит образование биливердина, при этом гем теряет свою цикличность, образуя линейную структуру. На следующем этапе путем ферментативного восстановления биливердин-редуктазой происходит превращение биливердина в билирубин. Билирубин, образованный в РЭС, поступает в кровь, связывается с альбумином плазмы и в таком комплексе поглощается гепатоцитами, которые обладают селективной способностью захватывать билирубин из плазмы. До поступления в гепатоцит билирубин носит название неконъюгированный или непрямой. При высокой гипербилирубинемии небольшая часть может оставаться несвязанной с альбумином и фильтроваться в почках. Паренхиматозные клетки печени адсорбируют билирубин из плазмы с помощью транспортных систем, главным образом белков мембраны гепатоцита - Y (лигандин) и протеина Z, который включается лишь после насыщения Y. В гепатоците неконъюгированный билирубин подвергается конъюгации главным образом с глюкуроновой кислотой. Этот процесс катализируется ферментом уридилдифосфат(УДФ)-глюкуронилтрансферазой с образованием конъюгированного билирубина в виде моно- и диглюкуронидов. Активность фермента снижается при поражении гепатоцита. Она так же, как и лигандин, низкая у плода и новорожденных. Поэтому печень новорожденного не в состоянии переработать больших количеств билирубина распадающихся избыточных эритроцитов и развивается физиологическая желтуха. Конъюгированный билирубин выделяется из гепатоцита с желчью в виде комплексов с фосфолипидами, холестерином и солями желчных кислот. Дальнейшее преобразование билирубина происходит в желчных путях под влиянием дегидрогеназ с образованием уробилиногенов, мезобилирубина и других производных билирубина. Уробилиноген в двенадцатиперстной кишке всасывается энтероцитом и с током крови воротной вены возвращается в печень, где окисляется. Остальной билирубин и его производные поступают в кишечник, в котором превращается в стеркобилиноген. Основная масса стеркобилиногена в толстой кишке подвергается окислению в стеркобилин и выделяется с калом. Небольшая часть всасывается в кровь и выводится почками с мочой. Следовательно, билирубин экскретируется из организма в виде стеркобилина кала и уробилина мочи. По концентрации стеркобилина в кале можно судить об интенсивности гемолиза. От концентрации стеркобилина в кишечнике зависит и степень уробилинурии. Однако генез уробилинурии определяется также функциональной способностью печени к окислению уробилиногена. Поэтому увеличение уробилина в моче может свидетельствовать не только о повышенном распаде эритроцитов, но и о поражении гепатоцитов.

Лабораторными признаками повышенного внутриклеточного гемолиза являются: увеличение содержания в крови неконъюгированного билирубина, стеркобилина кала и уробилина мочи. Патологический внутриклеточный гемолиз может возникнуть при:

    наследственной неполноценности мембраны эритроцита (эритроцитопатии);

    нарушении синтеза гемоглобина и ферментов (гемоглобинопатии, энзимопатии);

    изоиммунологическом конфликте по групповой и R-принадлежности крови матери и плода, избыточном количестве эритроцитов (физиологическая желтуха, эритробластоз новорожденного, эритремия - при количестве эритроцитов более 6-7 х 10 12 /л

Микросфероциты, овалоциты обладают пониженной механической и осмотической резистентностью. Толстые набухшие эритроциты агглютинируются и с трудом проходят венозные синусоиды селезенки, где задерживаются и подвергаются лизису и фагоцитозу.

Внутрисосудистый гемолиз - физиологический распад эритроцитов непосредственно в кровотоке. На его долю приходится около 10% всех гемолизирующихся клеток. Этому количеству разрушающихся эритроцитов соответствует от 1 до 4 мг свободного гемоглобина (феррогемоглобин, в котором Fе 2+) в 100 мл плазмы крови. Освобожденный в кровеносных сосудах в результате гемолиза гемоглобин связывается в крови с белком плазмы - гаптоглобином (hapto - по гречески "связываю"), который относится к α 2 -глобулинам. Образующийся комплекс гемоглобин-гаптоглобин имеет Мм от 140 до 320 кДа, в то время как фильтр клубочков почек пропускает молекулы Мм меньше 70 кДа. Комплекс поглощается РЭС и разрушается ее клетками.

