Домой Популярное "решение дробных рациональных уравнений".

"решение дробных рациональных уравнений".

«Рациональные уравнения с многочленами» - одна из самых часто встречающихся тем в тестовых заданиях ЕГЭ по математике. По этой причине их повторению стоит уделить особое внимание. Многие ученики сталкиваются с проблемой нахождения дискриминанта, перенесения показателей из правой части в левую и приведения уравнения к общему знаменателю, из-за чего выполнение подобных заданий вызывает трудности. Решение рациональных уравнений при подготовке к ЕГЭ на нашем сайте поможет вам быстро справляться с задачами любой сложности и сдать тестирование на отлично.

Выбирайте образовательный портал «Школково» для успешной подготовки к единому экзамену по математике!

Чтобы знать правила вычисления неизвестных и легко получать правильные результаты, воспользуйтесь нашим онлайн-сервисом. Портал «Школково» - это единственная в своем роде площадка, где собраны необходимые для подготовки к ЕГЭ материалы. Наши преподаватели систематизировали и изложили в понятной форме все математические правила. Кроме того, мы предлагаем школьникам попробовать силы в решении типовых рациональных уравнений, база которых постоянно обновляется и дополняется.

Для более результативной подготовки к тестированию рекомендуем следовать нашему особому методу и начать с повторения правил и решения простых задач, постепенно переходя к более сложным. Таким образом, выпускник сможет выделить для себя самые трудные темы и сделать акцент на их изучении.

Начните подготовку к итоговому тестированию со «Школково» уже сегодня, и результат не заставит себя ждать! Выберите самый легкий пример из предложенных. Если вы быстро справились с выражением, переходите к более сложной задаче. Так вы сможете подтянуть свои знания вплоть до решения заданий ЕГЭ по математике профильного уровня.

Обучение доступно не только выпускникам из Москвы, но и школьникам из других городов. Уделяйте пару часов в день занятиям на нашем портале, например, и совсем скоро вы сможете справиться с уравнениями любой сложности!

\(\bullet\) Рациональное уравнение - это уравнение, представимое в виде \[\dfrac{P(x)}{Q(x)}=0\] где \(P(x), \ Q(x)\) - многочлены (сумма “иксов” в различных степенях, умноженных на различные числа).
Выражение в левой части уравнения называется рациональным выражением.
ОДЗ (область допустимых значений) рационального уравнения – это все значения \(x\) , при которых знаменатель НЕ обращается в нуль, то есть \(Q(x)\ne 0\) .
\(\bullet\) Например, уравнения \[\dfrac{x+2}{x-3}=0,\qquad \dfrac 2{x^2-1}=3, \qquad x^5-3x=2\] являются рациональными уравнениями.
В первом уравнении ОДЗ – это все \(x\) , такие что \(x\ne 3\) (пишут \(x\in (-\infty;3)\cup(3;+\infty)\) ); во втором уравнении – это все \(x\) , такие что \(x\ne -1; x\ne 1\) (пишут \(x\in (-\infty;-1)\cup(-1;1)\cup(1;+\infty)\) ); а в третьем уравнении никаких ограничений на ОДЗ нет, то есть ОДЗ – это все \(x\) (пишут \(x\in\mathbb{R}\) ). \(\bullet\) Теоремы:
1) Произведение двух множителей равно нулю тогда и только тогда, когда один из них равен нулю, а другой при этом не теряет смысла, следовательно, уравнение \(f(x)\cdot g(x)=0\) равносильно системе \[\begin{cases} \left[ \begin{gathered}\begin{aligned} &f(x)=0\\ &g(x)=0 \end{aligned} \end{gathered} \right.\\ \text{ОДЗ уравнения} \end{cases}\] 2) Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю, следовательно, уравнение \(\dfrac{f(x)}{g(x)}=0\) равносильно системе уравнений \[\begin{cases} f(x)=0\\ g(x)\ne 0 \end{cases}\] \(\bullet\) Рассмотрим несколько примеров.

