Домой Исследования Удельное сопротивление чугуна. Сопротивление меди в зависимости от температуры

Удельное сопротивление чугуна. Сопротивление меди в зависимости от температуры

Часто в электротехнической литературе встречается понятие "удельное меди". И невольно задаешься вопросом, а что же это такое?

Понятие «сопротивление» для любого проводника непрерывно связано с пониманием процесса протекания по нему электрического тока. Так как речь в статье пойдет о сопротивлении меди, то и рассматривать нам следует ее свойства и свойства металлов.

Когда речь идет о металлах, то невольно вспоминаешь, что все они имеют определенное строение - кристаллическую решетку. Атомы находятся в узлах такой решетки и совершают относительно них Расстояния и местоположение этих узлов зависит от сил взаимодействия атомов друг с другом (отталкивания и притяжения), и различны для разных металлов. А вокруг атомов по своим орбитам вращаются электроны. Их удерживает на орбите тоже равновесие сил. Только это к атому и центробежная. Представили себе картинку? Можно назвать ее, в некотором плане, статической.

А теперь добавим динамики. На кусок меди начинает действовать электрическое поле. Что же происходит внутри проводника? Электроны, сорванные силой электрического поля со своих орбит, устремляются к его положительному полюсу. Вот Вам и направленное движение электронов, а вернее, электрический ток. Но на пути своего движения они натыкаются на атомы в узлах кристаллической решетки и электроны, еще продолжающие вращаться вокруг своих атомов. При этом они теряют свою энергию и изменяют направление движения. Теперь становится немного понятнее смысл фразы «сопротивление проводника»? Это атомы решетки и вращающиеся вокруг них электроны оказывают сопротивление направленному движению электронов, сорванных электрическим полем со своих орбит. Но понятие сопротивление проводника можно назвать общей характеристикой. Более индивидуально характеризует каждый проводник удельное сопротивление. Меди в том числе. Эта характеристика индивидуальна для каждого металла, поскольку напрямую зависит только от формы и размеров кристаллической решетки и, в некоторой мере, от температуры. При повышении температуры проводника атомы совершают более интенсивное колебание в узлах решетки. А электроны вращаются вокруг узлов с большей скоростью и на орбитах большего радиуса. И, естественно, что свободные электроны при движении встречают и большее сопротивление. Такова физика процесса.

Для нужд электротехнической сферы налажено широкое производство таких металлов, как алюминий и медь, удельное сопротивление которых достаточно мало. Из этих металлов изготавливают кабели и различного типа провода, которые широко используются в строительстве, для производства бытовых приборов, изготовления шин, обмоток трансформаторов и других электротехнических изделий.

Что такое удельное сопротивление вещества? Чтобы ответить простыми словами на этот вопрос, нужно вспомнить курс физики и представить физическое воплощение этого определения. Через вещество пропускается электрический ток, а оно, в свою очередь, препятствует с какой-то силой прохождению тока.

Понятие удельного сопротивления вещества

Именно эта величина, которая показывает насколько сильно препятствует вещество току и есть удельное сопротивление (латинская буква «ро»). В международной системе единиц сопротивление выражается в Омах , умноженных на метр. Формула для вычисления звучит так: «Сопротивление умножается на площадь поперечного сечения и делится на длину проводника».

Возникает вопрос: «Почему при нахождении удельного сопротивления используется еще одно сопротивление?». Ответ прост, есть две разных величины - удельное сопротивление и сопротивление. Второе показывает насколько вещество способно препятствовать прохождению через него тока, а первое показывает практически то же самое, только речь идет уже не о веществе в общем смысле, а о проводнике с конкретной длиной и площадью сечения, которые выполнены из этого вещества.

Обратная величина, которая характеризует способность вещества пропускать электричество именуется удельной электрической проводимостью и формула по которой вычисляется удельная сопротивляемость напрямую связана с удельной проводимостью.

