Домой Исследования Темаз всасывание, транспорт, распределение лекарственных веществ. Транспорт и распределение лекарств Транспорт лекарственных веществ системой крови

Темаз всасывание, транспорт, распределение лекарственных веществ. Транспорт и распределение лекарств Транспорт лекарственных веществ системой крови

Подробности

Общая фармакология. Фармакокинетика

Фармакокинетика – раздел фармакологии, посвященный изучению кинетических закономерностей распределения лекарственных веществ. Изучает высвобождение лекартсвенных веществ, всасывание, распределение, депонирование, превращения и выделение лекарственных веществ.

Пути введения лекарственных средств

От пути введения зависят скорость развития эффекта, его выраженность и продолжительность. В отдельных случаях путь введения определяет характер действия веществ.

Различают:

1) энтеральные пути введения (через пищеварительный тракт)

При этих путях введения вещества хорошо всасываются, в основном, путем пассивной диффузии через мембрану. Поэтому ххорошо всасываются липофильные неполярные соединения и плохо – гидрофильные полярные.

Под язык (сублингвально)

Всасывание происходит очень быстро, вещества попадают в кровь, минуя печень. Однако, всассывающая поверхность невелика, и таким путем можно вводить только высокоактивные вещества, назначаемые в малах дозах.

Пример: таблетки нитроглицерина, содержащие 0,0005 г нитроглицерина. Действие наступает через 1-2 мин.

Через рот (per os)

Лекарственные вещества просто проглатывают. Всасывание происходит частично из желудка, но по большей части – из тонкого кишечника (этому способствуют значительная всасывающая поверхность кишечника и ее интенсивное кровоснабжение). Основных механизмом всасывания в кишечнике является пассивная диффузия. Всасывание из тонкой кишки происходит относительно медленно. Оно зависит от моторики кишечника, рН среды, количества и качества содержимого кишечника.

Из тонкого кишечника вещество через систему воротной вены печени попадает в печень и только затем – в общий кровоток.

Абсорбция веществ регулируется также специальным мембранным транспортером – Р-гликопротеином. Он способствует выведению веществ в просвет кишечника и препятствует их абсорбции. Известны ингибиторы этого вещества – циклоспорин А, хинидин, верапамил, итракназол и т.д.

Следует помнить, что некоторые лекарственные вещества нецелесообразно назначать внутрь, так как они разрушаются в ЖКТ под действием желудочного сока и ферментов. В таком случае (или же если препарат оказывает раздражающее действие на слизистую желудка), его назначают в капсулах или драже, которые растворяются только в тонком кишечнике.

Ректально (per rectum)

Значительная часть вещества (около 50%)поступает в кровоток, минуя печень. Кроме того, при этом пути введения вещество не подвергается воздействию ферментов ЖКТ. Всасывание происходит путем простой диффузии. Ректально вещества назначают в виде суппозиториев или клизм.

Лекарственные вещества, имеющие структуру белков, жиров и полисахаридов, в толстой кишке не всасываются.

Также применяют подобный путь введения и для местного воздействия.

2) парентеральные пути введения

Введение веществ, минуя пищеварительный тракт.

Подкожный

Вещества могут всасываться путем пассивной диффузии и фильтрации через межклеточные промежутки. Таким орбазом, под кожу можно вводить и липофильные неполярные, и гидрофильные полярные вещества.

Обычно подкожно вводят растворы лекарственных веществ. Иногда – масляные растворы или взвеси.

Внутримышечное

Вещества всасываются так же, как и при подкожном введении, но более быстро, так как васкуляризация скелетных мышц более выражена по сравнению с подкожно-жировой клетчаткой.

В мышцы нельзя вводить гипертонические растворы, раздражающие вещества.

В то же время, в мышцы вводят масляные растворы, взвеси, для того, чтобы создать депо препарата, при котором лекарственное вещество может длительно всасываться в кровь.

Внутривенно

Лекарственное вещество сразу попадает в кровь, поэтому его действие развивается очень быстро – за 1-2 минуты. Чтобы не создавать слишком высокой концентрации вещества в крови, его обычно разводят в 10-20 мл изотонического раствора натрия хлорида и вводят медленно, в течение нескольких минут.

В вену нельзя вводить масляные растворы, взвеси в связи опасностью закупорки сосудов!

Внутриартериально

Позволяет создать в области, которая кровоснабжается данной артерией, высокую концентрацию вещества. Таким путем иногда вводят противоопухолевые препараты. Для уменьшения общетоксического действия может быть искусственно затруднен отток крови путем наложения жгута.

Интрастернальный

Обычно используют при технической невозможности внутривенного введения. Лекарство вводят в губчатое вещество грудины. Метод используется для детей и людей пожилого возраста.

Внутрибрюшинный

Редко используется, как правило, на операциях. Действие наступает очень быстро, так как большинство лекарств хорошо всасывается через листки брюшины.

Ингаляционно

Введение лекарственных препаратов путем вдыхания. Так вводят газообразные вещества, пары летучих жидкостей, аэрозоли.

Легкие хорошо кровоснабжаются, поэтому всасывание происходит очень быстро.

Трансдермально

При необходимости длительного действия высоколипофильных лекарственных веществ, которые легко проникают через неповрежденную кожу.

Интраназально

Для введения в полость носа в виде капель или спрея в расчете на местное или резорбтивное действие.

Проникновение лекарственных веществ через мембрану. Липофильные неполярные вещества. Гидрофильные полярные вещества.

Основные способы проникновения – пассивная диффузия, активный транспорт, облегченная диффузия, пиноцитоз.

Плазматическая мембрана состоит, в основном, из липидов, а это значит, что проникать путем пассивной диффузии через мембрану могут только липофильные неполярные вещества. Наоборот, гидрофильные полярные вещества (ГПВ) таким путем через мембрану практически не проникают.

Многие лекарственные вещества являются слабыми электролитами. В растворе часть таких веществ находится в неионизированной форме, т.е. в неполярной, а часть – в виде ионов, несущих электрические заряды.

Путем пассивной диффузии через мембрану проникает неионизированная часть слабого электролита

Для оценки ионизации используют величину pK a – отрицательный логарифм константы ионизации. Численно pK a равен pH, при котором ионизирована половина молекул соединения.

Для определения степени ионизации используют формулу Хендерсона-Хассельбаха:

pH = pKa+-для оснований

Ионизация оснований происходит путем их протонирования

Степень ионизации определяется так

pH = pK а +-для кислот

Ионизация кислот происходит путем их протонирования.

НА = Н + + А -

Для ацетилсалициловой кислоты рКа = 3.5. При рН = 4.5:

Следовательно, при рН = 4.5 ацетилсалициловая кислота будет почти полностью диссоциирована.

Механизмы всасывания веществ

Лекарственные вещества могут проникать в клетку путем:

Пассивной диффузии

В мембране есть аквапорины, через которые поступает вода в клетку и могут проходить путем пассивной диффузии по градиенту концентрации растворенные в воде гидрофильные полярные вещества с очень малыми размерами молекул (эти аквапорины очень узкие). Однако, такой тип поступления лекарственных веществ в клетке очень редок, так как размер большинства молекул лекарственных веществ превышает размер диаметр аквапоринов.

Также путем простой диффузии проникают липофильные неполярные вещества.

Активного транспорта

Транспорт лекарственного гидрофильного полярного вещества через мембрану против градиента концентрации с помощью специального переносчика. Такой транспорт избирателен, насыщаем и требует затрат энергии.