1) Решите уравнение \(x+1=\dfrac 2x\) . Найдем ОДЗ данного уравнения – это \(x\ne 0\) (так как \(x\) находится в знаменателе).
Значит, ОДЗ можно записать так: .
Перенесем все слагаемые в одну часть и приведем к общему знаменателю: \[\dfrac{(x+1)\cdot x}x-\dfrac 2x=0\quad\Leftrightarrow\quad \dfrac{x^2+x-2}x=0\quad\Leftrightarrow\quad \begin{cases} x^2+x-2=0\\x\ne 0\end{cases}\] Решением первого уравнения системы будут \(x=-2, x=1\) . Видим, что оба корня ненулевые. Следовательно, ответ: \(x\in \{-2;1\}\) .

2) Решите уравнение \(\left(\dfrac4x - 2\right)\cdot (x^2-x)=0\) . Найдем ОДЗ данного уравнения. Видим, что единственное значение \(x\) , при котором левая часть не имеет смысла – это \(x=0\) . Значит, ОДЗ можно записать так: \(x\in (-\infty;0)\cup(0;+\infty)\) .
Таким образом, данное уравнение равносильно системе:

\[\begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x-2=0\\ &x^2-x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x=2\\ &x(x-1)=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1\\ &x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1 \end{aligned} \end{gathered} \right.\] Действительно, несмотря на то, что \(x=0\) - корень второго множителя, если подставить \(x=0\) в изначальное уравнение, то оно не будет иметь смысла, т.к. не определено выражение \(\dfrac 40\) .
Таким образом, решением данного уравнения являются \(x\in \{1;2\}\) .

3) Решите уравнение \[\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1}\] В нашем уравнении \(4x^2-1\ne 0\) , откуда \((2x-1)(2x+1)\ne 0\) , то есть \(x\ne -\frac12; \frac12\) .
Перенесем все слагаемые в левую часть и приведем к общему знаменателю:

\(\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1} \quad \Leftrightarrow \quad \dfrac{x^2+4x-3+x+x^2}{4x^2-1}=0\quad \Leftrightarrow \quad \dfrac{2x^2+5x-3}{4x^2-1}=0 \quad \Leftrightarrow\)

\(\Leftrightarrow \quad \begin{cases} 2x^2+5x-3=0\\ 4x^2-1\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} (2x-1)(x+3)=0\\ (2x-1)(2x+1)\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered} \begin{aligned} &x=\dfrac12\\ &x=-3 \end{aligned}\end{gathered} \right.\\ x\ne \dfrac 12\\ x\ne -\dfrac 12 \end{cases} \quad \Leftrightarrow \quad x=-3\)

Ответ: \(x\in \{-3\}\) .

Замечание. Если ответ состоит из конечного набора чисел, то их можно записывать через точку с запятой в фигурных скобках, как показано в предыдущих примерах.

Задачи, в которых требуется решить рациональные уравнения, в ЕГЭ по математике встречаются каждый год, поэтому при подготовке к прохождению аттестационного испытания выпускникам непременно стоит самостоятельно повторить теорию по данной теме. Уметь справляться с такими заданиями обязательно должны выпускники, сдающие как базовый, так и профильный уровень экзамена. Усвоив теорию и разобравшись с практическими упражнениями по теме «Рациональные уравнения», учащиеся смогут решать задачи с любым количеством действий и рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Как подготовиться к экзамену вместе с образовательным порталом «Школково»?

Иногда найти источник, в котором полноценно представлена базовая теория для решения математических задач, оказывается достаточно сложно. Учебника может просто не оказаться под рукой. А найти необходимые формулы иногда бывает достаточно сложно даже в Интернете.

Образовательный портал «Школково» избавит вас от необходимости поиска нужного материала и поможет качественного подготовиться к прохождению аттестационного испытания.

Всю необходимую теорию по теме «Рациональные уравнения» наши специалисты подготовили и изложили в максимально доступной форме. Изучив представленную информацию, учащиеся смогут восполнить пробелы в знаниях.

Для успешной подготовки к ЕГЭ выпускникам необходимо не только освежить в памяти базовый теоретический материал по теме «Рациональные уравнения», но попрактиковаться в выполнении заданий на конкретных примерах. Большая подборка задач представлена в разделе «Каталог».

Для каждого упражнения на сайте наши специалисты прописали алгоритм решения и указали правильный ответ. Учащиеся могут практиковаться в решении задач различной степени сложности в зависимости от уровня подготовки. Перечень заданий в соответствующем разделе постоянно дополняется и обновляется.

