Домой Пульмонология Клеточный цикл. Интерфаза

Клеточный цикл. Интерфаза

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

Давно уже известны два типа деления клеток: деление митотическое и редукционное. Первое называют также митозом, а второе - мейозом. Первым способом, митозом, делятся все клетки, вторым - только половые.

Сначала - о митозе. Ему предшествует удвоение молекул, несущих наследственную информацию.

Молекулы ДНК, в которых заключен генетический шифр, располагаются в ядре клетки, в особых длинных нитях - хромосомах. У каждого вида животных и растений строго определенное число хромосом. Обычно их несколько десятков. У человека, например, 46 (До 1956 года думали, что в человеческих клетках их 48. Но в 1956 году генетики Тжио и Леван точно установили, что у человека 46, а не 48 хромосом. ). А у одного из червей всего две. У некоторых раков по 200 хромосом. Но рекорд побили микроскопические радиолярии: у одной из них 1600 хромосом!

Когда молекулы ДНК удваиваются, удваиваются и хромосомы. Каждая строит по своему подобию двойника. Значит, какое-то время в наших клетках хромосом бывает вдвое больше, чем обычно.

Между двумя делениями, в так называемой интерфазе, хромосомы в обычный микроскоп не видны. Как будто их нет совсем. В электронный же видно, что они все-таки тут, никуда не делись, но так тонки, что без очень сильного увеличения не заметны. Говорят, что на этой фазе своей деятельности хромосомы имеют вид "ламповых щеток". И в самом деле, они немного похожи на ерши, которыми когда-то прочищали стекла керосиновых ламп.

За десять-двадцать часов относительного покоя между двумя делениями хромосомы должны успеть синтезировать своих двойников с полной копией всех содержащихся в них генов, всех молекул ДНК.

Как только двойники будут готовы, длинные хромосомные нити (оригиналы и их копии) начинают сворачиваться в тугие спирали. А те скручиваются в спирали второго порядка. Смысл этого скручивания вполне понятен. До сих пор хромосомы лежали спутанным клубком, и растянуть их по разным полюсам клетки, наверное, было бы нелегко. Теперь же каждая хромосома - спираль, скрученная спиралью, - очень компактный и удобный для транспортирования "багаж".

Все ДНК человеческой клетки, вытянутые в одну нить, занимают в длину приблизительно около метра, а свернутая дважды спиралью эта нить умещается в 46 хромосомах, длина каждой из которых всего несколько микрон.

Итак, перед делением хромосомы сами себя упаковывают в компактные "вьюки". К этому моменту, который в клеточном делении именуется профазой, оболочка ядра растворяется, а уже известные нам центриоли, или. центросомы, расходятся к противоположным полюсам клетки. Нити так называемого митотического аппарата, или веретена, соединяют каждую хромосому с одним из полюсов.

Затем хромосомы выстраиваются парами (оригинал бок о бок со своей копией) вдоль экватора клетки, как танцоры на балу. Эту стадию деления называют метафазой.

Потом каждая из парных хромосом устремляется к своему полюсу. Партнеры расстаются навсегда, потому что скоро перегородка разделит по экватору старую клетку на две новые. Впечатление такое, будто центриоли тянут к себе хромосомы за ниточки, как марионеток.

И действительно, хромосомы имеют вид, какой бывает у всякого гибкого тела, когда его за ниточку протягивают через жидкость.

Место, за которое ее тянут, у каждой хромосомы всегда одно и то же. Его называют кинетохором, или центромерой. От того, где у хромосомы кинетохор, часто зависит ее форма. Если кинетохор посередине, то хромосома, когда во время митоза ее тащат за нитку, перегибается пополам и становится похожа на латинскую цифру "пять" (V). Если кинетохор у самого конца хромосомы, то она изгибается на манер латинской буквы "йот" (J).

Одно время думали, что нити митотического аппарата - своего рода рельсы, по которым хромосомы катятся к полюсам. Потом решили, что они скорее похожи на тонкие резинки, миниатюрные мускулы, которые, сокращаясь, подтягивают к полюсам свой хромосомный груз. Но тогда, сокращаясь, нити становились бы толще, "худели" бы, удлиняясь. Однако этого не происходит. Укорачиваясь и удлиняясь, они не становятся ни толще, ни тоньше.

