Домой Неврология Раздел "генная инженерия". Способы введения рекомбинантных ДНК в клетку Методы введения рекомбинантной днк в клетку

Раздел "генная инженерия". Способы введения рекомбинантных ДНК в клетку Методы введения рекомбинантной днк в клетку

Одним из наиболее перспективных вариантов систем доставки генов в клетки являются полиплексы – комплексы переносимой ДНК и катионных полимеров различной природы. В данной статье описываются свойства полиплексов на основе нескольких типов катионных полимеров, их транспорт в ядра клеток-мишеней, а также один из подходов для лечения злокачественных новообразований с помощью этих конструкций.

Введение

Генная терапия – лечение наследственных, онкологических и других заболеваний путём внесения в клетки пациента необходимого генетического материала с целью направленного изменения генных дефектов или придания клеткам новых функций [Горбунова и др., 1997]. Для доставки ДНК или РНК в клетки-мишени создаются носители (векторы) для обеспечения высокого уровня трансфекции, т.е. переноса экзогенной (чужеродной) ДНК или РНК в определённые типы клеток. Помимо этого, векторы должны обеспечивать защиту генетической информации, т.к. в условиях in vivo чужеродная ДНК нестабильна из-за быстрой деградации сывороточными нуклеазами , ферментами, расщепляющими нуклеиновые кислоты.

Типы транспортёров генетического материала

В природе существуют специализированные структуры для доставки генетической информации в клетки – вирусы. Поэтому их начали использовать в качестве транспортёров генов. В то же время использование вирусных векторов имеет целый ряд ограничений. Во-первых, это малая ёмкость переносимого генетического материала и свойственная вирусам собственная клеточная специфичность. Во-вторых, это возможность вирусов возвращения к дикому типу в результате рекомбинации при прохождении однотипной инфекции. В-третьих, белки вирусных частиц обладают высокой иммуногенностью, в результате чего повторное их введение вызывает иммунный ответ. Наконец, массовое производство вирусных векторов всё ещё достаточно проблематично и требует больших затрат. В настоящее время активно разрабатываются различные варианты невирусных носителей на основе катионных липидов и катионных полимеров. Эти катионные молекулы способны спонтанно формировать самособирающиеся нанокомплексы с отрицательно заряженной молекулой ДНК за счёт электростатических взаимодействий. Самособирающиеся комплексы, состоящие из катионных липидов и ДНК, называют липоплексами, состоящие из катионных полимеров и ДНК – полиплексами.

Катионные полимеры, используемые для создания полиплексов

Для целей генотерапии и биотехнологии предложено большое количество катионных полимеров или поликатионов. Поликатионы конденсируют ДНК в компактные нанокомплексы, обеспечивая стабильность ДНК и защиту от действия нуклеаз. В качестве ДНК-связывающих полимеров могут служить катионные белки, синтетические гомополимеры аминокислот (полилизины, полиаргинины), полисахарид хитозан, полиэтиленимин, дендримеры различного состава и другие модифицированные полимеры . Степень компактизации ДНК определяется суммарным зарядом комплекса, который, в свою очередь, зависит от отношения количества положительных групп полимеров к числу отрицательных фосфатных групп ДНК. Обычно в составе полиплексов поликатион находится в избытке, в результате чего формируются наноразмерные комплексы (от нескольких десятков до нескольких сотен нм), которые растворимы в воде и положительно заряжены (рис. 1, 2). В противном случае комплексы будут нестабильны.

Рис. 1. Схема образования полиплексов из катионных полимеров и кольцевой молекулой ДНК (плазмидой) . Рис. 2. Изображение полиплексов на подложке, полученное с помощью трансмиссионной электронной микроскопии (деление шкалы 200 нм), .

