Домой Ортопедия Тонкие линзы. Линзы

Тонкие линзы. Линзы

Виды линз

Отражение и преломление света используют для того, чтобы изменять направление лучей или, как говорят, управлять световыми пучками. На этом основано создание специальных оптических приборов, таких, например, как лупа, телескоп, микроскоп, фотоаппарат и другие. Главной частью большинства из них является линза. Например, очки - это линзы, заключенные в оправу. Уже этот пример показывает, какое значение имеет для человека применение линз.

Например на первом рисунка колба такая, какой мы её видим в жизни,

а на второй, если будем смотреть на неё через лупу (та же линза).

В оптике чаще всего используют сферические линзы. Такие линзы представляют собой тела, изготовленные из оптического или органического стекла, ограниченные двумя сферическими поверхностями.

Линзами называют прозрачные тела, ограниченные с двух сторон кривыми поверхностями (выпуклыми или вогнутыми). Прямая АВ, проходящая через цетры С1 и С2 сферических поверхностей, ограничивающих линзу, называется оптической осью.

На этом рисунке изображены сечения двух линз с центрами в точке О. Первая линза, изображенная на рисунке, называется выпукло, вторая - вогнутой. Точку О, лежащую на оптической оси в центе указанных линз, называют оптическим центром линзы.

Одна из двух ограничивающих поверхностей может быть и плоской.

Слева линзы – выпуклые,

справа - вогнутые.

Мы будем рассматривать только сферические линзы, то есть линзы, ограниченные двумя шаровыми (сферическими) поверхностями.
Линзы, ограниченные двумя выпуклыми поверхностями, называются двояковыпуклыми; линзы, ограниченные двумя вогнутыми поверхностями, называются двояковогнутыми.

Направив на выпуклую линзу пучок лучей, параллельных главной оптической оси линзы, мы увидим, что после преломления в линзе эти лучи собирается в точке, которая называется главным фокусом линзы

- точка F. Главных фокусов у линзы два, с обоих сторон на одинаковом расстоянии от оптического центра. Если источник света находится в фокусе, то после преломления в линзе лучи будут параллельны главной оптической оси. У всякой линзы два фокуса - по одному с каждой стороны линзы. Расстояние от линзы до её фокуса называется фокусным расстоянием линзы.
Направим на выпуклую линзу пучок расходящихся лучей от точечного источника, лежащего на оптической оси. Если расстояние от источника до линзы больше фокусного, то лучи после преломления в линзе пересекут оптическую ось линзы в одной точке. Следовательно, выпуклая линза собирает лучи, идущие от источников, находящихся от линзы на расстоянии, большем её фокусного расстояния. Поэтому выпуклая линза иначе называется собирающей.
При прохождении лучей через вогнутую линзу наблюдается другая картина.
Пустим пучок лучей, параллельных оптической оси, на двояковогнутую линзу. Мы заметим, что из линзы лучи выйдут расходящимся пучком. Если этот расходящийся пучок лучей попадёт в глаз, то наблюдателю будет казаться, что лучи выходят из точки F. Эта точка называется мнимым фокусом двояковогнутой линзы. Такую линзу можно назвать рассеивающей.

Рисунок 63 поясняет действие, собирающих и рассеивающих линз. Линзы можно представить в виде большого числа призм. Поскольку призмы отклоняют лучи, как показано на рисунках, то понятно, что линзы с утолщением по середине собирают лучи, а линзы с утолщением по краям рассеивают их. Середина линзы действует, как плоскопараллельная пластинка: она не отклоняет лучи ни в собирающей, ни в рассеивающей линзе

На чертежах собирающие линзы обозначают так, как показано на рисунке слева, а рассеивающие - на рисунке справа.

Среди выпуклых линз различают: двояковыпуклые, плосковыпуклые и вогнуто-выпуклые (соответственно на рис.). У всех выпуклых линз середина разреза шире, чем края. Эти линзы называют собирающими. Среди вогнутых линз есть двояковогнутые, плоско- вогнутые и выпукло-вогнутые (соответственно на рис.). У всех вогнутых линз середина сечения уже, чем края. Эти линзы называют рассеивающими.