Лекарственное вещество, имеющее аффинитет к транспортному белку, соединяется с местами связывания этого переносчика с одной стороны мембраны, затем происходит конформационное изменение переносчика, и, наконец, вещество высвобождается с другой стороны мембраны.

Облегченной диффузии

Транспорт гидрофильного полярного вещества через мембрану специальной транспортной системой по градиенту концентрации, без затрат энергии.

Пиноцитоза

Впячивания клеточной мембраны, окружающие молекулы вещества и образующие везикулы, которые проходят через цитоплазму клетки и высвобождают вещество с другой стороны клетки.

Фильтрации

Через поры мембран.

Также имеет значение фильтрация лекарственных веществ через межклеточные промежутки.

Фильтрация ГПВ через межклеточные промежутки имеет важное значение при всасывании, распределении и выведении и зависит от:

а) величины межклеточных промежутков

б) величины молекул веществ

1) через промежутки между клетками эндотелия в капиллярах почечных клубочков путем фильтрации легко проходят большинство лекарственных веществ, находящихся в плазме крови, если они не связаны с белками плазмы.

2) в капиллярах и венулах подкожно-жировой клетчатки, скелетных мышц промежутки между клетками эндотелия достаточны для прохождения большинства лекарственных веществ. Поэтому при введении под кожу или в мышцы хорошо всасываются и проникают в кровь и липофильные неполярные вещества (путем пассивной диффузии в липидной фазе), и гидрофильные полярные (путем фильтрации и пассивной диффузии в водной фазе через промежутки между клетками эндотелия).

3) при введении ГПВ в кровь вещества быстро проникают в большинство тканей через промежутки между эндотелиоцитами капилляров. Исключения вещества, для которых существуют системы активного транспорта (противопаркинсонический препарат левадопа) и ткани, отделенные от крови гистогематическими барьерами. Гидрофильные полярные вещества могут проникнуть через такие барьеры только в некоторых местах, в которых барьер мало выражен (в area postrema продолговатого мозга проникают ГПВ в триггер-зону рвотного центра).

Липофильные неполярные вещества легко проникают в центральную нервную системы через гемато-энцефалический барьер путем пассивной диффузии.

4) В эпителии ЖКТ межклеточные промежутки малы, поэтому ГПВ достаточно плохо всасываются в нем. Так, гидрофильное полярное вещество неостигмин под кожу назначают в дозе 0,0005 г, а для получения сходноого эффекта при назначении внутрь требуется доза 0,015 г.

Липофильные неполярные вещества легко всасываются в ЖКТ путем пассивной диффузии.

Биодоступность. Пресистемная элиминация.

В связи с тем, что системное действие вещества развиваеся только при попадании его в кровоток, откуда оно поступает в ткани, предложен термин «биодоступность».

В печени многие вещества подвергаются биотрансформации. Частично вещество может выделяться в кишечник с желчью. Именно поэтому в кровь может попасть лишь часть вводимого вещества, остальная часть подвергается элиминации при первом прохождении через печень.

Элиминация – биотрансформация + экскреция

Кроме того, лекарства могут не полностью всасываться в кишечнике, подвергаться метаболизму в стенке кишечника, частично выводиться из него. Все это, вместе с элиминацией при первом прохождении через печень называют пресистемной элиминацией .

Биодоступность – количество неизмененного вещества, попавшего в общий кровоток, в процентном отношении к введенному количеству.

Как правило, в справочниках указано значения биодоступности при их назначении внутрь. Например, биодоступность пропранолола – 30%. Это означает, что при введении внутрь в дозе 0.01 (10 мг) только 0,003 (3 мг) неизмененного пропранолола попадает в кровь.

Для определения биодоступности лекарство вводят в вену (при в/в способе введения биодоступность вещества составляет 100%). Через определенные интервалы времени определяются концентрации вещества в плазме крови, затем строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрацию вещества в крови и также строят кривую. Измеряют площади под кривыми – AUC. Биодоступность – F – определяют как отношение AUC при назначении внутрь к AUC при внутревенном введении и обозначают в процентах.

Биоэквивалентность

При одинаковой биодоступности двух веществ скорость их поступления в общий кровоток может быть различной! Соответственно различными будут:

Время достижения пиковой концентрации

Максимальная концентрация в плазме крови

Величина фармакологического эффекта

Именно поэтому вводят понятие биоэквивалентность.

Биоэквивалентность – означает сходные биодоступность, пик действия, характер и величину фармакологического эффекта.

Распределение лекарственных веществ.

При попадании в кровоток липофильные вещества, как правило, распределяются в организме относительно равномерно, а гидрофильные полярные – неравномерно.

Существенное влияние на характер распределения веществ оказывают биологические барьеры, которые встречаются у них на пути: стенки капилляров, клеточные и плазматические мембраны, гемато-энцефалический и плацентарный барьеры (уместно посмотреть раздел «Фильтрафия через межклеточные промежутки»).

Эндотелий капилляров мозга не имеет пор, там практически отсутствует пиноцитоз. Также роль играют астроглии, которые увеличивают барьерную силу.

Гематоофтальмический барьер

Препятствует проникновению гидрофильных полярных веществ из крови в ткань глаза.

Плацентарный

Препятствует проникновению гидрофильных полярных веществ из организма матери в организм плода.

Для характеристики распределения лекарственного вещества в системе однокамерной фармакокинетической модели (организм условно представляется как единое пространство, заполненное жидкостью. При введении лекарственное вещество мгновенно и равномерно распределяется) используют такой показатель как кажущийся объем распределения - V d

Кажущийся объем распределения отражает предположительный объем жидкости, в котором распределяется вещество.

Если для лекарственного вещества V d = 3 л (объем плазмы крови), то это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и невыходит за пределы кровеносного русла. Возможно, это высокомолекулярное вещество (V d для гепарина = 4 л).

V d = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей. Вероятно, это гидрофильное полярное вещество.

V d = 400 – 600 – 1000л означает, что ещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина – трициклический антидепрессант - V d = 23л/кг, то есть примерно 1600 л. Это означает, что концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ неэффективен.

Депонирование

При распределении лекарственного вещества в организме часть может задерживаться (депонироваться) в различных тканях. Из депо вещество высвобождается в кровь и оказывает фармакологическое действие.

1) Липофильные вещества могут депонироваться в жировой ткани. Средство для наркоза тиопентал-натрий вызывает наркоз продолжительнотью 15-20 минут, так как 90% тиопентала-натрия депонируется в жировой ткани. После прекращения наркоза наступает посленаркозный сон 2-3 часа в связи с высвобождением тиопентала-натрия.

2) Тетрациклины на длительное время депонируются в костной ткани. Поэтому не назначают детям до 8 лет, так как может нарушить развитие костей.

3) Депонирование, связанное с плазмой крови. В соединении с белками плазмы вещества не проявляют фармакологической активности.

Биотрансформация

В неизменном виде выделются лишь высокогидрофильные ионизированные соединения, средства для ингаляционного наркоза.

Биотрансформация большинства веществ происходит в печени, где обычно создаются высокие концентрации веществ. Кроме того, может происходить биотрансформация в легких, почках, стенке кишечника, коже и т.д.

Различают два основных вида биотрансформации:

1) метаболическая трансформация

Превращение веществ за счет окисления, восстановления и гидролиза. Окисление происходит, в основном, за счет микросомальных оксидаз смешанного действия при участии НАДФ, кислорода и цитохрома Р-450. Восстановление происходит под влиянием системы нитро- и азоредуктаз и т.п. Гидролизируют, обычно, эстерзы, карбоксилэстеразы, амидазы, фосфатазы и т.д.