Одним из первых применяемых для доставки генов поликатионов был поли-L-лизин (ПЛ, рис. 3), который благодаря своей пептидной природе является биодеградабельным, что делает его крайне удобным для использования in vivo. Часто для устранения нежелательных эффектов, связанных с высокой плотностью поверхностного заряда, применяют сополимер ПЛ с полиэтиленгликолем (ПЭГ), . В результате такой модификации уменьшается поверхностный заряд комплекса, что предотвращает неспецифическую адсорбцию отрицательно заряженных сывороточных белков крови на полиплексах, а также уменьшает цитотоксичность комплексов.

Полиэтиленимин (ПЭИ, рис. 3) считается одним из наиболее перспективных вариантов поликатионов для создания полиплексов на его основе. ПЭИ синтезируют в двух формах: линейной и разветвлённой. ПЭИ обладает большим количеством амино- и иминогрупп, способных к протонированию, в результате чего он проявляет буферные свойства при физиологических условиях. Полиплексы на основе ПЭИ отличаются более эффективной трансфекцией и защитой от действия нуклеаз по сравнению с другими поликатионами, что связано с высокой плотностью зарядов на ПЭИ и более компактным сворачиванием ДНК. Сильный положительный заряд приводит к токсичности ПЭИ, что вместе с отсутствием биологического разложения ПЭИ являются лимитирующими факторами для использования ПЭИ in vivo. С целью снижения цитотоксичности ПЭИ модификацируют с помощью полиэтиленгликоля, обладающего низкой токсичностью и высокой гидрофильностью.

Рис. 3. Катионные полимеры, используемые для создания полиплексов, и .

Другим представителем поликатионов, используемых в доставке генетической информации являются полиамидоамины (ПАМАМ, рис. 3). Эти соединения представляют собой сильноветвящиеся дендримеры. Благодаря ветвлению ПАМАМ обладают большой гибкостью, в лучшей степени компактизуют ДНК, полиплексы на их основе более стабильны, чем все остальные, . По своим свойствам имеет много общего с ПЭИ.

Хитозаны (рис. 3) представляют собой полисахариды, построенные из D-глюкозамина и N-ацетил-D-глюкозамина, связанных (1>4) гликозидными связями. В зависимости от молекулярного веса и степени деацетилирования хитозаны формируют стабильные комплексы различной величины с переносимой ДНК. Маленькие, или наоборот, слишком большие полимеры хитозана ведут к снижению экспрессии переносимого гена. Основным достоинством полиплексов на основе хитозана является биодеградабельность, .

На эффективность доставки полиплексов влияют многие факторы: молекулярный вес, степень разветвленности, полимеризации и тип полимера, размер частиц, ионная сила раствора, поверхностные заряды комплексов, а также условия проведения эксперимента. Оптимальный подход должен учитывать каждый из этих факторов и их влияние на свойства комплекса, поглощение клетками-мишенями комплексов, токсичность.

Существуют несколько подходов для обеспечения специфичности действия полиплексов на клетки-мишени. Один из них включает в себя адресную доставку нанокомплексов в определённые типы клеток. Этот подход связан с присоединением к полиплексам компонентов (лигандов), рецепторы к которым в большом количестве присутствуют на поверхности клеток-мишеней. В качестве специфичных лигандов используются различные белки, сахара, пептиды, антитела и т.д. Другая стратегия заключается в использовании таких транспортируемых генов, которые были бы активны только в определённых клетках, при этом доставка комплексов происходит неспецифично, то есть в любые клетки.

Проникновение полиплексов в клетки-мишени

Процесс доставки генетического материала включает два этапа: внеклеточный (путь от места введения до клеток-мишеней) и внутриклеточный (взаимодействие с клетками-мишенями, эндоцитоз, выход из эндосом, доставка в ядро). Внутриклеточные пути транспорта полиплексов представлены на рисунке 4.