Свет - это электромагнитное излучение, воспринимаемое глазом по зрительному ощущению.

  • Закон прямолинейного распространения света: свет в однородной среде распространяется прямолинейно
  • Источник света, размеры которого малы по сравнению с расстоянием до экрана, называют точечным источником света.
  • Луч падающий и луч отраженный лежат в одной плоскости с перпендикуляром, восстановленным к отражающей поверхности в точке падения. Угол падения равен углу отражения.
  • Если точечный объект и его отражение поменять местами, от ход лучей при этом не изменится, изменится лишь их направление.
    Зевкально отражающая поверхность называется плоским зеркалом, если падающий на неё пучек параллельных лучей после отражения остаётся параллельным.
  • Линза, толщина которой намного меньше радиусов кривизны её поверхностей, называется тонкой линзой.
  • Линза, которая преобразует пучек параллельных лучей в сходящийся и собирает его в одну точку, называется собирающей линзой.
  • Линза, которая преобразует пучек параллельных лучей в расходящийся - рассеивающей.

Для собирающей линзы

Для рассеивающей линзы:

    При всех положениях предмета линза даёт уменьшенное, мнимое, прямое изображение, лежащее по ту же сторону линзы, что и предмет.

Свойства глаза:

  • аккомодация (достигается изменением формы хрусталиков);
  • адаптация (приспособление к различным условиям освещенности);
  • острота зрения (способность раздельно различать две близкие точки);
  • поле зрения (пространство, наблюдаемое при движении глаз, но неподвижной голове)

Недостатки зрения

    близорукость (коррекция - рассеивающая линза);

дальнозоркость (коррекция - собирающая линза).

Тонкая линза представляет простейшую оптическую систему. Простые тонкие линзы применяются главным образом в виде стекол для очков. Кроме того, общеизвестно применение линзы в качестве увеличительного стекла.

Действие многих оптических приборов – проекционного фонаря, фотоаппарата и других приборов - может быть схематически уподоблено действию тонких линз. Однако тонкая линза дает хорошее изображение только в том сравнительно редком случае, когда можно ограничиться узким одноцветным пучком, идущим от источника вдоль главной оптической оси или под большим углом к ней. В большинстве же практических задач, где эти условия не выполняются, изображение, даваемое тонкой линзой, довольно не совершенно.
Поэтому в большинстве случаев прибегают к построению более сложных оптических систем, имеющих большое число преломляющих поверхностей и не ограниченных требованием близости этих поверхностей (требование, которому удовлетворяет тонкая линза). [ 4 ]

4.2 Фотографический аппарат. Оптические приборы.

Все оптические приборы можно разделить на две группы:

1) приборы, при помощи которых получают оптические изображения на экране. К ним относятся проекционные аппараты, фотоаппараты, киноаппараты и др.

2) приборы, которые действуют только совместно с человеческими глазами и не образуют изображений на экране. К ним относится лупа, микроскоп и различные приборы системы телескопов. Такие приборы называются визуальными.

Фотоаппарат.

Современные фотоаппараты имеют сложное и разнообразное строение, мы же рассмотрим из каких основных элементов состоит фотоаппарат и как они работают.

Линзой называется прозрачное тело, ограниченное двумя криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Линзы делятся на выпуклые и вогнутые.

Линзы, у которых середина толще, чем края, называются выпуклыми. Линзы, у которых середина тоньше, чем края, называются вогнутыми.

Если показатель преломления линзы больше, чем показатель преломления окружающей среды, то в выпуклой линзе параллельный пучок лучей после преломления преобразуется в сходящий пучок. Такие линзы называются собирающими (рис. 89, а). Если в линзе параллельный пучок преобразуется в расходящийся пучок, то эти линзы называются рассеивающими (рис. 89, б). Вогнутые линзы, у которых внешней средой служит воздух, являются рассеивающими.