Метаболиты, как правило, менее активны, чем исходные вещества, но иногда активнее них. Например: эналаприл метаболизируется в энаприлат, который оказывает выраженное гипотензивное действие. Однако, он плохо всасывается в ЖКТ, потому стараются вводить в/в.

Метаболиты могут быть токсичнее исходных веществ. Метаболит парацетамола – N-ацетил-пара-бензохинонимин при передозировке вызывает некроз печени.

2) конъюгация

Биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок или молекул эндогенных соединений.

Процессы идут либо один за другим, либо протекают отдельно!

Различают также :

-специфическую биотрансформацию

Отдельный фермент воздействует на одно или несколько соединений, проявляя при этом высокую субстратную активность. Пример: метиловый спирт окисляется алкогольдегидрогеназой с образованием формальдегидом и муравьиной кислоты. Этиловый спирт также окисляется аклогольдегидрогеназой, но аффинитет этанола к ферменту значительно выше, чем у метанола. Поэтому этанол может замедлять биотрансформацию метанола и уменьшать его токсичность.

-неспецифическую биотрансформацию

Под влиянием микросомальных ферментов печени (в основном, оксидазы смешанных функций), локализованных в гладкоповерхностных участках эндоплазматического ретикулума клеток печени.

В результате биотрансформации липофильные незаряженные вещества обычно превращаются в гидрофильные заряженные, поэтому легко выводятся из организма.

Выведение (экскреция)

Лекарственные вещества, метаболиты и конъюгаты, в основном выводятся с мочой и желчью.

-с мочой

В почках низкомолекулярные соединения, растворенные в плазме (не связанные с белками), фильтруются через мембраны капилляров клубочков и капсул.

Также активную роль играет активная секреция веществ в проксимальном канальце с участием транспортных систем. Этим путем выделяются органические кислоты, салицилаты, пенициллины.

Вещества могут замедлять выведение друг друга.

Липофильные незаряженные вещества подвергаются реабсорбции путем пассивной диффузии. Гидрофильные полярные не реабсорбируются и выводятся с мочой.

Большое значение имеет рН. Для ускоренного выведения кислых соединений реакцию мочи стоит изменять в щелочную сторону, а для выведения оснований – в кислую.

- с желчью

Так выводятся тетрациклины, пенициллины, колхицин и др. Эти препараты значительно выделяются с желчью, затем частично выводятся с экскрементами, либо реабсорбируются (кишечно -печеночная рециркуляция ).

- с секретами разных желез

Особое внимание стоит обратить на то, что в период лактации молочными железами выделяются многие вещества, которые получает кормящая мать.

Элиминация

Биотрансформация + экскреция

Для количественной характеристики процесса используется ряд параметров: константа скорости элиминации (К elim), период полуэлиминации (t 1/2), общий клиренс (Cl T).

Константа скорости элиминации - К elim – отражает скорость удаления вещества из организма.

Период полуэлиминации - t 1/2 – отражает время, необходимое для снижения концентрации вещества в плазме на 50%

Пример: в вену введено вещество А в дозе 10 мг. Константа скорости элиминации = 0,1 / ч. Через час в плазме останется 9 мг, через два часа – 8,1 мг.

Клиренс - Cl T – количество плазмы крови, очищаемое от вещества в единицу времени.

Различают почечный, печеночный и общий клиренс.

При постоянной концентрайии вещества в плазме крови почечный клиренс – Cl r определяется так:

Cl = (V u х C u)/ C p [мл/мин]

Где C u и C p - концентрация вещества в моче и плазме крови, соответственно.

V u - скорость мочеотделения.

Общий клиренс Cl T определяется по формуле: Cl T = V d х K el

Общий клиренс показывает, какая часть объема распределения освобождается от вещества в единицу времени.

Общая фармакология. Фармакокоинетика. Пути и способы введения лекарственных веществ в организм.

Предмет и задачи клинической фармакологии.

Клиническая фармакология (КФ) – наука, изучающая принципы и методы эффективной и безопасной фармакотерапии, способы определения клинической ценности и оптимального применения лекарственных средств (ЛС).

Предметом клинической фармакологии является лекарство в условиях клинической практики.

Фармакокинетика – изменения концентрации лекарственных веществ в средах организма здорового и больного человека, а также механизмы, посредством которых осуществляются эти изменения.

Фармакокинетика - всасывание, распределение, депонирование, превращения

и выведение лекарственных веществ.

Все пути введения лекарственных средств в организм можно разделить на энтеральные и парентеральные. Энтеральные пути введения (enteros – кишечник) обеспечивают введение лекарственного средства в организм через слизистые оболочки желудочно-кишечного тракта. К энтеральным путям введения относят:

· Оральное введение (внутрь, per os) – введение лекарства в организм путем проглатывания. При этом лекарство попадает вначале в желудок и кишечник, где в течение 30-40 мин происходит его всасывание в систему воротной вены. Далее с током крови лекарство поступает в печень, затем в нижнюю полую вену, правые отделы сердца и, наконец, малый круг кровообращения. Этим путем чаще всего вводят твердые и жидкие лекарственные формы (таблетки, драже, капсулы, растворы, пастилки и др.).

· Ректальный путь (>per rectum) – введение лекарства через анальное отверстие в ампулу прямой кишки. Этим путем вводят мягкие лекарственные формы (суппозитории, мази) или растворы (при помощи микроклизмы). Всасывание вещества осуществляется в систему геморроидальных вен. Ректальный путь введения часто применяется у детей первых трех лет жизни.

· Сублингвальное (под язык) и суббукальное (в полость между десной и щекой) введение. Таким способом вводят твердые лекарственные формы (таблетки, порошки), некоторые из жидких форм (растворы) и аэрозоли. При этих способах введения лекарственное средство всасывается в вены слизистой оболочки ротовой полости и далее последовательно поступает в верхнюю полую вену, правые отделы сердца и малый круг кровообращения. После этого лекарство доставляется в левые отделы сердца и с артериальной кровью поступает к органам мишеням.



Парентеральное введение – путь введения лекарственного средства, при котором оно поступает в организм минуя слизистые оболочки желудочно-кишечного тракта.

· Инъекционное введение. При этом пути введения лекарство сразу попадает в системный кровоток, минуя притоки воротной вены и печень. К инъекционному введению относят все способы, при которых повреждается целостность покровных тканей. Они осуществляются при помощи шприца и иглы.

· Внутривенное введение. При этом способе введения игла шприца прокалывает кожу, гиподерму, стенку вены и лекарство непосредственно вводится в системный кровоток (нижнюю или верхнюю полые вены). Лекарство может вводиться струйно медленно или быстро (болюсом), а также капельным способом.

· Внутримышечное введение. Данным путем вводят все виды жидких лекарственных форм и растворы порошков. Иглой шприца прокалывают кожу, гиподерму, фасцию мышцы и затем ее толщу, куда и впрыскивают лекарство. Эффект развивается через 10-15 мин. Объем вводимого раствора не должен превышать 10 мл. При внутримышечном введении лекарство всасывается менее полно, по сравнению с внутривенным введением, но лучше, чем при пероральном применении.

Ингаляционное введение – введение лекарственного вещества путем вдыхания его паров или мельчайших частиц.

Трансдермальное введение – аппликация на кожу лекарственного вещества для обеспечения его системного действия.

Местное нанесение. Включает аппликацию лекарства на кожу, слизистые оболочки глаз (конъюнктиву), носа, гортани.

Механизмы всасывания лекарственных веществ.