Первым барьером, который необходимо преодолеть полиплексу на пути до клетки-мишени является кровь и внеклеточный матрикс. Именно поэтому необходимо подобрать такие физико-химические параметры комплекса, чтобы увеличить его стабильность, избежать неспецифических взаимодействий и возможности иммунного ответа. Во-первых, в составе полиплекса ДНК должна быть защищена от действия внеклеточных нуклеаз. Во-вторых, отрицательно заряженные белки сыворотки крови (альбумин, фибриноген, иммуноглобулины и др.), а также белки внеклеточного матрикса (коллагены) способны адсорбироваться на поверхности заряженных нанокомплексов, что ведет за собой изменение поверхностного заряда полиплексов, приводит к увеличению размера комплексов и к их агрегации. При введении полиплексов в организм они частично накапливаются в тканях и подвергаются фагоцитозу. По этим причинам часто применяют местное введение полиплексов (например, в опухоль при раке) в расчёте на их неспецифическое взаимодействие с клетками ткани.

Рис. 4. Внутриклеточные пути транспорта полиплексов, .

Полиплексы сначала адсорбируются на плазматической мембране, поглощаются путём эндоцитоза, после чего они должны покинуть эндолизосомы и пересечь ядерную оболочку для попадания в ядро. Существуют также альтернативные пути транспорта, не всегда приводящие к доставке комплексов в ядро. Помимо этого, для экспрессии переносимого гена необходима диссоциация полиплекса на катионный полимер и свободную ДНК.

Следующим этапом доставки генетического материала в клетки-мишени является их взаимодействие с плазматической мембраной и поглощение клеткой. Как было отмечено выше, связывание полиплексов с клетками в отсутствие лиганда происходит неспецифично в результате электростатического взаимодействия с отрицательно заряженной плазматической мембраной. В большинстве случаев такие полиплексы поглощаются путём неспецифического адсорбтивного эндоцитоза . При включении лиганда в состав комплекса можно добиться поглощения с помощью клатрин-зависимого рецептор-опосредованного эндоцитоза . Другие пути захвата зависят от типа клеток и включают в себя фагоцитоз и кавеолин-зависимый эндоцитоз. Одна из стратегий для улучшения доставки полиплексов в клетку включает в себя использование вирусных проникающих пептидов, таких как TAT-пептид, впервые выделенный из вируса ВИЧ-1. Использование этих последовательностей обеспечивает попадание конструкций в клетку, и доставку полиплексов в клеточное ядро.

Одним из самых важных этапов транспортного пути полиплексов является их выход из эндосом. Как известно, эндосомы представляют собой систему трубочек и пузырьков, что необходимо для сортировки поглощённых макромолекул. Сортирующие эндосомы расположены ближе к плазматической мембране . За счёт работы протонных помп в них понижается рН (около 6,5 в сортирующих эндосомах). Дальнейший транспорт может идти либо по пути рециркуляции с выбросом поглощённых молекул во внемембранное пространство, либо по литическому пути, когда происходит дальнейшее закисление среды в поздних эндосомах, и макромолекулы поступают в лизосомы. В лизосомах содержимое закисляется до рН 5, и поглощенные молекулы деградируют под действием гидролитических ферментов, которые активируются при низком рН. Продукты деградации удаляются из клетки путём экзоцитоза или переносятся в цитоплазму, где используются как строительный материал.

Считается, что полиплексы на основе ПЭИ в силу своих свойств способны выходить из эндосом благодаря так называемому эффекту «протонной губки» (proton sponge effect). Эта гипотеза основана на том, что катионные полимеры за счёт наличия непротонированных вторичных и третичных аминов создают буферный эффект, в результате чего H±АТФаза, накачивающая протоны в эндосомы, начинает работать активнее. При этом происходит накопление внутри эндосом анионов хлора. В результате из-за резкого увеличения осмотического давления происходит набухание и лизис, что позволяет полиплексам попасть в цитозоль неповреждёнными. Предложен и другой механизм выхода из эндосом для полиплексов, который заключается в дестабилизации эндосомальной мембраны из-за высокой поверхностной плотности заряда нанокомплексов . Комплексы на основе ПЛ и хитозана не вызывают эффекта «протонной губки» и в меньшей степени способны дестабилизировать мембрану эндосом, что приводит к гораздо меньшей эффективности трансфекции.