По-видимому, механика клеточного веретена иная. Возможно, думают некоторые ученые, нити укорачиваются оттого, что часть составляющих их молекул выходит из игры: то есть из нитей. А добавление молекул в одном линейном направлении приводит к удлинению нитей.

Тем или иным способом хромосомы со скоростью около одного микрона в минуту перетягиваются из центра клетки к ее полюсам. С этого момента митоз переходит в стадию, называемую анафазой.

За анафазой следует телофаза. Спирали хромосом раскручиваются. Снова "ламповые щетки" входят в игру. Клубки нитевидных хромосом обрастают ядерными оболочками: в клетке теперь два ядра-близнеца. Кольцевая перетяжка скоро разделит ее пополам. Каждой половине достанется свое ядро.

Заканчивается клеточное деление удвоением центриолей. Их было четыре - по две на каждом полюсе. Клетка разделилась, и в каждой ее половине оказалось лишь по две центриоли.

На экране электронного микроскопа центриоли похожи на полые цилиндрики, сложенные из трубочек. Центриоли всегда лежат под прямым углом друг к другу. Поэтому одну из них мы видим всегда в поперечном, а другую в продольном разрезе.

В телофазе от каждой из центриолей отпочковывается маленькая центриолька - плотное цилиндрическое тельце. Оно быстро растет, и вот уже в клетке четыре центриоли.

Путем митоза из одной получаются две клетки, совершенно идентичные по наследственности, скрытой в их хромосомах (если ни одна из них не подвергалась мутации).

Обычно митоз длится час или два часа. В нервных тканях митозы случаются очень редко. Зато в костном мозгу, где каждую секунду рождается на свет 10 миллионов эритроцитов, каждую секунду происходит 10 миллионов митозов!

Теперь, прежде чем рассказать о втором типе клеточного деления - о мейозе, мы должны ввести несколько новых терминов.

Набор хромосом, заключенный в ядре нормальной соматической (иными словами, не половой, а обычной) клетки тела, генетики называют двойным - диплоидным. У человека диплоидный набор хромосом равен 46. Все эти 46 хромосом по внешности и величине легко разделяются на идентичные по конфигурации пары (лишь партнеры одной пары - половые хромосомы "x" и "y" - не похожи друг на друга. Но об этом позже).

Набор хромосом, в котором из каждой пары присутствует только один партнер, называют гаплоидным, или ординарным. Все половые клетки, или гаметы, содержат гаплоидный набор хромосом. (Это значит, что в спермиях и в яйцеклетках человека только по двадцать три хромосомы.) Иначе при оплодотворении яйца, когда сливаются материнская и отцовская гаметы, получалась бы зигота с числом хромосом вдвое больше нормального.

Мейоз, предшествующий образованию спермиев и яйцеклеток, призван наделить гаметы вдвое меньшим, гаплоидным, числом хромосом. А когда гаметы сольются, в зиготе будет уже нормальное диплоидное число хромосом. Половина от матери, половина от отца.

Понятно теперь, почему все хромосомы в зиготе парные?

Ведь каждой материнской хромосоме соответствует точно такая же по форме, величине и характеру наследственной информации отцовская хромосома. Парные хромосомы называют гомологичными.

Мейоз начинается с того, что однотипные по конфигурации хромосомы объединяются в пары, конъюгируют. Затем каждая из хромосом каждой пары создает из веществ, растворенных в протоплазме, своего двойника. Как и в митозе.

Теперь однотипных хромосом уже не две, а четыре. Четверками, или тетрадами, плотно прижавшись друг к другу, выстраиваются они вдоль экватора клетки. Нити веретена разъединяют четверки снова на пары, растаскивая их к разным полюсам.

Клетка делится пополам, а потом делится еще раз, но теперь в другой плоскости, перпендикулярной к первой. На этот раз хромосомы не удваиваются. Выстроившиеся по экватору пары расходятся поодиночке в разные концы клетки.

У каждого полюса их теперь вдвое меньше, чем при митозе или в первой фазе мейоза. Поэтому, когда клетка разрывается пополам, рожденные из нее две новые гаметы получают гаплоидное число хромосом. Так как в первой фазе мейоза из одной клетки рождается две диплоидные клетки, то в конце второй его фазы мы имеем четыре гаметы. И в каждой, повторяю, гаплоидное число хромосом. Если это гаметы человеческие, значит, в них будет по двадцать три хромосомы. А когда при оплодотворении они сольются в одну зиготу, хромосом в ней станет сорок шесть.