Изучить теоретический материал и отточить навыки решения задач по теме «Рациональные уравнения», подобных тем, которые включены в тесты ЕГЭ, можно в режиме онлайн. В случае необходимости любое из представленных заданий можно добавить в раздел «Избранное». Еще раз повторив базовую теорию по теме «Рациональные уравнения», старшеклассник сможет в дальнейшем вернуться к задаче, чтобы обсудить ход ее решения с преподавателем на уроке алгебры.

Цели урока:

Обучающая:

  • формирование понятия дробных рационального уравнения;
  • рассмотреть различные способы решения дробных рациональных уравнений;
  • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  • обучить решению дробных рациональных уравнений по алгоритму;
  • проверка уровня усвоения темы путем проведения тестовой работы.

Развивающая:

  • развитие умения правильно оперировать полученными знаниями, логически мыслить;
  • развитие интеллектуальных умений и мыслительных операций - анализ, синтез, сравнение и обобщение;
  • развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
  • развитие критического мышления;
  • развитие навыков исследовательской работы.

Воспитывающая:

  • воспитание познавательного интереса к предмету;
  • воспитание самостоятельности при решении учебных задач;
  • воспитание воли и упорства для достижения конечных результатов.

Тип урока : урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

  1. Что такое уравнение? (Равенство с переменной или переменными .)
  2. Как называется уравнение №1? (Линейное .) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа - в правую. Привести подобные слагаемые. Найти неизвестный множитель ).
  3. Как называется уравнение №3? (Квадратное. ) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия .)
  4. Что такое пропорция? (Равенство двух отношений .) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов .)
  5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному .)
  6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю .)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Ответ : 10.

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

(х-2)(х-4) = (х+2)(х+3)

х 2 -4х-2х+8 = х 2 +3х+2х+6

х 2 -6х-х 2 -5х = 6-8

Решить в тетрадях и на доске уравнение №4.

Ответ : 1,5.

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

х 2 -7х+12 = 0

D=1›0, х 1 =3, х 2 =4.

Ответ : 3;4.

Теперь попытайтесь решить уравнение №7 одним из способов.

(х 2 -2х-5)х(х-5)=х(х-5)(х+5)

(х 2 -2х-5)х(х-5)-х(х-5)(х+5)=0

х 2 -2х-5=х+5

х(х-5)(х 2 -2х-5-(х+5))=0

х 2 -2х-5-х-5=0

х(х-5)(х 2 -3х-10)=0

х=0 х-5=0 х 2 -3х-10=0

х 1 =0 х 2 =5 D=49

х 3 =5 х 4 =-2

х 3 =5 х 4 =-2

Ответ : 0;5;-2.

Ответ : 5;-2.

Объясните, почему так получилось? Почему в одном случае три корня, в другом – два? Какие же числа являются корнями данного дробно-рационального уравнения?

До сих пор учащиеся с понятием посторонний корень не встречались, им действительно очень трудно понять, почему так получилось. Если в классе никто не может дать четкого объяснения этой ситуации, тогда учитель задает наводящие вопросы.

  • Чем отличаются уравнения № 2 и 4 от уравнений № 5,6,7? (В уравнениях № 2 и 4 в знаменателе числа, № 5-7 – выражения с переменной .)
  • Что такое корень уравнения? (Значение переменной, при котором уравнение обращается в верное равенство .)
  • Как выяснить является ли число корнем уравнения? (Сделать проверку .)

При выполнении проверки некоторые ученики замечают, что приходится делить на нуль. Они делают вывод, что числа 0 и 5 не являются корнями данного уравнения. Возникает вопрос: существует ли способ решения дробных рациональных уравнений, позволяющий исключить данную ошибку? Да, это способ основан на условие равенства дроби нулю.

х 2 -3х-10=0 , D=49 , х 1 =5 , х 2 =-2.

Если х=5, то х(х-5)=0, значит 5- посторонний корень.

Если х=-2, то х(х-5)≠0.

Ответ : -2.

Давайте попробуем сформулировать алгоритм решения дробных рациональных уравнений данным способом. Дети сами формулируют алгоритм.