Выйдя из лизосом, полиплексы оказываются в перинуклеарном пространстве, после чего комплекс диссоциирует на свободный поликатион и ДНК. Считается, что это происходит за счёт конкуренции за катионные группы между фосфатными группами ДНК и низкомолекулярными соединениями и анионами цитоплазмы. В некоторых случаях диссоциация комплекса происходит, по-видимому, в ядре. Главным барьером на пути плазмидной ДНК в клеточное ядро служит двойная ядерная оболочка. Для доставки в ядро макромолекул в их состав включают последовательность ядерной локализации (ПЯЛ), которая в комплексе с?- и?-импортинами будет узнаваема ядерным поровым комплексом (ЯПК) и активно проникать внутрь ядра. Через ЯПК путём пассивной диффузии могут проходить только маленькие молекулы (<40 кД, ~10 нм). Так как освободившаяся после распаковывания комплекса свободная плазмидная ДНК не имеет последовательности ядерной локализации, то в ядро будет проходить очень незначительная часть плазмид (не более 0,1–0,001%). Кроме того, установлено, что около 50% инъецированной ДНК деградирует в цитозоле уже через 1–2 часа после введения . Но т.к. клетки опухолей, против которых и направлена генная терапия, отличаются активной пролиферацией, то ДНК без труда проникает в ядра дочерних клеток во время митотического цикла, когда ядерная оболочка демонтирована.

Механизмы действия терапевтических генов

После проникновения плазмиды в ядро начинается экспрессия терапевтического гена. Для придания специфичности действия полиплексам терапевтический ген в составе плазмиды ставится под контроль промотора (область гена, на которую садится РНК-полимераза перед транскрипцией), активного только в опухолевых тканях. Примерами могут служить промотор гена антиапоптозного белка сурвивина или гена фермента теломеразы. В качестве терапевтического гена может быть использован ген тимидинкиназы вируса простого герпеса (HSVtk), которая обладает способностью фосфорилировать антигерпесные соединения ацикловир и ганцикловир . Эти соединения вводятся в опухоль спустя некоторое время. Далее клеточные киназы (фосфорилирующие ферменты) превращают фосфорилированные ацикловир или ганцикловир в трифосфаты, которые способны включаться во вновь синтезированную ДНК во время удвоения при клеточном делении и терминировать её синтез. В результате клетки, в ядра которых попал ген тимидинкиназы, уничтожаются в присутствии этих веществ. При этом погибают именно делящиеся клетки, а не покоящиеся, которые не синтезируют ДНК и не включают ганцикловир или ацикловир. Такой механизм действия терапевтического гена можно использовать для целей генной терапии раковых опухолей, клетки которых быстро делятся.

Список литературы:

  1. Горбунова В.Н., Баранов В.С. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. С.-Пб., «Специальная литература», 1997, с.287.
  2. Dunlap D.D., Maggi A., Soria M.R., Monaco L. Nanoscopic structure of DNA condensed for gene delivery. //Nucl. Acids. Res., 1997, vol. 25, 3095–3101.
  3. Park T.G., Jeong J.H., Kim S.W. Current status of polymeric gene delivery systems. // Adv. Drug Deliv. Rev., 2006, vol. 58, 467– 486.
  4. Pack D. W., Hoffman A. S., Pun S. and Stayton P. S. Design and development of polymers for gene delivery. // Nature Rev., Drug Discovery, 2005, vol. 4, 581.
  5. Lechardeur D., Verkman A.S., Lukacs G. L. Intracellular routing of plasmid DNA during non-viral gene transfer. // Adv. Drug Deliv. Rev., 2005, vol. 57, 755– 767.
  6. Maxfield F.R. and McGraw T.E. Endocytic Recycling. // Nature Rev. Mol. Cell. Biol., 2004, vol. 5, 121–132.
  7. Reid R., Eng-Chung M., Eng-Chang H. and Topal M.D. Insertion and extension of acyclic, dideoxy, and ara nucleotides by herpesviridae, human alpha and human beta polymerases. // J. Biol. Chem., 1988, vol. 263, 3898–3904.