Всасывание – это процесс поступления ЛС из места введения в кровь. Всасывание лекарственного вещества зависит от пути введения его в организм, лекарственной формы, физико-химических свойств (растворимости в липидах или гидрофильности вещества), а также от интенсивности кровотока в месте введения.

ЛС, принятые перорально, подвергаются всасыванию, проходя через слизистую оболочку желудочно-кишечного тракта, что определяется их растворимостью в липидах и степенью ионизации. Различают 4 основные механизма всасывания: диффузия, фильтрация, активный транспорт, пиноцитоз.

Пассивная диффузия осуществляется через клеточную мембрану. Всасывание происходит до тех пор, пока концентрация лекарственного вещества по обе стороны биомембраны не сравняется. Подобным образом всасываются липофильные вещества (например, барбитураты, бензодиазепины, метопролол и др.), причем чем выше их липофильность, тем активнее их проникновение через клеточную мембрану. Пассивная диффузия веществ идет без затраты энергии по градиенту концентрации.

Облегченная диффузия – это транспорт лекарственных веществ через биологические мембраны с участием молекул специфических переносчиков. При этом перенос лекарства осуществляется также по градиенту концентрации, но скорость переноса при этом значительно выше. Например, таким образом всасывается цианокобаламин. В осуществлении его диффузии участвует специфический белок – гастромукопротеид (внутренний фактор Кастла), образующийся в желудке. Если продукция этого соединения нарушена, то снижается всасывание цианокобаламина и, как следствие этого, развивается пернициозная анемия.

Фильтрация осуществляется через поры клеточных мембран. Этот механизм пассивного всасывания идет без затраты энергии и осуществляется по градиенту концентрации. Характерен для гидрофильных веществ (например, атенолол, лизиноприл и др.), а также ионизированных соединений.

Активный транспорт осуществляется с участием специфических транспортных систем клеточных мембран. В отличие от пассивной диффузии и фильтрации активный транспорт процесс энергозатратный и способен осуществляться против градиента концентрации. В данном случае несколько веществ могут конкурировать за один и тот же транспортный механизм. Способы активного транспорта обладают высокой специфичностью, поскольку сформировались в процессе длительной эволюции организма для обеспечения его физиологических потребностей. Именно эти механизмы являются основными для осуществления доставки в клетки питательных веществ и выведения продуктов обмена.

Пиноцитоз (корпускулярная абсорбция или пенсорбция) представляет также разновидность всасывания с затратой энергии, осуществление которого возможно против градиента концентрации. При этом происходит захват лекарственного вещества и инвагинация клеточной мембраны с образованием вакуоли, которая направляется к противоположной стороне клетки, где происходит экзоцитоз с высвобождением лекарственного соединения.

Механизмы всасывания (механизмы транспорта лекарственных веществ) представлены на рис. 2.3.

Самый частый механизм транспорта лекарственных веществ – пассивная диффузия через мембраны клеток кишечной стенки (энтероцитов). Скорость всасывания в этом случае пропорциональна градиенту концентрации веществ и существенно зависит от их растворимости в мембране (наиболее легко путем пассивной диффузии всасываются липофильные неполярные вещества ).

Рис. 2.3.

А – диффузия; В – фильтрация; С – активный транспорт; D – пиноцитоз

Диффузии, как правило, подвергаются электролиты, находящиеся в недиссоциированном состоянии. Растворимость и степень ионизации лекарственного средства определяются pH содержимого желудка и кишечника. Необходимо подчеркнуть, что лекарственные средства путем пассивной диффузии хорошо всасываются и в прямой кишке, что служит основой для введения лекарственных средств ректальным путем. Виды пассивного транспорта представлены на рис. 2.4.

Рис. 2.4.

Вода, электролиты и малые гидрофильные молекулы (например, мочевина) транспортируются в кровь другим механизмом – фильтрацией через поры в эпителии кишечника. Фильтрация через поры имеет значение для всасывания лекарственных средств с молекулярной массой менее 100 Да и осуществляется по градиенту концентрации.

Использует специализированные механизмы клеточных мембран с затратой энергии для переноса определенных ионов или молекул против градиента концентрации. Он характеризуется избирательностью, насыщаемостью. При активном транспорте наблюдается конкуренция веществ за общий транспортный механизм (например, при усвоении некоторых витаминов и минеральных веществ). Степень всасывания зависит от дозы препарата, так как возможен феномен "насыщения белков-переносчиков". Особенности активного транспорта представлены на рис. 2.5.

Основной механизм всасывания ксенобиотиков (синтезированных лекарственных веществ) – пассивная диффузия. Для веществ природного происхождения, таких как аминокислоты, витамины, эссенциальные микроэлементы и др., в организме имеются специализированные активные транспортные механизмы. В этом случае основной путь усвоения – активный транспорт, а пассивная диффузия начинает играть роль только при очень высоких концентрациях.

Лекарственные вещества с большими молекулами или комплексы лекарственного вещества с крупной транспортной молекулой всасываются путем пиноцитоза . При этом происходит инвагинация мембраны клетки кишечного эпителия и образование пузырька (вакуоли), заполненного захваченной жидкостью вместе с лекарством. Вакуоль мигрирует по цитоплазме клетки к противоположной стороне и освобождает содержимое во внутреннюю среду организма. Однако пиноцитоз не имеет существенного значения для всасывания лекарственных средств и используется лишь

в редких случаях (например, при усвоении комплекса цианокобаламина с белком – внутренним фактором Кастла).

Рис. 2.5.

Современные технологии управляемого высвобождения в производстве лекарственных средств используют такие технологические приемы, как:

  • использование вспомогательных веществ;
  • гранулирование;
  • микрокапсулирование;
  • применение специального прессования;
  • покрытие оболочками и т.д.

С их помощью можно изменять время распада таблетки, скорость растворения или выделения лекарственного вещества, место выделения и длительность нахождения в определенной зоне желудочно-кишечного тракта (над окном всасывания). А это, в свою очередь, определяет скорость и полноту всасывания, динамику концентрации лекарственного вещества в крови, т.е. биодоступность препарата. Для некоторых препаратов создают таблетки из микрочастиц с адгезивными свойствами, которые "приклеиваются" к слизистой оболочке, или таблетки, разбухающие в желудке настолько, что они плавают на поверхности и (или) не могут пройти через пилорический сфинктер в кишечник. На скорость распада таблеток в желудке влияет способ их производства. Так, обычные (прессованные) таблетки прочнее тритурационных (формованных). Скорость распада зависит и от вспомогательных веществ, используемых для придания необходимых свойств таблетируемой смеси (сыпучесть, пластичность, прессуемость, содержание влаги и т.д.).