Алгоритм решения дробных рациональных уравнений:

  1. Перенести все в левую часть.
  2. Привести дроби к общему знаменателю.
  3. Составить систему: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
  4. Решить уравнение.
  5. Проверить неравенство, чтобы исключить посторонние корни.
  6. Записать ответ.

Обсуждение: как оформить решение, если используется основное свойство пропорции и умножение обеих частей уравнения на общий знаменатель. (Дополнить решение: исключить из его корней те, которые обращают в нуль общий знаменатель).

4. Первичное осмысление нового материала.

Работа в парах. Учащиеся выбирают способ решения уравнения самостоятельно в зависимости от вида уравнения. Задания из учебника «Алгебра 8», Ю.Н. Макарычев,2007: № 600(б,в,и); № 601(а,д,ж). Учитель контролирует выполнение задания, отвечает на возникшие вопросы, оказывает помощь слабоуспевающим ученикам. Самопроверка: ответы записаны на доске.

б) 2 – посторонний корень. Ответ:3.

в) 2 – посторонний корень. Ответ: 1,5.

а) Ответ: -12,5.

ж) Ответ: 1;1,5.

5. Постановка домашнего задания.

  1. Прочитать п.25 из учебника, разобрать примеры 1-3.
  2. Выучить алгоритм решения дробных рациональных уравнений.
  3. Решить в тетрадях № 600(а,г,д); №601(г,з).
  4. Попробовать решить №696(а)(по желанию).

6. Выполнение контролирующего задания по изученной теме.

Работа выполняется на листочках.

Пример задания:

А) Какие из уравнений являются дробными рациональными?

Б) Дробь равна нулю, когда числитель ______________________ , а знаменатель _______________________ .

В) Является ли число -3 корнем уравнения №6?

Г) Решить уравнение №7.

Критерии оценивания задания:

  • «5» ставится, если ученик выполнил правильно более 90% задания.
  • «4» - 75%-89%
  • «3» - 50%-74%
  • «2» ставится учащемуся, выполнившему менее 50% задания.
  • Оценка 2 в журнал не ставится, 3 - по желанию.

7. Рефлексия.

На листочках с самостоятельной работой поставьте:

  • 1 – если на уроке вам было интересно и понятно;
  • 2 – интересно, но не понятно;
  • 3 – не интересно, но понятно;
  • 4 – не интересно, не понятно.

8. Подведение итогов урока.

Итак, сегодня на уроке мы с вами познакомились с дробными рациональными уравнениями, научились решать эти уравнения различными способами, проверили свои знания с помощью обучающей самостоятельной работы. Результаты самостоятельной работы вы узнаете на следующем уроке, дома у вас будет возможность закрепить полученные знания.

Какой метод решения дробных рациональных уравнений, по Вашему мнению, является более легким, доступным, рациональным? Не зависимо от метода решения дробных рациональных уравнений, о чем необходимо не забывать? В чем «коварство» дробных рациональных уравнений?

Всем спасибо, урок окончен.

Решение дробно-рациональных уравнений

Справочное пособие

Рациональные уравнения – это уравнения, в которых и левая, и правая части являются рациональными выражениями.

(Напомним: рациональными выражениями называют целые и дробные выражения без радикалов, включающие действия сложения, вычитания, умножения или деления - например: 6x; (m – n)2; x/3y и т.п.)

Дробно-рациональные уравнения, как правило, приводятся к виду:

Где P (x ) и Q (x ) – многочлены.

Для решения подобных уравнений умножить обе части уравнения на Q(x), что может привести к появлению посторонних корней. Поэтому, при решении дробно-рациональных уравнений необходима проверка найденных корней.

Рациональное уравнение называется целым, или алгебраическим, если в нем нет деления на выражение, содержащее переменную.

Примеры целого рационального уравнения:

5x – 10 = 3(10 – x)

3x
- = 2x – 10
4

Если в рациональном уравнении есть деление на выражение, содержащее переменную (x), то уравнение называется дробно-рациональным.

Пример дробного рационального уравнения:

15
x + - = 5x – 17
x

Дробные рациональные уравнения обычно решаются следующим образом:

1) находят общий знаменатель дробей и умножают на него обе части уравнения;

2) решают получившееся целое уравнение;

3) исключают из его корней те, которые обращают в ноль общий знаменатель дробей.