O 1 , О 2 - геометрические центры сферических поверхностей, ограничивающих линзу. Прямая О 1 О 2 , соединяющая центры этих сферических поверхностей, называется главной оптической осью. Обычно рассматриваем тонкие линзы, у которых толщина мала по сравнению с радиусами кривизны ее поверхностей, поэтому точки C 1 и С 2 (вершины сегментов) лежат близко друг к другу, их можно заменить одной точкой О, называемой оптическим центром линзы (см. рис. 89а). Всякая прямая, проведенная через оптический центр линзы под углом к главной оптической оси, называется побочной оптической осью (А 1 A 2 B 1 B 2).

Если на собирающую линзу падает пучок лучей, параллельных главной оптической оси, то после преломления в линзе они собираются в одной точке F, которая называется главным фокусом линзы (рис. 90, а).

В фокусе рассеивающей линзы пересекаются продолжения лучей, которые до преломления были параллельны ее главной оптической оси (рис. 90, б). Фокус рассеивающей линзы мнимый. Главных фокусов - два; они расположены на главной оптической оси на одинаковом расстоянии от оптического центра линзы по разные стороны.

Величина, обратная фокусному расстоянию линзы, называется ее оптической силой . Оптическая сила линзы - D.

За единицу оптической силы линзы в СИ принимают диоптрию. Диоптрия - оптическая сила линзы, фокусное расстояние которой равно 1 м.

Оптическая сила собирающей линзы положительная, рассеивающей - отрицательная.

Плоскость, проходящая через главный фокус линзы перпендикулярно к главной оптической оси, называется фокальной (рис. 91). Пучок лучей, падающих на линзу параллельно какой-либо побочной оптической оси, собирается в точке пересечения этой оси с фокальной плоскостью.

Построение изображения точки и предмета в собирающей линзе.

Для построения изображения в линзе достаточно взять по два луча от каждой точки предмета и найти их точку пересечения после преломления в линзе. Удобно пользоваться лучами, ход которых после преломления в линзе известен. Так, луч, падающий на линзу параллельно главной оптической оси, после преломления в линзе проходит через главный фокус; луч, проходящий через оптический центр линзы, не преломляется; луч, проходящий через главный фокус линзы, после преломления идет параллельно главной оптической оси; луч, падающий на линзу параллельно побочной оптической оси, после преломления в линзе проходит через точку пересечения оси с фокальной плоскостью.

Пусть светящаяся точка S лежит на главной оптической оси.

Выбираем произвольно луч и параллельно ему проводим побочную оптическую ось (рис. 92). Через точку пересечения побочной оптической оси с фокальной плоскостью пройдет выбранный луч после преломления в линзе. Точка пересечения данного луча с главной оптической осью (второй луч) даст действительное изображение точки S - S`.

Рассмотрим построение изображения предмета в выпуклой линзе.

Пусть точка лежит вне главной оптической оси, тогда изображение S` можно построить с помощью любых двух лучей, приведенных на рис. 93.

Если предмет расположен в бесконечности, то лучи пересекутся в фокусе (рис. 94).

Если предмет расположен за точкой двойного фокуса, то изображение получится действительным, обратным, уменьшенным (фотоаппарат, глаз) (рис. 95).

Нам известно, что свет, попадая из одной прозрачной среды в другую, преломляется - это явление преломления света . Причем угол преломления меньше угла падения при попадании света в более плотную оптическую среду. Что это означает, и как это можно использовать?

Если мы возьмем кусок стекла с параллельными гранями, например, оконное стекло, то получим незначительное смещение изображения, видимого сквозь окно. То есть, войдя в стекло, лучи света преломятся, а попадая снова в воздух, вновь преломятся до прежних значений угла падения, только при этом немного сместятся, причем величина смещения будет зависеть от толщины стекла.