Кишечнорастворимые таблетки получают путем покрытия их желудочно-резистентной оболочкой или прессованием гранул или микрокапсул, предварительно покрытых такими оболочками. При необходимости оболочки могут обеспечивать и более длительную задержку растворения, чем на 1 ч, который таблетка проводит в желудке. Оболочка может быть достаточно толстой, например сахарной, которая иногда имеет бо́льшую массу, чем ядро таблетки, содержащее лекарственное вещество. Тонкие пленочные оболочки (менее 10% от массы таблетки) могут выполняться из целлюлозы, полиэтиленгликолей, желатина, гуммиарабика и т.д. Подбором оболочки и введением дополнительных веществ можно достичь замедления нарастания концентрации активного вещества в крови, что важно для снижения риска развития нежелательной реакции, и (или) сдвинуть время достижения максимума на несколько часов, если требуется продлить действие препарата и тем самым сократить кратность приема в целях повышения комплаентности. Таблетки пролонгированного действия (ретард), например, обычно получают прессованием микрогранул лекарственного вещества в биополимерной оболочке или распределением в биополимер- ной матрице. При постепенном (послойном) растворении основы или оболочки высвобождаются очередные порции лекарственного вещества. Современные высокотехнологичные способы доставки позволяют достичь постепенного равномерного высвобождения лекарственного вещества, например за счет создания осмотического давления внутри капсулы с действующим веществом. На этом принципе созданы новые лекарственные формы известных препаратов нифедипина (Коринфар Уно), индапамида (Индапамид ретард-Тева), пирибедила (Проноран®) тамсулозина (Омник Окас), глипизида (Глибенез ретард), тразодона (Триттико). Управляемое (контролируемое) высвобождение может достигаться использованием в таблетках микрокапсул с лекарственным веществом, покрытых специальным полимером. После растворения внешнего слоя внутрь капсулы начинает поступать жидкость и но мере растворения ядра происходят постепенное высвобождение и диффузия лекарственного вещества через мембрану капсулы. Основным фактором, ограничивающим производство и использование подобных лекарственных форм, остается условие необходимости высвобождения всего действующего начала за время прохождения таблеткой основных мест всасывания лекарственных средств в желудочно- кишечном тракте – 4–5 ч.

В последние годы для доставки лекарств применяют системы наночастиц. Наночастицы липидов (липосомы) имеют очевидные преимущества в связи с высокой степенью биосовместимости и универсальностью. Эти системы позволяют создавать фармацевтические препараты для местного, орального, ингаляционного или парентерального пути введения. Проверенная безопасность и эффективность лекарств на основе липосом сделали их привлекательными кандидатами для фармацевтических препаратов, а также вакцин, диагностических средств и нутрицевтики. Липосома в клетке показана на рис. 2.6. Липосомы похожи на пузырьки, которые состоят из многих, нескольких или только одного фосфолипидного бислоя. Полярный характер ядра позволяет улучшить доставку полярных молекул лекарственных веществ, которые необходимо инкапсулировать. Лекарство, инкапсулированное в липосому, представлено на рис. 2.7. Амфифильные и липофильные молекулы растворяются в фосфолипидном бислое в соответствии с их сродством к фосфолипидам. Формирование двухслойных ниосом возможно при участии неионных ПАВ вместо фосфолипидов.

Рис. 2.6.

Рис. 2.7.

Особые технологические проблемы ставят перед разработчиками комбинированные препараты, содержащие несколько активных веществ, требующих для оптимального всасывания различных условий. Разумеется, если требования к месту и времени усвоения для компонентов одинаковы, можно просто таблетировать смесь или при необходимости (например, для ограничения контакта между компонентами при хранении) предварительно гранулировать и капсулировать компоненты. Если компонентам требуются различные отделы ЖКТ для оптимального всасывания, то таблетки прессуют из гранул с разными скоростями растворения. В этом случае возможно также использование технологий многослойного таблетирования или контролируемого высвобождения. Обычно в состав комбинированного лекарственного средства не включают компоненты, отрицательно влияющие на сохранность, усвоение или фармакологическое действие друг друга.

Если компоненты комплексного препарата должны усваиваться в разное время (но в одном месте желудочно-кишечного тракта), то альтернативы раздельному приему нет.

Сублингвальное введение используют для нитроглицерина, потому что препарат немедленно поступает в общий кровоток, минуя кишечную стенку и печень. Однако большинство лекарств нельзя принимать таким способом, потому что они менее активны или обладают раздражающим действием.

Ректальное введение используют в тех случаях, когда больной не может принимать лекарство внутрь из-за тошноты, неспособности глотать или если ему нельзя есть (например, после операции). В ректальной свече ЛС смешано с легкоплавким веществом, которое растворяется после введения в прямую кишку. Тонкая слизистая оболочка прямой кишки хорошо снабжается кровью, поэтому препарат всасывается быстро, минуя печень при первом прохождении.

Инъекционный путь (парентеральное введение ) включает подкожный, внутримышечный и внутривенный способы введения лекарств. В противоположность пероральному введению лекарства, вводимые парентерально, попадают в кровеносное русло, минуя кишечную стенку и печень, поэтому такое введение сопровождается более быстрой и воспроизводимой реакцией. Парентеральное введение используют для следующих ситуаций: больной не может принимать препараты внутрь, ЛС должно попасть в организм быстро и в определенной дозе, а также оно плохо или непредсказуемо всасывается.

При подкожных инъекциях иглу вводят под кожу, и ЛС поступает в капилляры, а затем уносится кровотоком. Подкожное введение используют для многих белковых препаратов, например инсулина, который при приеме внутрь переваривается в ЖКТ. Лекарства для таких инъекций могут представлять собой суспензии или относительно нерастворимые комплексы: это необходимо, чтобы замедлить их поступление в кровь (от нескольких часов до нескольких суток и дольше) и уменьшить частоту введения.

Если надо ввести большой объем ЛС, внутримышечные инъекции предпочтительнее подкожных инъекций. Для таких инъекций используют более длинную иглу.

При внутривенных инъекциях иглу вводят непосредственно в вену. Это труднее выполнить технически по сравнению с другими способами введения, особенно у людей с тонкими, подвижными или склерозированными венами. Внутривенный путь введения однократно инъекционно или непрерывно капельно является самым лучшим способом доставить лекарство по назначению быстро и в точной дозе.

Трансдермальное введение используют для ЛС, которые можно вводить в организм с помощью пластыря, прикладываемого к коже. Такие лекарства, иногда смешанные с химическими веществами, облегчающими проникновение через кожу, попадают в кровоток без инъекции медленно и непрерывно в течение многих часов, дней и даже недель. Однако у некоторых людей на коже в месте контакта с пластырем появляется раздражение. Кроме того, при таком введении лекарство может поступать через кожу недостаточно быстро. Трансдермально вводят только препараты, назначаемые в относительно небольших суточных дозах, например нитроглицерин (от стенокардии), никотин (для отвыкания от курения) и фентанил (для облегчения боли).

Некоторые лекарства, например газы, применяемые для общего наркоза, и средства для лечения бронхиальной астмы в виде аэрозоля, можно вводить в организм ингаляционным путем (вдыханием). Они попадают в легкие и оттуда поступают в кровоток. Так принимают относительно немногие препараты.

Константа скорости абсорбции (К а) характеризует скорость поступления из места введения в кровь.

Схема фармакокинетики лекарственных средств представлена на рис. 2.8.

Рис. 2.8. Фармакокинетика лекарственных средств (схема)

Распределение, метаболизм, выведение лекарственных средств

Распределение изменяется при повышении проницаемости гематоэнцефалического барьера (менингит, энцефалит, ЧМТ, шок, прием кофеина, эуфиллина) и снижении проницаемости гематоэнцефалического барьера (преднизолон, инсулин).

Гидрофильные соединения хуже проникают через гематоэнцефалический барьер (меньше частота побочных действий на ЦНС).

Распределение изменяется при избыточном накоплении лекарства в тканях (липофильные соединения) в случаях ожирения. Объем распределения препарата (V d) характеризует степень его захвата тканями из плазмы (сыворотки) крови. V d (V d = D/C 0) условный объем жидкости, в котором нужно растворить всю попавшую в организм дозу препарата (D ), чтобы мв сыворотке крови (С0). Распределение изменяется при гипопротеинемии (гепатит, голодание, гломерулонефрит, пожилой возраст), гиперпротеинемии (болезнь Крона, ревматоидный артрит), гипербилирубинемии.