Зигота дает начало человеческому зародышу, все клетки в котором будут с 46 хромосомами.

Механикой клеточного деления в мейозе - расхождением по разным гаметам парных хромосом, каждая из которых ведет свой род либо от отца, либо от матери, - объясняются многие законы наследственности и изменчивости, открытые Грегором Менделем и другими генетиками.

Польские ученые недавно методом цейтраферной съемки сделали отличный фильм о митозе. Все фазы митоза на экране ускорены в несколько сот раз. В действительности же движения хромосом во время деления происходят значительно медленнее. Я видел этот фильм, и он поразил меня сильнее, чем лучшие из лучших художественных фильмов.

В нем необычные актеры - хромосомы. Они сходятся, расходятся, выстраиваются в ряд и разбегаются в разные стороны, словно танцоры на балу, исполняющие сложные па старинного танца. Американский биолог Мёллер, основатель радиационной генетики, назвал танцем хромосом их странные перемещения во время деления клетки.

Каждую секунду в нашем теле совершаются миллионы митозов! И сотни миллионов неодушевленных, но очень дисциплинированных маленьких балерин исполняют древнейший на земле танец. Танец жизни. В таких танцах клетки тела пополняют свои ряды. И мы растем и существуем.

На согласованном расхождении хромосом к разным полюсам клетки основаны все явления наследственности и жизни. Ведь каждая хромосома - сложное соединение гигантских нуклеиновых кислот и белков. А нуклеиновые кислоты несут в себе великое множество наследственных единиц - генов, то есть суть всего сущего на Земле.

http://nplit.ru "NPLit.ru: Библиотека юного исследователя"

Мейоз – осуществляется в клетках организмов, размножающихся половым путем.

Биологический смысл явления определяется новым набором признаков у потомков.

В данной работе рассмотрим сущность этого процесса и для наглядности представим его на рисунке, посмотрим последовательность и продолжительность деления половых клеток, а так же узнаем, в чем сходство и отличие митоза и мейоза.

Что такое мейоз

Процесс, сопровождающийся образованием четырех клеток с одинарным хромосомным набором из одной исходной.

Генетическая информация каждой новообразованной соответствует половине набора соматической клетки.

Фазы мейоза

Мейотичекое деление включает два этапа, состоящие из четырех фаз каждое.

Первое деление

Включает профазу I, метафазу I, анафазу I и телофазу I.

Профаза I

На данном этапе образуются две клетки с половинным набором генетической информации. Профаза первого деления включает несколько стадий. Ей предшествует предмейотическая интерфаза, во время которой идет репликация ДНК.

Затем происходит конденсация, образование длинных тонких нитей с протеиновой осью во время лептотены. Данная нить прикрепляется к мембране ядра с помощью концевых расширений – прикрепительных дисков. Половинки удвоенных хромосом (хроматиды) еще не различимы. При исследовании имеют вид монолитных структур.

Далее наступает стадия зиготены. Гомологи сливаются с образованием бивалентов, число которых соответствует одинарному числу хромосом. Процесс конъюгации (соединения) осуществляется между парными, сходными в генетическом и морфологическом аспекте. Причем взаимодействие начинается с концов, распространяясь вдоль тел хромосом. Комплекс из гомологов, связанных белковым компонентом – бивалент или тетрада.

Спирализация происходит во время стадии толстых нитей – пахитены. Здесь уже удвоение ДНК выполнено полностью, начинается кроссинговер. Это обмен участками гомологов. В результате формируются сцепленные гены с новой генетической информацией. Параллельно протекает транскрипция. Плотные участки ДНК – хромомеры — активируются, что приводит к изменению структуры хромосом по типу «ламповых щеток».

Гомологичные хромосомы конденсируются, укорачиваются, расходятся (исключая точки соединения — хиазмы). Это стадия в биологии диплотена или диктиотена. Хромосомы на данном этапе богаты РНК, которая синтезируется на этих же участках. По свойствам последняя близка к информационной.

Наконец, биваленты расходятся к периферии ядра. Последние укорачиваются, теряют ядрышки, становятся компактными, не связанными с ядерной оболочкой. Это процесс носит название диакинеза (перехода к делению клетки).