Способность гаптоглобина связывать гемоглобин препятствует экстраренальному его выведению. Гемоглобинсвязывающая емкость гаптоглобина составляет 100 мг в 100 мл крови (100 мг%). Превышение резервной гемоглобинсвязывающей емкости гаптоглобина (при концентрации гемоглобина 120-125 г/л) или снижение его уровня в крови сопровождается выделением гемоглобина через почки с мочой. Это имеет место при массивном внутрисосудистом гемолизе.

Поступая в почечные канальцы, гемоглобин адсорбируется клетками почечного эпителия. Реабсорбированный эпителием почечных канальцев гемоглобин разрушается in situ с образованием ферритина и гемосидерина. Возникает гемосидероз почечных канальцев. Эпителиальные клетки почечных канальцев, нагруженные гемосидерином, слущиваются и выделяются с мочой. При гемоглобинемии, превышающей 125-135 мг в 100 мл крови, канальцевая реабсорбция оказывается недостаточной и в моче появляется свободный гемоглобин.

Между уровнем гемоглобинемии и появлением гемоглобинурии не существует четкой зависимости. При постоянной гемоглобинемии гемоглобинурия может возникать при более низких цифрах свободного гемоглобина плазмы. Снижение концентрации гаптоглобина в крови, которое возможно при длительном гемолизе в результате его потребления, может вызывать гемоглобинурию и гемосидеринурию при более низких концентрациях свободного гемоглобина крови. При высокой гемоглобинемии часть гемоглобина окисляется до метгемоглобина (ферригемоглобина). Возможен распад гемоглобина в плазме до тема и глобина. В этом случае гем связывается альбумином или специфическим белком плазмы - гемопексином. Комплексы затем так же, как гемоглобин-гаптоглобин, подвергаются фагоцитозу. Строма эритроцитов поглощается и разрушается макрофагами селезенки или задерживается в концевых капиллярах периферических сосудов.

Лабораторные признаки внутрисосудистого гемолиза :

    гемоглобинемия,

    гемоглобинурия,

    Эритроциты . Эритроцитами называются безъядерные красные кровяные клетки. Они имеют двояковогнутую форму, которая увеличивает их поверхность более чем в 1,5 раза. Количество эритроцитов в 1 мм3 крови равно у мужчин 5- 5,5 млн., а у женщин - 4-5,5 млн. У здоровых новорожденных в первый день жизни оно доходит до 6 млн., а затем снижается до нормы взрослого человека. У младших школьников оно равно 5- 6 млн. Наибольшие колебания количества эритроцитов наблюдаются в период полового созревания.

    Рис. 45. Кровь человека:
    / - эритроциты, 2 - нейтрофильный лейкоцит, 3 - эозинофильный лейкоцит, 4 - лимфоцит, 5 - кровяные пластинки

    Мышечная работа вызывает у детей увеличение или уменьшение количества эритроцитов или не изменяет его. В 13-15 лет количество эритроцитов увеличивается при мышечной работе значительно реже и меньше, чем в 16-18 и 19-23.

    В 16-18 лет при длительной мышечной работе иногда наблюдается незначительное снижение содержания эритроцитов и гемоглобина в результате разрушения эритроцитов. Восстановление количества эритроцитов до исходного уровня после мышечной работы у юношей 17-18 лет происходит позднее, чем у взрослых.

    В эритроцитах взрослого человека гемоглобин составляет около 32% веса, в среднем 14% веса цельной крови (14 г на 100 г крови). Это количество гемоглобина приравнивается к 100%.