Дурыманов Михаил , студент Биологического факультета МГУ

Статья – призер научно-популярного конкурса на конференции «Ломоносов 2009» (Биологический факультет, секции «Нанобиотехнология», «Биоинженерия», «Биофизика».

Как показывают многочисленные исследования, использование различных вирусов является весьма эффективным решением, которое позволяет пробраться через имунную защиту организма , а затем инфицировать клетки, используя их для распространения вируса. Для осуществления данной процедуры, генные инженеры выбрали наиболее подходящие вирусы из группы ретровирусов и аденовирусов. Ретровирусы привносят генетическую информацию в виде рибонуклеиновой кислоты (РНК), молекулы, похожей на молекулу ДНК, которая помогает перерабатывать генетическую информацию, сохраненную в ДНК. Как только удается проникнуть вглубь так называемой клетки-мишени, из молекулы РНК получается копия молекулы ДНК. Данный процесс называется обратной транскрипцией. Как только новая молекула ДНК оказывается присоединенной к клетке, все новые копии клеток будут содержать этот модифицированный ген.

Аденовирусы несут генетическую информацию сразу в виде ДНК, который доставляется в неделящуюся клетку. Хотя эти вирусы доставляют ДНК непосредственно в ядро клетки-мишени , ДНК не совмещается с геномом клетки. Таким образом, модифицированный ген и генетическая информация не передаются дочерним клеткам. Преимуществом генной терапии, проводимой с помощью аденовирусов, заключается в том, что существует возможность введения генов в клетки нервной системы и в слизистую оболочку дыхательных путей, опять же, посредством вектора. Кроме того, существует и третий метод генной терапии, осуществляемый посредством так называемых аденоассоциированных вирусов. Эти вирусы содержат относительно небольшое количество генетической информации , и их гораздо сложнее вывести, чем ретровирусы и аденовирусы. Однако преимущество аденоассоциированных вирусов заключается в том, что они не вызывают реакции иммунной системы человека.

Генеалогический метод антропогенетики

В основе этого метода лежит составление и анализ родословных. Этот метод широко применяют с древних времен и до наших дней в коневодстве, селекции ценных линий крупного рогатого скота и свиней, при получении чистопородных собак, а также при выведении новых пород пушных животных.

Как метод изучения генетики человека генеалогический метод стали применять только с начала XX столетия, когда выяснилось, что анализ родословных, в которых прослеживается передача из поколения в поколение какого-то признака (заболевания), может заменить собой фактически неприменимый в отношении человека гибридологический метод.

При составлении родословных исходным является человек - пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить. При составлении родословных таблиц используют условные обозначения, предложенные Г. Юстом в 1931 г. (рис. 6.24). Поколения обозначают римскими цифрами, индивидов в данном поколении - арабскими.

С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно-доминантный, аутосомно-рецессивный, X-сцепленный доминантный или рецессивный, Y-сцепленный). При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он широко используется в медико-генетическом консультировании для прогнозирования потомства. Однако необходимо отметить, что генеалогический анализ существенно осложняется при малодетности семей.

Методика, разработанная учеными из Калифорнийского Университета в Ирвине (University of California, Irvine) под руководством доктора Питера Донована (Peter Donovan) и основанная на комбинации двух известных способов манипулирования с эмбриональными стволовыми клетками, позволяет вдвое увеличить эффективность доставки ДНК в человеческие эмбриональные стволовые клетки.

Современные методы введения ДНК в чЭСК с помощью химической трансфекции, нуклеофекции и электропорации обладают серьезным недостатком – низкой эффективность. Доставка в чЭСК генетического материала с помощью вирусной инфекции более результативна, но имеет много нежелательных последствий для стволовых клеток и не может быть названа полностью безопасной с медицинской точки зрения, если клетки предназначены для дальнейшей трансплантации.