Метафаза I

Далее биваленты перемещаются к центральной оси клетки. От каждой центромеры отходят веретена деления, каждая центромера равноудалена от обоих полюсов. Небольшие по амплитуде движения нитей удерживают их в данном положении.

Анафаза I

Хромосомы, построенные из двух хроматид, расходятся. Происходит перекомбинация с уменьшением генетического разнообразия (в связи с отсутствием в наборе генов, расположенных в локусах (участках) гомологов).

Телофаза I

Суть фазы состоит в расхождении хроматид с их центромерами к противоположным участкам клетки. В животной клетке происходит цитоплазматическое деление, в растительной – образование клеточной стенки.

Второе деление

После интерфазы первого деления клетка готова ко второму этапу.

Профаза II

Чем длиннее телофаза, тем короче длительность профазы. Хроматиды выстраиваются вдоль клетки, образуя своими осями прямой угол относительно нитей первого мейотического деления. В эту стадию они укорачиваются и утолщаются, ядрышки подвергаются распаду.

Метафаза II

Центромеры вновь расположены в экваториальной плоскости.

Анафаза II

Хроматиды отделяются друг от друга, перемещаясь к полюсам. Теперь они носят название хромосом.

Телофаза II

Деспирализация, растяжение образованных хромосом, исчезновение веретена деления, удвоение центриолей. Гаплоидное ядро окружается ядерной мембраной. Формируются четыре новые клетки.

Таблица сравнения митоза и мейоза

Кратко и понятно особенности и отличия представлены в таблице.

Характеристики Мейотическое деление Митотическое деление
Число делений осуществляется в два этапа осуществляется в один этап
Метафаза после удвоения хромосомы расположены по центральной оси клетки парами после удвоения хромосомы расположены по центральной оси клетки одиночно
Слияние есть нет
Кроссинговер есть нет
Интерфаза нет удвоения ДНК в интерфазу II перед делением характерно удвоение ДНК
Итог деления гаметы соматические
Локализация в зреющих гаметах в соматических клетках
Путь воспроизведения половой бесполый

Представленные данные – схема отличий, а сходства сводятся к одинаковым фазам, редупликации ДНК и спирализации перед началом клеточного цикла.

Биологическое значение мейоза

Какова же роль мейоза:

  1. Дает новые сочетания генов вследствие кроссинговера.
  2. Поддерживает комбинативную изменчивость. Мейоз – источник новых признаков в популяции.
  3. Удерживает постоянное количество хромосом.

Заключение

Мейоз — сложный биологический процесс, в ходе которого образуются четыре клетки, с новыми признаками, полученными в результате кроссинговера.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Деление клетки. Митоз и мейоз

Актуализация знаний 1 . Внутренняя полужидкая среда клетки, в которой расположены органоиды и ядро – это: А - вакуоль Б - цитоплазма В - аппарат Гольджи Г – митохондрии 2. Главным структурным компонентом ядра является: А- хромосомы Б- рибосомы В- митохондрии Г- хлоропласты

3. Собственную ДНК имеют: А- комплекс Гольджи Б- лизосома В- эндоплазматическая сеть Г- митохондрии 4. Клетку животных относят к группе эукариотных, так как она имеет: А- хлоропласты Б- плазматическую мембрану В- оболочку Г- ядро, отделенное от цитоплазмы оболочкой

5. Клетки прокариот в отличие от клеток эукариот, НЕ имеют: А - хромосомы Б - клеточной оболочки В - ядерной мембраны Г - плазматической мембраны 6. Все прокариотические и эукариотические клетки имеют: А- митохондрии и ядро Б- вакуоли и комплекс Гольджи В - ядерную мембрану и хлоропласты Г - плазматическую мембрану и рибосомы

7. Клетки животных в отличие от клеток растений не имеют: А- клеточной мембраны и цитоплазмы Б- митохондрий и рибосом В- оформленного ядра и ядрышка Г- пластид, вакуолей с клеточным соком, оболочки из клетчатки 8. Соматические клетки в отличие от половых содержат: А- двойной набор хромосом Б- одинарный набор хромосом В- цитоплазму Г- плазматическую мембрану.