Примеры решения целых и дробных рациональных уравнений.

Пример 1. Решим целое уравнение

x – 1 2x 5x
-- + -- = --.
2 3 6

Решение:

Находим наименьший общий знаменатель. Это 6. Делим 6 на знаменатель и полученный результат умножаем на числитель каждой дроби. Получим уравнение, равносильное данному:

3(x – 1) + 4x 5х
------ = --
6 6

Поскольку в левой и правой частях одинаковый знаменатель, его можно опустить. Тогда у нас получится более простое уравнение:

3(x – 1) + 4x = 5х.

Решаем его, раскрыв скобки и сведя подобные члены:

3х – 3 + 4х = 5х

3х + 4х – 5х = 3

Пример решен.

Пример 2. Решим дробное рациональное уравнение

x – 3 1 x + 5
-- + - = ---.
x – 5 x x(x – 5)

Находим общий знаменатель. Это x(x – 5). Итак:

х 2 – 3х x – 5 x + 5
--- + --- = ---
x(x – 5) x(x – 5) x(x – 5)

Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:

х 2 – 3x + x – 5 = x + 5

х 2 – 3x + x – 5 – x – 5 = 0

х 2 – 3x – 10 = 0.

Решив квадратное уравнение, найдем его корни: –2 и 5.

Проверим, являются ли эти числа корнями исходного уравнения.

При x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения.

При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.

Ответ: x = –2

Ещё примеры

Пример 1.

x 1 =6, x 2 = - 2,2.

Ответ:-2,2;6.

Пример 2.

Целое выражение - это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое-либо число, отличное от нуля.

Понятие дробного рационального выражения

Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит также деление на выражения с буквенными переменными.

Рациональные выражения - это все целые и дробные выражения. Рациональные уравнения - это уравнения, у которых левая и правые части являются рациональными выражениями. Если в рациональном уравнении левая и правая части будут являться целыми выражениями, то такое рациональное уравнение называется целым.

Если в рациональном уравнении левая или правая части будут являться дробными выражениями, то такое рациональное уравнение называется дробным.

Примеры дробных рациональных выражений

1. x-3/x = -6*x+19

2. (x-4)/(2*x+5) = (x+7)/(x-2)

3. (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5))

Схема решения дробного рационального уравнения

1. Найти общий знаменатель всех дробей, которые входят в уравнение.

2. Умножить обе части уравнения на общий знаменатель.

3. Решить полученное целое уравнение.

4. Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель.

Так как мы решаем дробные рациональные уравнения, то в знаменателях дробей будут переменные. Значит, будут они и в общем знаменателе. А во втором пункте алгоритма мы умножаем на общий знаменатель, то могут появится посторонние корни. При которых общий знаменатель будет равен нулю, а значит и умножение на него будет бессмысленным. Поэтому в конце обязательно делать проверку полученных корней.

Рассмотрим пример:

Решить дробное рациональное уравнение: (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5)).

Будем придерживаться общей схемы: найдем сначала общий знаменатель всех дробей. Получим x*(x-5).

Умножим каждую дробь на общий знаменатель и запишем полученное целое уравнение.

(x-3)/(x-5) * (x*(x-5))= x*(x+3);
1/x * (x*(x-5)) = (x-5);
(x+5)/(x*(x-5)) * (x*(x-5)) = (x+5);
x*(x+3) + (x-5) = (x+5);

Упростим полученное уравнение. Получим:

x^2+3*x + x-5 - x - 5 =0;
x^2+3*x-10=0;

Получили простое приведенное квадратное уравнение. Решаем его любым из известных способов, получаем корни x=-2 и x=5.

Теперь производим проверку полученных решений:

Подставляем числа -2 и 5 в общий знаменатель. При х=-2 общий знаменатель x*(x-5) не обращается в нуль, -2*(-2-5)=14. Значит число -2 будет являться корнем исходного дробного рационального уравнения.

При х=5 общий знаменатель x*(x-5) становится равным нулю. Следовательно, это число не является корнем исходного дробного рационального уравнения, так как там будет деление на нуль.



Новое на сайте

>

Самое популярное