Фазы биотрансформации лекарственных средств представлены на рис. 2.9. Метаболизм липофильных препаратов изменяется при патологии печени (необходимо снижать дозу препаратов или кратность приемов), одновременном назначении нескольких лекарственных препаратов. Многие витамины, в частности витамин В6, являются кофакторами ферментов, метаболизирующих лекарственные средства. Так, продукты, богатые витамином В6, увеличивают скорость расщепления леводопы. Это снижает концентрацию допамина в крови. Уменьшается выраженность эффектов противопаркинсонических препаратов. С другой стороны, дефицит витамина В6 может снизить интенсивность метаболизма таких препаратов, как изониазид и др.

Общий клиренс препарата (С1 t) характеризует скорость очищения организма от лекарственного препарата. Выделяют почечный (Сlr) и внепочечный (Cl er) клиренсы, которые отражают выведение лекарственного вещества соответственно с мочой и другими путями (прежде всего с желчью). Общий клиренс является суммой почечного и внепочечного клиренса. Период полувыведения (T 1/2) – время, необходимое для уменьшения вдвое концентрации препарата в крови, зависит от константы скорости элиминации (T 1/2 = 0,693/K el). Константы скорости элиминации (К еl) и экскреции (К ел) характеризуют соответственно скорость исчезновения препарата из организма путем биотрансформации и выведения, скорость выведения с мочой, калом, слюной и др. Элиминация гидрофобных препаратов изменяется при патологии печени (необходимо снижать дозу препаратов или кратность приемов), сердечной недостаточности.

Элиминация препаратов изменяется при одновременном назначении лекарственных препаратов, тормозящих активность микросомальных ферментов печени (циметидин) Экскреция гидрофильных препаратов изменяется при изменениях pH мочи, снижении активной канальцевой секреции (гипоксия, инфекция, интоксикация). Реабсорбция и секреция электролитов и неэлектролитов в нефроне представлены на рис. 2.10.

  • Кузнецова Н. В. Клиническая фармакология. М., 2013.
  • Катцунг Б. Г. Базисная и клиническая фармакология. М.: Бином, 1998.

ОСНОВНЫЕ МЕХАНИЗМЫ ВСАСЫВАНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ (ЛС)

Всасывание - это процесс поступления ЛС из места введения в кровь. Всасывание лекарственного вещества зависит от пути введения его в организм, лекарственной формы, физико-химических свойств (растворимости в липидах или гидрофильности вещества), а также от интенсивности кровотока в месте введения.

ЛС, принятые перорально, подвергаются всасыванию, проходя через слизистую оболочку желудочно-кишечного тракта, что определяется их растворимостью в липидах и степенью ионизации. Различают 4 основные механизма всасывания: диффузия, фильтрация, активный транспорт, пиноцитоз.

Пассивная диффузия осуществляется через клеточную мембрану. Всасывание происходит до тех пор, пока концентрация лекарственного вещества по обе стороны биомембраны не сравняется. Подобным образом всасываются липофильные вещества (например, барбитураты, бензодиазепины, метопролол и др.), причем чем выше их липофильность, тем активнее их проникновение через клеточную мембрану. Пассивная диффузия веществ идет без затраты энергии по градиенту концентрации.

Облегченная диффузия - это транспорт лекарственных веществ через биологические мембраны с участием молекул специфических переносчиков. При этом перенос лекарства осуществляется также по градиенту концентрации, но скорость переноса при этом значительно выше. Например, таким образом всасывается цианокобаламин. В осуществлении его диффузии участвует специфический белок - гастромукопротеид (внутренний фактор Кастла), образующийся в желудке. Если продукция этого соединения нарушена, то снижается всасывание цианокобаламина и, как следствие этого, развивается пернициозная анемия.

Фильтрация осуществляется через поры клеточных мембран. Этот механизм пассивного всасывания идет без затраты энергии и осуществляется по градиенту концентрации. Характерен для гидрофильных веществ (например, атенолол, лизиноприл и др.), а также ионизированных соединений.

Активный транспорт осуществляется с участием специфических транспортных систем клеточных мембран. В отличие от пассивной диффузии и фильтрации активный транспорт процесс энергозатратный и способен осуществляться против градиента концентрации. В данном случае несколько веществ могут конкурировать за один и тот же транспортный механизм. Способы активного транспорта обладают высокой специфичностью, поскольку сформировались в процессе длительной эволюции организма для обеспечения его физиологических потребностей. Именно эти механизмы являются основными для осуществления доставки в клетки питательных веществ и выведения продуктов обмена.

Пиноцитоз (корпускулярная абсорбция или пенсорбция) представляет также разновидность всасывания с затратой энергии, осуществление которого возможно против градиента концентрации. При этом происходит захват лекарственного вещества и инвагинация клеточной мембраны с образованием вакуоли, которая направляется к противоположной стороне клетки, где происходит экзоцитоз с высвобождением лекарственного соединения.

РАСПРЕДЕЛЕНИЕ ЛС В ОРГАНИЗМЕ: БИОЛОГИЧЕСКИЕ БАРЬЕРЫ

Попадая в системный кровоток, ЛС начинает распределяться по различным органам и тканям организма. Большинство лекарств распределяются по организму неравномерно. Характер распределения определяется многими условиями: растворимостью, комплексообразованием с белками плазмы крови, интенсивностью кровотока в отдельных органах и т.д. С учетом этого наибольшие концентрации лекарственного вещества в первые минуты после абсорбции создаются в органах, имеющих наиболее активное кровоснабжение, таких как сердце, печень, почки. Медленнее препараты проникают в мышцы, кожу, жировую ткань. Однако действие лекарственных веществ на тот или иной орган или ткань определяется главным образом не его концентрацией, а чувствительностью к ним этих образований. Сродство лекарственных веществ к биологическим субстратам и определяет специфичность их действия.

Существуют определенные трудности для проникновения лекарственных соединений через гематоэнцефалический барьер (ГЭБ), что связано со спецификой строения капилляров мозга. Через ГЭБ хорошо проникают липофильные соединения, а вот гидрофильные не в состоянии его преодолеть. При некоторых заболеваниях мозга (менингит, травма и т.п.) проницаемость ГЭБ повышается, и через него могут проникать значительно большие количества ЛС.

Проникновению лекарств в мозг способствует также нарастание уровня остаточного азота крови, т.к. при этом повышается проницаемость ГЭБ и увеличивается свободная фракция лекарственного вещества, вытесненного из комплекса с белком. У новорожденных и детей грудного возраста проницаемость ГЭБ значительно выше, чем у взрослых, поэтому у них даже плохо растворимые в липидах вещества скорее и легче преодолевают «пограничный барьер» и обнаруживаются в более высоких концентрациях в тканях мозга. Еще более высокая проницаемость ГЭБ характерна для плода, поэтому концентрация некоторых ЛС в ликворе плода может достигать таких же значений, как и в материнской крови, что способно привести к патологии головного мозга ребенка.

Избирательная проницаемость характерна и для плацентарного барьера. Через него легко проходят липофильные вещества. Соединения со сложной структурой, высокомолекулярные, белковые вещества через плацентарный барьер не проникают. В то же время его проницаемость значительно изменяется по мере нарастания срока беременности.

Некоторые ЛС имеют повышенное сродство к определенным тканям организма, а поэтому в них происходит их накопление и даже фиксация на продолжительное время. Например, тетрациклины накапливаются в костной ткани и зубной эмали и остаются там в течение длительного времени. Липофильные соединения создают высокие уровни концентрации в жировой ткани и могут задерживаться в ней.