9. Какой клеточный органоид содержит РНК? А- вакуоль Б- рибосома Г- хлоропласт Д- лизосома 10. В клетке хранится наследственная информация о признаках организма, поэтому ее называют единицей живого: А- функциональной Б- структурной В- генетической Г- биохимической

Деление клетки. Митоз и мейоз

Промежуток времени от момента возникновения клетки в результате деления до его гибели или до следующего деления представляет собой жизненный цикл клетки.

Митотический цикл - совокупность последовательных и взаимосвязанных процессов в период подготовки клетки к делению, а также на протяжении самого митоза.

Интерфаза – период подготовки клетки к делению период подготовки к синтезу ДНК (G1) - усиленно образуются РНК и белки, повышается активность ферментов, участвующих в биосинтезе. синтез ДНК или ее редупликации – удвоению. После завершения синтеза ДНК (S фазы) клетка не сразу начинает делиться. подготовка клетки к митозу (G2) – удвоение центриолей, синтез белка, из которых строится веретено деления. Завершается рост клетки

Митоз (непрямое деление) - основной способ деления эукариотических клеток Профаза Метафаза Анафаза телофаза

Профаза хромосомы скручиваются, спирализуются, становятся видимыми; две центриоли расходятся к полюсам клетки; формируются веретено деления; исчезает ядрышко, ядерная оболочка.

Метафаза хромосома состоит из двух сестринских хроматид, соединенных в центромерных участках; хромосомы выстраиваются в экваториальной плоскости клетки; нити веретена деления прикрепляются к каждой хромосоме в области центромера.

Анафаза хроматиды, удвоенные в интерфазе, становится самостоятельными хромосомами, и расходятся к полюсам клетки.

Телофаза хромосомы, собравшиеся у полюсов клетки, раскручиваются, деспирализируются; формируется ядерная мембрана, образуется ядро; происходит деление цитоплазмы; органоиды распределяются между двумя клетками; две клетки отделяются друг от друга.

Назовите фазы, в которых находятся клетки

Гаметогенез (греч. “ гаметес ” - супруг, “генезис” - происхождение) – развитие яйцеклеток и сперматозоидов Овогенез Сперматогенез

Период размножения. Первичные половые клетки делятся путем митоза, в результате чего их количество увеличивается (протекает более интенсивно). Период роста (интерфаза). Накопление питательных веществ и энергии, удвоение хромосом. Будущие яйцеклетки - овоциты – увеличиваются размерах в сотни и тысячи, даже миллионы раз. Период созревания происходит деление путем мейоза - образуется четыре клетки с гаплоидным набором хромосом.

Мейоз – репродуктивное деление клетки – образование половых клеток Интерфаза – как в митозе Профаза 1 Метафаза 1 Анафаза 1 Телофаза 1 Интеркинез Профаза 2 Метафаза 2 Анафаза 2 Телофаза 2

Профаза 1 Конъюгация – сближение гомологичных хромосом Кроссинговер – обмен гомологичными участками растворяется оболочка и ядрышки, формируется веретено деления

Биологическая роль Митоз точность передачи наследственной информации дочерним клеткам; процесс роста, развития и регенерации + бесполое размножение Мейоз сохранение постоянного набора хромосом и количества ДНК для каждого вида;

Заполните таблицу «Сравнительная характеристика митоза и мейоза» Вопросы для сравнения МИТОЗ МЕЙОЗ Какие изменения происходят в ядре до начала деления (в интерфазе)? 2) Каковы фазы деления? 3) Характерна ли конъюгация гомологических хромосом? 4) Какое число хромосом получает каждая дочерняя клетка? 5) Где происходит данный процесс (период)? 6) Какое значение имеет для существования вида?

Домашнее задание параграф 28, 31, выучить определения, митоз, мейоз, митотический цикл, жизненный цикл, фазы митоза и мейоза, уметь характеризовать и показывать на рисунке. Творческое задание: сочинить стихотворение о митозе, сочинить стихотворение о мейозе


Деление клеток посредством мейоза проходит в два основных этапа: мейоз I и мейоз II. В конце мейотического процесса образуются четыре . Прежде чем делящаяся клетка попадет в мейоз, она проходит через период , называемый интерфазой.

Интерфаза

  • Фаза G1: этап развития клетки перед синтезом ДНК. На этой стадии клетка подготавливаясь к делению увеличивается в массе.
  • S-фаза: период, в течение которого синтезируется ДНК. Для большинства клеток эта фаза занимает короткий промежуток времени.
  • Фаза G2: период после синтеза ДНК, но до начала профазы. Клетка продолжает синтезировать дополнительные белки и увеличиваться в размерах.