Новая методика, основанная на комбинации нуклеофекции отдельной стволовой клетки и оптимизированного метода селекции полученных трансгенных колоний, обеспечивает своевременную и стабильную экспрессию трансгенов в клетках. Нуклеофекция заключается в образовании пор в клеточной мембране с помощью электрических импульсов и последующего внедрения в клетку ДНК.

Кроме интересующего гена, модифицирующая ДНК-конструкция несет ген, позволяющий легко отслеживать трансформированную клетку, - например, ген, кодирующий зеленый флюоресцирующий белок (humanized Renilla green fluorescent protein, hrGFP). Такой способ маркировки клеток дает возможность наблюдать за перемещением трансформированных клеток при их трансплантации животным.

Потенциально этот метод мог бы оказаться полезным для терапии моногенных заболеваний, вызванных мутациями одного гена во всех клетках больного человека. По данным Всемирной Организации Здравоохранения, более 10 000 болезней человека имеют моногенную природу. Миллионы людей во всем мире страдают моногенными заболеваниями, к которым относится болезнь Хантингтона, серповидноклеточная анемия, гемофилия и муковисцидоз.

Новый метод расширит возможности манипулирования чЭС клетками, позволит моделировать болезни человека и находить подходящие лекарства. С помощью этой методики ученые смогут корректировать генетические нарушения в стволовых клетках и использовать здоровые клетки в регенеративной медицине.

Колония чЭС клеток, экспрессирующая зеленые флюоресцирующие белки hrGFP .

Статья Hohenstein KA et al. «Nucleofection Mediates High-efficiency Stable Gene Knockdown and Transgene Expression in Human Embryonic Stem Cells» доступна в on-line версии журнала Stem Cells с 6 марта 2008.

Все методы получения ГМО делят на прямые (безвекторные) и непрямые (векторные).

Все прямые способы получения трансгенных животных имеют ряд существенных недостатков : трудоемкость, использование дорогостоящего оборудования и реактивов, зачастую случайная встройка молекул ДНК в геном клеток трансформируемых животных, большое количество гибнущих после трансформации клеток, мозаичность по введенному трансгену.

Значительным преимуществом использования прямых методов является довольно высокая эффективность переноса чужеродной ДНК, то есть удается перенести трансген в большее, чем при непрямых методах, количество клеток.

Требования к векторной ДНК, ее состав

Вектор - молекула ДНК или РНК, состоящая из двух компонентов: векторной части (носителя) и клонируемого чужеродного гена . Задача вектора - донести выбранную ДНК в клетку-рецепиент, встроить ее в геном, позволить идентификацию трансформированных клеток, обеспечить стабильную экспрессию введенного гена.

Таким образом, вектор должен быть небольшим, способным поддерживаться в клетке-хозяине (реплицироваться), многократно копироваться (ампфлицироваться), экспрессировать соответствующий ген (содержать соответствующие регуляторные последовательности), должен иметь маркерный ген, позволяющий различать гибридные клетки для эффективной селекции их; должен быть способен передаваться в клетку соответствующего организма.

Вместе с геном интереса в клетку-реципиент вводят маркерные гены , необходимые для определения трансгенности организма.

Можно выделить 2 группы маркерных генов, позволяющие отличить трансформированные клетки:

  • 1. Селективные гены, отвечающие за устойчивость к антибиотикам (канамицину, тетрациклину, неомицину и др.), гербицидам (у растений). Это могут быть гены ауксотрофности по какому-либо субстрату и т.д. Основной принцип работы такого маркера - способность трансформированных клеток расти на селективной питательной среде, с добавкой определенных веществ, ингибирующих рост и деление нетрансформированных, нормальных клеток.
  • 2. Репортерные гены, кодирующие нейтральные для клеток белки, наличие которых в тканях может быть легко тестировано.