    Рис. 46. Возрастные изменения содержания гемоглобина в крови: 1 - мальчики и девочки, 2 - мужчины, 3 - женщины

    Относительное содержание гемоглобина с возрастом увеличивается и к 14-15 годам доходит до нормы взрослого. Оно равно (в г на кг веса тела): в 7-9 лет - 7,5; 10-11-7,4; 12-13 - 8,4 и 14-15-10,4.


    Гемоглобин обладает видовой специфичностью. У новорожденного он поглощает больше кислорода, чем у взрослого. С 2 лет эта способность гемоглобина максимальна, а с 3 лет гемоглобин поглощает кислород, как и у взрослых.

    С возрастом увеличивается количество кислорода в артериальной и венозной крови. У детей 5-6 лет оно равняется (в см3 в 1 мин) в артериальной крови 400, в венозной - 260, у подростков 14-15 лет соответственно 660 и 435, взрослых 800 и 540. Содержание кислорода в артериальной крови (в см3 на 1 кг веса в 1 мин) равно: у детей 5-6 лет - 20, подростков 14-15 лет- 13 и у взрослых-11. Относительно большое количество кислорода, переносимое артериальной кровью, у дошкольников объясняется относительно большим количеством крови и кровотоком, значительно превышающим кровоток взрослых.

    Количество кислорода, максимально поглощаемого кровью, можно определить, учитывая, что 1 г гемоглобина поглощает при ГС и давлении 760 мм рт. ст. 1,34 см3 кислорода. Кровь взрослого человека содержит примерно 600 г гемоглобина. Следовательно, она может поглотить 800 см3 кислорода. Соединение гемоглобина с кислородом (оксигемоглобин) легко диссоциирует в тканях на гемоглобин и кислород.

    Способность гемоглобина соединяться с окисью углерода в 250 раз больше, чем его способность соединяться с кислородом, а диссоциирует соединение гемоглобина с окисью углерода - карбоксигемоглобин в 3600 раз медленнее. Поэтому образование карбоксигемоглобина при угаре опасно для жизни.

    Кроме переноса кислорода, эритроциты участвуют в ферментативных процессах, в сохранении активной реакции крови и в обмене воды и солей. За сутки через эритроциты проходит от 300 до 2000 дм3 воды.

    При отстаивании цельной крови, к которой прибавлены противосвертывающие вещества, эритроциты постепенно оседают. Скорость реакции оседания эритроцитов - РОЭ, у мужчин 3-9 мм, а у женщин - 7-12 мм в час. РОЭ зависит от количества белков в плазме крови и от отношения глобулинов к альбуминам. Так как у новорожденного в плазме около 6% белков и отношение количества глобулинов к альбуминам тоже меньше, чем у взрослых, то РОЭ у них около 2 мм, у грудных детей - 4-8 мм, а у более старших детей - 4-8 мм в час.

    После учебной нагрузки у большинства детей 7-11 лет нормальная РОЭ (до 12 мм в час) и замедленная РОЭ ускоряются, а ускоренная РОЭ замедляется.

    Эритроциты сохраняются только в физиологических растворах, в которых концентрация минеральных веществ, особенно поваренной соли, такая же, как и в плазме крови. Эритроциты разрушаются в растворах, где содержание поваренной соли меньше или больше, чем в плазме крови, при действии на них ядов, ультрафиолетовых лучей, ионизирующего облучения, лучей Рентгена, эманации радия. Разрушение эритроцитов называется гемолизом.

    Способность эритроцитов противостоять гемолизу называется резистентностью. С возрастом резистентность эритроцитов значительно падает. Она наибольшая у новорожденных и к 10 годам уменьшается примерно в 1,5 раза.

    Эритроциты в здоровом организме постоянно разрушаются при участии особых веществ - гемолизинов, вырабатываемых в печени. Эритроциты живут у новорожденного 14, а у взрослого не больше 100-150 дней (в среднем 30-40 дней). У человека гемолиз происходит в селезенке и печени. Вместо разрушенных в кровотворных органах образуются новые эритроциты и, следовательно, количество эритроцитов поддерживается на относительно постоянном уровне.



Новое на сайте

>

Самое популярное