Очевидно, что от такого явления практической пользы немного. А вот если мы возьмем стекло, плоскости которого будут расположены друг к другу наклонно, например, призму, то эффект будет совсем иным. Лучи, проходящие сквозь призму, всегда преломляются к ее основанию. Это несложно проверить.

Для этого нарисуем треугольник, и начертим входящий в любую из его боковых сторон луч. Пользуясь законом преломления света, проследим дальнейший путь луча. Проделав эту процедуру несколько раз под разными значениями угла падения, мы выясним, что под каким бы углом не входил луч внутрь призмы, с учетом двойного преломления на выходе он все равно отклонится к основанию призмы.

Линза и ее свойства

Такое свойство призмы использовано в очень простом приборе, позволяющем управлять направлением световых потоков - линзе. Линза - это прозрачное тело, ограниченное с двух сторон изогнутыми поверхностями тела. Рассматривают устройство и принцип действия линз в курсе физики восьмого класса.

По сути, линзу в разрезе можно изобразить в виде двух поставленных друг на друга призм. От того, какими своими частями расположены эти призмы друг к другу, зависит оптическое действие линзы.

Виды линз в физике

Несмотря на огромное разнообразие, видов линз в физике различают всего два: выпуклые и вогнутые, или собирающие и рассеивающие линзы соответственно.

У выпуклой, то есть собирающей линзы края намного тоньше, чем середина. Собирающая линза в разрезе - это две призмы, соединенные основаниями, поэтому все проходящие сквозь нее лучи сходятся к центру линзы.

У вогнутой линзы края, наоборот, всегда толще, чем середина. Рассеивающую линзу можно представить в виде двух соединенных вершинами призм, и, соответственно, лучи, проходящие через такую линзу, будут расходиться от центра.

Люди открыли подобные свойства линз очень давно. Использование линз позволило человеку конструировать самые разнообразные оптические приборы и приспособления, облегчающие жизнь и помогающие в быту и производстве.

  • Изображение линзы, сформированное оптической системой или частью оптической системы. Используется при расчёте сложных оптических систем.
  • Энциклопедичный YouTube

    История

    Возраст самой древней линзы - более 3000 лет, это так называемая линза Нимруда . Она была найдена при раскопках одной из древних столиц Ассирии в Нимруде Остином Генри Лэйардом в 1853 году. Линза имеет форму близкую к овалу, грубо шлифована, одна из сторон выпуклая, а другая плоская, имеет 3-х кратное увеличение. Линза Нимруда представлена в Британском музее .

    Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 до н. э.), где с помощью выпуклого стекла и солнечного света добывали огонь .

    Характеристики простых линз

    В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

    Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), и фокусным расстоянием .

    Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленной дисперсией света , - ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, показатель преломления , коэффициент дисперсии, показатель поглощения и показатель рассеяния материала в выбранном оптическом диапазоне.

    Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким показателем преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

    Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности). Так, например линзы очков для близоруких - как правило, отрицательные мениски.

    Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равна нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).

    Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

    Основные элементы линзы: NN - оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).
    Примечание . Ход лучей показан, как в идеализированной (тонкой) линзе, без указания на преломление на реальной границе раздела сред. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

    Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу, не преломившись , а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса , или просто фокуса .

    Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом, и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется фокусом F’, а расстояние от центра линзы до фокуса - фокусным расстоянием .

    Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .

    1 u + 1 v = 1 f {\displaystyle {1 \over u}+{1 \over v}={1 \over f}}

    где u {\displaystyle u} - расстояние от линзы до предмета; v {\displaystyle v} f {\displaystyle f} - главное фокусное расстояние линзы. В случае толстой линзы формула остаётся без изменения с той лишь разницей, что расстояния отсчитываются не от центра линзы, а от главных плоскостей .