СВЯЗЫВАНИЕ ЛС С БЕЛКАМИ КРОВИ И ТКАНЕЙ

Попав в системный кровоток, ЛС присутствуют там в двух фракциях - свободной и связанной. Лекарства способны взаимодействовать и формировать комплексы с альбуминами, в меньшей степени - с кислыми альфа1-гликопротеинами, липопротеинами, гамма-глобулинами и форменными элементами крови (эритроцитами и тромбоцитами).

Связь лекарственного вещества с белками плазмы приводит к тому, что проникновение его в различные органы и ткани резко снижается, ибо через клеточные мембраны проходит лишь свободный препарат. Ксенобиотики, связанные с белком, не взаимодействуют с рецепторами, ферментами и не проникают через клеточные барьеры. Свободная и связанная фракции ЛС находятся в состоянии динамического равновесия - по мере снижения фракции свободного вещества лекарственное средство высвобождается из связи с белком, в результате чего концентрация вещества снижается.

Связывание лекарственных веществ с белками плазмы крови оказывает влияние на распределение их в организме, скорость и длительность действия. Если ЛС обладает низкой способностью комплексообразования с белками плазмы (? 50%), оно быстро распределяется в организме, достигает того органа или системы, на который должно проявить свое действие, и вызывает достаточно быстрый терапевтический эффект. Однако подобные лекарства быстро удаляются из организма, с чем связано их непродолжительное действие. Напротив, вещества, обладающие высоким сродством к белкам плазмы (? 90%), долгое время циркулируют в кровеносном русле, плохо и медленно проникают и накапливаются в тканях, а поэтому терапевтические уровни их в тканях создаются медленно и эффект развивается постепенно. Но такие вещества медленно элиминируют из организма, тем самым обеспечивая продолжительное лечебное действие. На этом, например, основано получение сульфаниламидных средств с пролонгированным эффектом.

ВЫВЕДЕНИЕ ЛС. БИОТРАНСФОРМАЦИЯ

Выведение (элиминация) ЛС - это сложный процесс удаления лекарства из организма, включающий в себя его нейтрализацию (биотрансформацию или метаболизм) и собственно экскрецию.

При характеристике элиминации различают пресистемную элиминацию и системную элиминацию. Как мы уже указывали («РА», 2006, №8), пресистемный метаболизм, или эффект первичного прохождения, - это биотрансформация лекарственного вещества при первичном прохождении печени после его всасывания. Системная элиминация - удаление ксенобиотика после его попадания в системный кровоток.

Биотрансформация (метаболизм) - комплекс физико-химических и биологических превращений ЛС, в результате которого образуются гидрофильные соединения, легче выводимые из организма и, как правило, проявляющие менее выраженное фармакологическое действие (либо полностью его лишенные). Поэтому в процессе метаболизма лекарственные вещества обычно теряют свою активность, но становятся более удобными для удаления из организма почками. Некоторые высокогидрофильные ионизированные соединения (например, хондроитин, глюкозамин и др.) могут не подвергаться в организме биотрансформации и выводиться в неизмененном виде.

В то же время имеется небольшое количество препаратов, биотрансформация которых приводит к образованию более активных метаболитов, чем исходное соединение. На эффекте первичного прохождения основано действие пролекарств (например, дезлоратадина, фамцикловира, периндоприла и др.), т.е. веществ, которые превращаются в фармакологически активные ЛС только после пресистемного метаболизма. Биотрансформация лекарств может осуществляться в печени, стенке кишечника, почках и других органах.

Различают метаболические реакции лекарственных веществ двух типов - несинтетические и синтетические.

Несинтетические реакции в свою очередь бывают:

Микросомальные - катализируемые ферментами эндоплазматического ретикулума;
- немикросомальные - катализируемые ферментами иной локализации (реакции окисления, восстановления и гидролиза).

В основе синтетических реакций лежит конъюгация лекарственных веществ с эндогенными соединениями или химическими группировками (глюкуроновая кислота, глутатион, сульфаты, глицин, метильные группы и др.). В процессе конъюгации, например, происходит метилирование гистамина и катехоламинов, ацетилирование сульфаниламидов, комплексообразование с глюкуроновой кислотой морфина, взаимодействие с глутатионом парацетамола и др. В результате синтетических метаболических реакций молекула препарата становится более полярной и легче выводится из организма.

МАГИСТРАЛЬНЫЕ ПУТИ ЭЛИМИНАЦИИ

Лекарственные вещества и их метаболиты покидают организм различными путями, основными из которых являются почки и ЖКТ (с калом). Меньшую роль играет выведение с выдыхаемым воздухом, потом, слюной, слезной жидкостью.

Почки выводят лекарственные вещества путем клубочковой фильтрации и канальцевой секреции, хотя большое значение имеет и процесс реабсорбции веществ в почечных канальцах.

При почечной недостаточности клубочковая фильтрация значительно понижается, что приводит к замедлению выведения ЛС из организма и увеличению его концентрации в крови. В связи с этим при прогрессирующей уремии дозу таких веществ во избежание развития токсических эффектов следует снижать. Выведение лекарственных средств почками зависит от рН мочи. Поэтому при щелочной реакции мочи быстрее выводятся вещества со слабокислыми свойствами, а при кислой реакции мочи - с основными.

Ряд препаратов (пенициллины, тетрациклины, дифенин и др.) в неизмененном виде или в форме метаболитов поступают в желчь, а затем в составе желчи выделяются в двенадцатиперстную кишку. Часть препарата с содержимым кишечника выводится наружу, а часть подвергается повторной абсорбции и снова поступает в кровь и печень, затем в желчь и опять в кишечник. Подобный цикл получил название энтерогепатической циркуляции.

Газообразные и летучие вещества могут выводиться легкими. Этот способ выведения характерен, например, для ингаляционных наркотизирующих веществ.

Препараты могут выделяться из организма слюнными железами (иодиды), потовыми железами (дитофал), железами желудка (хинин), слезными железами (рифамицин).

Большое значение имеет способность некоторых лекарственных средств выводиться с молоком лактирующих женщин. Обычно концентрация препарата в молоке недостаточна, чтобы оказать неблагоприятное действие на новорожденного. Но есть и такие ЛС, которые создают достаточно высокие концентрации в молоке, что может представлять опасность для ребенка. Информация относительно выведения различных лекарств с молоком весьма скудная, поэтому назначать препараты кормящим женщинам надо с особой осторожностью.

Наконец, необходимо указать, что интенсивность выведения лекарств из организма может быть описана количественными параметрами, служащими немаловажным элементом в оценке эффективности препаратов. К таким параметрам относятся:

а) период полувыведения (Т1/2) - время, необходимое для снижения концентрации лекарственного средства в плазме крови в 2 раза. Этот показатель находится в прямой зависимости от константы скорости элиминации;

б) общий клиренс лекарственного средства (Clt) - объем плазмы крови, очищаемый от лекарственного вещества за единицу времени (мл/мин.) за счет выведения почками, печенью и т.д. Общий клиренс равняется сумме почечного и печеночного клиренса;

в) почечный клиренс (Clr) - выведение лекарства с мочой;
г) внепочечный клиренс (Cler) - выведение лекарства иными путями (прежде всего с желчью).

Основные вопросы для обсуждения

Всасывание лекарственных веществ из места введения в кровь. Механизмы всасывания. Факторы, влияющие на процесс всасы­вания. Транспорт лекарственных веществ с кровью.

Значение связывания лекарственных веществ с белками плазмы крови.