Применение меди

Понятие удельного сопротивления широко применяется в вычисление проводимости электрического тока различными металлами. На основе этих вычислений принимаются решения о целесообразности применения того или иного металла для изготовления электрических проводников, которые используются в строительстве, приборостроении и других областях.

Таблица сопротивления металлов

Существуют определенные таблицы? в которых сведены воедино имеющиеся сведения о пропускании и сопротивлении металлов, как правило, эти таблицы рассчитаны для определенных условий.

В частности, широко известна таблица сопротивления металлических монокристаллов при температуре двадцать градусов по Цельсию, а также таблица сопротивления металлов и сплавов.

Этими таблицами пользуются для вычисления различных данных в так называемых идеальных условиях, чтобы вычислить значения для конкретных целей нужно пользоваться формулами.

Медь. Ее характеристики и свойства

Описание вещества и свойства

Медь - это металл, который очень давно был открыт человечеством и также давно применяется для различных технических целей. Медь очень ковкий и пластичный металл с высокой электрической проводимостью, это делает ее очень популярной для изготовления различных проводов и проводников.

Физические свойства меди:

  • температура плавления - 1084 градусов по Цельсию;
  • температура кипения - 2560 градусов по Цельсию;
  • плотность при 20 градусах - 8890 килограмм деленный на кубический метр;
  • удельная теплоемкость при постоянном давлении и температуре 20 градусов - 385 кДж/Дж*кг
  • удельное электрическое сопротивление - 0,01724;

Марки меди

Данный металл можно разделить на несколько групп или марок, каждая из которых имеет свои свойства и свое применение в промышленности:

  1. Марки М00, М0, М1 - отлично подходят для производства кабелей и проводников, при ее переплавке исключается перенасыщение кислородом.
  2. Марки М2 и М3 - дешевые варианты, которые предназначены для мелкого проката и удовлетворяют большинству технических и промышленных задач небольшого масштаба.
  3. Марки М1, М1ф, М1р, М2р, М3р - это дорогие марки меди, которые изготавливаются для конкретного потребителя со специфическими требованиями и запросами.

Между собой марки отличаются по нескольким параметрам:

Влияние примесей на свойства меди

Примеси могут влиять на механические, технические и эксплуатационные свойства продукции.

В заключение следует подчеркнуть, что медь - это уникальный металл с уникальными свойствами. Она применяется в автомобилестроении, изготовлении элементов для электроиндустрии, электроприборов, предметов потребления, часов, компьютеров и многого другого. Со своим низким удельным сопротивлением данный металл является отличным материалом для изготовления проводников и прочих электрических приборов. Этим свойством медь обгоняет только серебро, но из-за более высокой стоимости оно не нашло такого же применения в электроиндустрии.

Содержание:

Удельным сопротивлением металлов считается их способность к противодействию электрическому току, проходящему через них. Единицей измерения данной величины служит Ом*м (Ом-метр). В качестве символа используется греческая буква ρ (ро). Высокие показатели удельного сопротивления означают плохую проводимость электрического заряда тем или иным материалом.

Технические характеристики стали

Прежде чем подробно рассматривать удельное сопротивление стали, следует ознакомиться с ее основными физико-механическими свойствами. Благодаря своим качествам, этот материал получил широкое распространение в производственной сфере и других областях жизни и деятельности людей.

Сталь представляет собой сплав железа и углерода, содержащегося в количестве, не превышающем 1,7%. Кроме углерода, сталь содержит определенное количество примесей - кремния, марганца, серы и фосфора. По своим качествам она значительно лучше чугуна, легко поддается закаливанию, ковке, прокату и другим видам обработки. Все виды сталей отличаются высокой прочностью и пластичностью.

По своему назначению сталь подразделяется на конструкционную, инструментальную, а также с особыми физическими свойствами. В каждой из них содержится различное количество углерода, благодаря которому материал приобретает те или иные специфические качества, например, жаропрочность, жаростойкость, устойчивость к действию ржавчины и коррозии.