    Для нахождения той или иной неизвестной величины при двух известных пользуются следующими уравнениями:

    f = v ⋅ u v + u {\displaystyle f={{v\cdot u} \over {v+u}}} u = f ⋅ v v − f {\displaystyle u={{f\cdot v} \over {v-f}}} v = f ⋅ u u − f {\displaystyle v={{f\cdot u} \over {u-f}}}

    Следует отметить, что знаки величин u {\displaystyle u} , v {\displaystyle v} , f {\displaystyle f} выбираются исходя из следующих соображений - для действительного изображения от действительного предмета в собирающей линзе - все эти величины положительны. Если изображение мнимое - расстояние до него принимается отрицательным, если предмет мнимый - расстояние до него отрицательно, если линза рассеивающая - фокусное расстояние отрицательно.

    Изображения чёрных букв через тонкую выпуклую линзу с фокусным расстоянием f (красным цветом). Показаны лучи для букв E , I и K (синим, зелёным и оранжевым соответственно). Изображение буквы E (находящейся на расстоянии 2f ) действительное и перевернутое, такого же размера. Изображение I (на f ) - в бесконечности. Изображение К (на f /2) мнимое, прямое, увеличенное в 2 раза

    Линейное увеличение

    Линейным увеличением m = a 2 b 2 a b {\displaystyle m={{a_{2}b_{2}} \over {ab}}} (для рисунка из предыдущего раздела) называется отношение размеров изображения к соответствующим размерам предмета. Это отношение может быть также выражено дробью m = a 2 b 2 a b = v u {\displaystyle m={{a_{2}b_{2}} \over {ab}}={v \over u}} , где v {\displaystyle v} - расстояние от линзы до изображения; u {\displaystyle u} - расстояние от линзы до предмета.

    Здесь m {\displaystyle m} есть коэффициент линейного увеличения, то есть число, показывающее во сколько раз линейные размеры изображения меньше(больше) действительных линейных размеров предмета.

    В практике вычислений гораздо удобнее это соотношение выражать в значениях u {\displaystyle u} или f {\displaystyle f} , где f {\displaystyle f} - фокусное расстояние линзы.

    M = f u − f ; m = v − f f {\displaystyle m={f \over {u-f}};m={{v-f} \over f}} .

    Расчёт фокусного расстояния и оптической силы линзы

    Линзы симметричны, то есть они имеют одинаковое фокусное расстояние независимо от направления света - слева или справа, что, однако, не относится к другим характеристикам, например, аберрациям , величина которых зависит от того, какой стороной линза повёрнута к свету.

    Комбинация нескольких линз (центрированная система)

    Линзы могут комбинироваться друг с другом для построения сложных оптических систем. Оптическая сила системы из двух линз может быть найдена как простая сумма оптических сил каждой линзы (при условии, что обе линзы можно считать тонкими и они расположены вплотную друг к другу на одной оси):

    1 F = 1 f 1 + 1 f 2 {\displaystyle {\frac {1}{F}}={\frac {1}{f_{1}}}+{\frac {1}{f_{2}}}} .

    Если линзы расположены на некотором расстоянии друг от друга и их оси совпадают (система из произвольного числа линз, обладающих таким свойством, называется центрированной системой), то их общую оптическую силу с достаточной степенью точности можно найти из следующего выражения:

    1 F = 1 f 1 + 1 f 2 − L f 1 f 2 {\displaystyle {\frac {1}{F}}={\frac {1}{f_{1}}}+{\frac {1}{f_{2}}}-{\frac {L}{f_{1}f_{2}}}} ,

    где L {\displaystyle L} - расстояние между главными плоскостями линз.

    Недостатки простой линзы

    В современных оптических приборах к качеству изображения предъявляются высокие требования.

    Изображение, даваемое простой линзой, в силу целого ряда недостатков не удовлетворяет этим требованиям. Устранение большинства недостатков достигается соответствующим подбором ряда линз в центрированную оптическую систему - объектив . Недостатки оптических систем называются аберрациями , которые делятся на следующие виды:

    • Геометрические аберрации
    • Дифракционная аберрация (эта аберрация вызывается другими элементами оптической системы, и к самой линзе отношения не имеет).


    Новое на сайте

    >

    Самое популярное