Распределение лекарственных веществ в организме. Факторы, влияющие на распределение лекарственных веществ в орга­низме. Гистогематнческие барьеры. 1ематоэнцефалический и плацентарный барьеры. Круги циркуляции лекарственных ве­ществ; энтерогепатический круг циркуляции и его значение. Фармакокинетические показатели, характеризующие процессы всасывания и распределения. Биодоступность лекарственных веществ и методы ее расчета.

Определение исходного уровня

Инструкция: выберите один или несколько правильных ответов для предложенных ниже тестовых вопросов.

Вариант I

А. Всасывание лекарственных веществ. Б. Распределение лекарственных веществ в организме. В. Взаимодействие с мишенями в организме. Г Фармакологические эффекты. Д. Метаболизм. Е. Выведение.

2. Основной механизм всасывание лекарственных веществ из ЖК"Г в кровь:

А. Фильтрация. Б. Пассивная диффузия. В. Активный транспорт. Г. Пиноцитоз.

3. При повышении ионизации слабых электролитов их вса­сывание «з ЖК"Г в кровь:

А. Усиливается. Б. Снижается. В. Не изменяется.

4. Всасывание лекарственных веществ по механизму пассив­ной диффузии:

5. Лекарственные вещества, связанные с белками плазмы крови:

А. Фармакологически активные. Б. Фармакологически неактивные. В. Медленно метаболизируются, Г. Не выво­дятся почками.

Вариант 2

1. Понятие «фармакокинетика» включает:

А. Всасывание лекарственных веществ. Б. Депонирова­ние лекарственных веществ. В. Локализацию действия. Г Биотрансформацию. Д. Экскрецию.

2. Через гистогематические барьеры легче проникают:

А. Полярные гидрофильные вещества. Б. Неполярные липофильные вещества.

3. Из Ж КТ в кровь хорошо всасываются:

А. Ионизированные молекулы. Б. Пеионизированные молекулы. В. Гидрофильные молекулы. Г. Липофильные молекулы.

4. Всасывание лекарственных веществ по механизму актив* к ого транспорта:

А. Сопровождается затратой метаболической энергии. Б. Не сопровождается затратой метаболической энергии.

5. Лекарственные вещества, не связанные с белками плазмы крови:

А. Оказывают фармакологические эффекты. Б. Не оказы­вают фармакологических эффектов. В. Выводятся почка­ми. Г. Не выводятся почками.

Самостоятельная работа

Задание I. Заполните таблицу:

Механизмы всасывания лекарственных веществ в кровь и их характеристика


Задание 2. Заполните таблицу. На основании данных та­блицы определите, какие из препаратов могут применяться как средства:

А. Для купирования приступов стенокардии. Б. Для профи­лактики и лечения стенокардии.

Задание 3. Заполните таблицу.

Фармакокинетические показатели


На основании фармакокинетических показателей обсудите с преподавателем вопросы о:

Скорости и полноте всасывания;

Быстроте развития максимального фармакологического эффекта;

Уровне свободных и связанных молекул в плазме крови;

Распределении в органах и тканях и возможности при­менения их при беременности и лактации.

Задание 4. Ситуационная задача.

Здоровым добровольцам вводили аторвастатин (липримар) внутривенно 1 мл 1 % раствора и перорально в таблетках в дозе 10 мг.

Площадь под кривой (А11С) «концентрация в крови - вре­мя» при в/в введении составляла 44,5мкг/мин/мл*\ а при пе- роральном - 43,2 мкг/мин/мл-1.

Рассчитайте биодоступность таблеток аторвастатина (ли- примара).

Экспериментальная работа

Опыт 1. Два изолированных желудка крысы заполняют

0, 2% раствором ацетилсалициловой кислоты и 5% раство­ром анальгина. рН среды в желудке, равный 2, устанавлива­ют 0,1 н. раствором НС). Два изолированных отрезка тонкой кишки крысы (длиной 5-8 см) также заполняют 0,2% раство­ром ацетилсалициловой кислоты и 5% раствором анальгина. Значение рН среды в кишечнике, равное 8,0. устанавливают 2% раствором №НСО,. Желудки и отрезки тонкой кишки, заполненные ацетилсалициловой кислотой, помещают в хи­мические стаканчика с 0,9% раствором №С1, куда добавляют индикаторы РеС1ч. Желудки и отрезки тонкой кишки, запол­ненные раствором анальгина, помещают в стаканчик с при­готовленным ранее индикатором (5 мл 95% этилового спирта + 0,5 мл разведенной НС1 + 5 мл 0,1 н. раствора ЭД03). О ско­рости и полноте всасывания лекарственных веществ судят по времени появления окрашивания и его интенсивности. Ре­зультаты записывают в таблицу и делают вывод о зависимости всасывания лекарственных веществ из желудка и кишечника от их кислотно-основных свойств:

Лекар­

ственное

вещество

Кислотно-

основные

свойства

Ионизация Интенсивность окрашивания через
рН рН 5 мни 30 мин 60 мин
Ж К Ж К Ж К
Анальгин
Ацетилса­

лициловая


Контроль усвоения темы (тестовые задания)

Инструкция; выберите один или несколько правильных ответов для предложенных ниже тестовых вопросов, вариант /

/. Какой механизм всасывания лекарственных веществ со­провождается затратой метаболической энергии Т Л. Пиноцитоз. В. Ультрафильтрация. В. Пассивная диффу­зия. Г. Активный транспорт.

2. Молекулы лекарственных веществу связанные с 6елками плазмы крови:

A. Фармакологически активны. Г>. Выводятся почками.

B.Фармакологически неактивны. Г. Не выводятся ночка­ми. Д. Создают депо препарата в крови.

3. При увеличении диссоциированных молекул лекарственно­го вещества его всасывание из ЖКТ:

Л. Уменьшается. В. Увеличивается.

4. Лекарственные вещества из организма матери в организм плода переходят через:

А. Гематоэнцефалический барьер. Б. Плацентарный ба­рьер. В. Гематоофтальмический барьер.

5. Гидрофильные лекарственные вещества распределяются преимущественно в:

А. Межклеточной жидкости. Б. Почках. В. Жировых депо.

6. Количество неизмененного лекарственного вещества, ко­торое достигло плазмы крови, относительно введенной дозы препарата называется:

А. Всасывание. Б. Экскреция. В. Биотрансформация. Г. Биодоступность.

7. Как изменится эффект дигоксина при одновременном на­значении с диклофенаком, если известно, что последний вытесняет дигоксин из комплекса с белками плазмы?

А. Увеличится. Б. Уменьшится. В. Не изменился.

8. Какие факторы влияют на распределение лекарственных веществ в организме*

А. Физико-химические свойства. Б. Способность прони­кать через гистогематические барьеры. В. Скорость кро­вотока в органах и тканях. Г. Способность связываться с белками плазмы крови. Д. Все верно.

9. Лекарственные вещества основного характера, принятые перора,гъно, оптимально всасываются в:

А. Желудке. Б. Двенадцатиперстной кишке. В. На всем протяжении Ж КТ.

Вариант 2

1. Для какого механизма всасывания характерны выпячива­ние мембраны клетки, захват мельчайших капелек жидко­сти или твердых частиц и переход их внутрь клетки?

А. Пассивная диффузия. Б. Активный транспорт. В. Филь­трация. Г. Пиноцитоз.

2. Лекарственные вещества кислого характера, принятые перорально, оптимально всасываются в:

А. Желудке. Б. Двенадцатиперстной кишке. В. Прямой кишке. Г На всем протяжении ЖКТ.

3. Лекарственные вещества из крови в клетки мозга пере­ходит через.



Новое на сайте

>

Самое популярное