Особое место занимают электротехнические стали, выпускаемые в листовом формате и применяющиеся в производстве электротехнических изделий. Для получения этого материала производится легирование кремнием, способным улучшить его магнитные и электрические свойства.

Для того чтобы электротехническая сталь приобрела необходимые характеристики, необходимо соблюдение определенных требований и условий. Материал должен легко намагничиваться и перемагничиваться, то есть, обладать высокой магнитной проницаемостью. Такие стали имеют хорошую , а их перемагничивание осуществляется с минимальными потерями.

От соблюдения этих требований зависят габариты и масса магнитных сердечников и обмоток, а также коэффициент полезного действия трансформаторов и величина их рабочей температуры. На выполнение условий оказывают влияние многие факторы, в том числе и удельное сопротивление стали.

Удельное сопротивление и другие показатели

Величина удельного электрического сопротивления представляет собой отношение напряженности электрического поля в металле и плотности тока, протекающего в нем. Для практических расчетов используется формула: в которой ρ является удельным сопротивлением металла (Ом*м), Е - напряженностью электрического поля (В/м), а J - плотностью электротока в металле (А/м 2). При очень большой напряженности электрического поля и низкой плотности тока, удельное сопротивление металла будет высоким.

Существует еще одна величина, называемая удельной электропроводностью, обратная удельному сопротивлению, указывающая на степень проводимости электрического тока тем или иным материалом. Она определяется по формуле и выражается в единицах См/м - сименс на метр.

Удельное сопротивление тесно связано с электрическим сопротивлением. Однако они имеют различия между собой. В первом случае - это свойство материала, в том числе и стали, а во втором случае определяется свойство всего объекта. На качество резистора влияет сочетание нескольких факторов, прежде всего, формы и удельного сопротивления материала, из которого он изготовлен. Например, если для изготовления проволочного резистора использовалась тонкая и длинная проволока, то его сопротивление будет больше, чем у резистора, изготовленного из толстой и короткой проволоки одинакового металла.

В качестве другого примера можно привести резисторы из проволоки с одинаковым диаметром и длиной. Однако, если в одном из них материал имеет высокое удельное сопротивление, а в другом низкое, то соответственно в первом резисторе электрическое сопротивление будет выше, чем во втором.

Зная основные свойства материала, можно использовать удельное сопротивление стали для определения величины сопротивления стального проводника. Для вычислений, кроме удельного электрического сопротивления потребуется диаметр и длина самого провода. Расчеты выполняются по следующей формуле: , в которой R является (Ом), ρ - удельным сопротивлением стали (Ом*м), L - соответствует длине провода, А - площади его поперечного сечения.

Существует зависимость удельного сопротивления стали и других металлов от температуры. В большинстве расчетов используется комнатная температура - 20 0 С. Все изменения под влиянием этого фактора учитываются с помощью температурного коэффициента.

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R . Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно - от его сопротивления.

Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S ,

где l- длина проводника, S - площадь его поперечного сечения, а ρ - некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее - у. с.) - так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление - это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина - проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ - это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их "отдать", что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

  1. Проводники;
  2. Полупроводники;
  3. Диэлектрики.

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны . Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ<10^-5 Ом, а нижний порог такового у диэлектрика - 10^8 Ом.

Между этими двумя классами существуют вещества, называемые полупроводниками. Но выделение их в отдельную группу веществ связано не столько с их промежуточным состоянием в линейке «проводимость - сопротивление», сколько с особенностями этой проводимости в различных условиях.

Зависимость от факторов внешней среды

Проводимость - не совсем постоянная величина. Данные в таблицах, откуда берут ρ для расчетов, существуют для нормальных условий среды, то есть для температуры 20 градусов. В реальности для работы цепи сложно подобрать такие идеальные условия; фактически у.с. (а стало быть, и проводимость) зависят от следующих факторов:

  1. температура;
  2. давление;
  3. наличие магнитных полей;
  4. свет;
  5. агрегатное состояние.