В последней фазе интерфазы клетка все еще имеет нуклеолы. окружено ядерной мембраной, а клеточное хромосомы дублируются, но находятся в форме . В две пары , образованных из репликации одной пары, расположены за пределами ядра. В конце интерфазы клетка переходит в первый этап мейоза.

Мейоз I:

Профаза I

В профазе I мейоза происходят следующие изменения:

  • Хромосомы конденсируются и присоединяются к ядерной оболочке.
  • Возникает синапсис (попарное сближение гомологичных хромосом) и образуется тетрада. Каждая тетрада состоит из четырех хроматид.
  • Может произойти генетическая рекомбинация.
  • Хромосомы сгущаются и отсоединяются от ядерной оболочки.
  • Подобно , центриоли мигрируют друг от друга, а ядерная оболочка и ядрышки разрушаются.
  • Хромосомы начинают миграцию к метафазной (экваториальной) пластине.

В конце профазы I клетка входит в метафазу I.

Метафаза I

В метафазе I мейоза происходят следующие изменения:

  • Тетрады выравниваются на метафазной пластине.
  • гомологичных хромосом ориентированы на противоположные полюса клетки.

В конце метафазы I клетка входит в анафазу I.

Анафаза I

В анафазе I мейоза происходят происходят следующие изменения:

  • Хромосомы перемещаются в противоположные концы клетки. Подобно митозу, кинетохоры взаимодействуют с микротрубочками, чтобы переместить хромосомы к полюсам клетки.
  • В отличие от митоза, остаются вместе после того, как перемещаются в противоположные полюса.

В конце анафазы I клетка входит в телофазу I.

Телофаза I

В телофазе I мейоза происходят следующие изменения:

  • Волокна веретена продолжают перемещать гомологичные хромосомы на полюса.
  • Как только движение завершено, каждый полюс клетки имеет гаплоидное количество хромосом.
  • В большинстве случаев цитокинез (деление ) происходит одновременно с телофазой I.
  • В конце телофазы I и цитокинеза образуются две дочерние клетки, каждая из которых имеет половину числа хромосом исходной родительской клетки.
  • В зависимости от типа клетки могут возникать различные процессы при подготовке к мейозу II. Однако генетический материал не реплицируется снова.

В конце телофазы I клетка входит в профазу II.

Мейоз II:

Профаза II

В профазе II мейоза происходят следующие изменения:

  • Ядерная и ядра разрушаются, пока появляется веретено деления.
  • Хромосомы больше не реплицируются в этой фазе.
  • Хромосомы начинают мигрировать к метафазной пластинке II (на экваторе клеток).

В конце профазы II клетки входят в метафазу II.

Метафаза II

В метафазе II мейоза происходят следующие изменения:

  • Хромосомы выстраиваются на метафазной пластинке II в центре клеток.
  • Кинетохорные нити сестринских хроматид расходятся к противоположным полюсам.

В конце метафазы II клетки входят в анафазу II.

Анафаза II

В анафазе II мейоза происходят следующие изменения:

  • Сестринские хроматиды разделяются и начинают перемещаться к противоположным концам (полюсам) клетки. Волокна веретена деления, не связанные с хроматидами, вытягиваются и удлиняют клетки.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается полной хромосомой, называемые .
  • При подготовке к следующему этапу мейоза два полюса клеток также отдаляются друг от друга во время анафазы II. В конце анафазы II каждый полюс содержит полную компиляцию хромосом.

После анафазы II клетки входят в телофазу II.

Телофаза II

В телофазе II мейоза происходят следующие изменения:

  • Образуются отдельные ядра на противоположных полюсах.
  • Происходит цитокинез (деление цитоплазмы и образование новых клеток).
  • В конце мейоза II производятся четыре дочерние клетки. Каждая клетка имеет половину числа хромосом от исходной родительской клетки.

Результат мейоза

Конечным результатом мейоза является производство четырех дочерних клеток. Эти клетки имеют в двое меньше хромосом относительно родительской. При мейозе продуцируются только половые . Другие делятся посредством митоза. Когда половые объединяются во время оплодотворения, они становятся . Диплоидные клетки имеют полный набор гомологичных хромосом.



Новое на сайте

>

Самое популярное