Разные вещества имеют свой график изменения этого параметра в разных условиях. Так, ферромагнетики (железо и никель) увеличивают его при совпадении направления тока с направлением силовых линий магнитного поля. Что касается температуры, то зависимость здесь почти линейная (существует даже понятие температурного коэффициента сопротивления, и это тоже табличная величина). Но направление этой зависимости различно: у металлов оно повышается с повышением температуры, а у редкоземельных элементов и растворов электролитов увеличивается - и это в пределах одного агрегатного состояния.

У полупроводников зависимость от температуры не линейная, а гиперболическая и обратная: при повышении температуры их проводимость увеличивается. Это качественно отличает проводники от полупроводников. Вот так выглядит зависимость ρ от температуры у проводников:

Здесь представлены удельное сопротивление меди, платины и железа. Немного другой график у некоторых металлов, например, ртути - при понижении температуры до 4 К она теряет его почти полностью (такое явление называется сверхпроводимостью).

А для полупроводников эта зависимость будет примерно такая:

При переходе в жидкое состояние ρ металла увеличивается, а вот дальше все они ведут себя по-разному. Например, у расплавленного висмута оно ниже, чем при комнатной температуре, а у меди - в 10 раз выше нормального. Никель выходит из линейного графика еще при 400 градусах, после чего ρ падает.

Зато у вольфрама температурная зависимость настолько высока, что это становится причиной перегорания ламп накаливания. При включении ток нагревает спираль, и ее сопротивление увеличивается в несколько раз.

Также у. с. сплавов зависит от технологии их производства. Так, если мы имеем дело с простой механической смесью, то сопротивление такого вещества можно посчитать по среднему, а вот оно же у сплава замещения (это когда два и более элемента складываются в одну кристаллическую решетку) будет иным, как правило, куда большим. Например, нихром, из которого делают спирали для электроплиток, имеет такую цифру этого параметра, что этот проводник при включении в цепь греется до красноты (из-за чего, собственно, и используется).

Вот характеристика ρ углеродистых сталей:

Как видно, при приближении к температуре плавления оно стабилизируется.

Удельное сопротивление различных проводников

Как бы то ни было, а при расчетах используется ρ именно в нормальных условиях. Приведем таблицу, по которой можно сравнить эту характеристику у разных металлов:

Как видно из таблицы, лучший проводник - это серебро. И только его стоимость мешает массово применять его в производстве кабеля. У.с. алюминия тоже небольшое, но меньше, чем у золота. Из таблицы становится понятно, почему проводка в домах либо медная, либо алюминиевая.

В таблицу не включен никель, у которого, как мы уже сказали, немного необычный график зависимости у. с. от температуры. Удельное сопротивление никеля после повышения температуры до 400 градусов начинает не расти, а падать. Интересно он ведет себя и в других сплавах замещения. Вот так ведет себя сплав меди и никеля в зависимости от процентного соотношения того и другого:

А этот интересный график показывает сопротивление сплавов Цинк - магний:

В качестве материалов для изготовления реостатов используют высокоомные сплавы, вот их характеристики:

Это сложные сплавы, состоящие из железа, алюминия, хрома, марганца, никеля.

Что касается углеродистых сталей, то оно составляет примерно 1,7*10^-7 Ом · м.

Разница между у. с. различных проводников определяет и их применение. Так, медь и алюминий массово применяются при производстве кабеля, а золото и серебро - в качестве контактов в ряде радиотехнических изделий. Высокоомные проводники нашли свое место среди производителей электроприборов (точнее, они и создавались для этого).

Изменчивость этого параметра в зависимости от условий внешней среды легла в основу таких приборов, как датчики магнитного поля, терморезисторы, тензодатчики, фоторезисторы.

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

σ — проводимость материала, выраженная в сименс на метр (См/м).

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих , выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный , изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

Где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:


Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:

где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.



Новое на сайте

>

Самое популярное