Чаще всего в качестве репортерных используются гены в-глюкуронидазы (GUS), зеленого флюоресцентного белка (GFP), люциферазы (LUC), хлорамфениколацетилтрансферазы (CAT). К настоящему времени из этого арсенала наиболее часто используют гены GUS и GFP и, в меньшей степени, LUC и CAT. Используемый в настоящее время как репортерный ген GUS является модифицированным геном из Escherichia coli, кодирующим в-глюкуронидазу с молекулярной массой 68 кД. GUS активен в широком диапазоне условий среды с оптимумом при рН 5-8 и 37°С. Он может гидролизовать обширный спектр природных и синтетических глюкуронидов, что позволяет подбирать соответствующие субстраты для спектрофотометрического или флюориметрического определения активности фермента, а также для гистохимического окрашивания тканей in situ (например, в синий цвет). Фермент достаточно стабилен: он устойчив к нагреванию (время полужизни при 55°С составляет около 2 ч) и к действию детергентов. В процессе замораживания-оттаивания потери активности GUS не происходит. В составе химерных белков, созданных генно-инженерными методами, GUS обычно сохраняет свою функциональную активность. В живых клетках белок GUS также весьма стабилен и активен от нескольких часов до нескольких суток.

GFP (green fluorescent protein - зеленый флюоресцентный белок, или белок зеленой флюоресценции) был обнаружен Shimomura с соавт. в 1962 г. у люминесцирующей медузы Aequorea victoria. Ген GFP был клонирован в 1992 г. Prasher и соавт., и уже через несколько лет началось активное использование этого гена как репортерного в работах с самыми разными про- и эукариотическими организмами. В настоящее время ген GFP применяется в сотнях работ во всем мире, и число их стремительно нарастает. Столь быстрый рост вызван особыми свойствами белка GFP, а именно его способностью флюоресцировать в видимой (зеленой) области спектра при облучении длинноволновым УФ. Эта флюоресценция обусловлена непосредственно белком, для ее проявления не требуется субстратов или кофакторов. Благодаря этому свойству ген GFP является очень перспективным репортерным геном, позволяющим проводить разнообразные прижизненные (недеструктивные) исследования с трансгенными организмами.

Из морской анемоны Discosoma sp. недавно выделен еще один белок DsRed, флуоресцирующий в красном свете. Еще несколько аналогичных флюоресцирующих белков было выделено в самое последнее время учеными Российской академии наук из различных коралловых полипов порядка Anthozoa. Он может быть денатурирован очень высокой температурой, крайними значениями рН или сильными восстановителями типа Na2SO4. При возвращении к физиологическим условиям GFP в значительной степени восстанавливает способность к флюоресценции. В составе химерных белков, созданных генноинженерными методами, GFP обычно сохраняет свою функциональную активность. В живых клетках белок GFP также очень стабилен.

CAT - гены отвечают за синтез хлорамфениколацетилтрансферазы (выделены из Escherihia coli). Этот фермент катализирует реакцию переноса ацетильной группы от ацетил-КоА к хлорамфениколу. Определяется гистохимически, по изменению окраски ткани при добавлении соответствующего субстрата.

8860 0

В настоящее время известно около 40 различных способов доставки рекомбинантной ДНК в клетки, по-разному решающих проблему преодоления плазматической мембраны. Пока не существует единой классификации методов доставки рекомбинантной ДНК в клетки. Каждый автор обзоров классифицирует по-своему, возможно, потому, что для многих эмпирически найденных методов механизм преодоления мембраны не ясен до сих пор, например для трансформации. С терминологией также существует неопределенность, что неудивительно для бурно развивающейся новой области науки и практики.

Каждый из методов доставки чужеродной ДНК в клетки имеет свои особенности, преимущества и недостатки в отношении выживаемости клеток, эффективности введения, универсальности, возможностей технического осуществления. Выбор метода зависит от типа клеток-хозяев и типа использованного вектора, а также от личных предпочтений и возможностей экспериментатора. Ниже подробно рассмотрены некоторые наиболее известные способы доставки ДНК в клетки-мишени.

Трансформация в самом общем значении - это процесс введения свободной ДНК в клетку. В более узком значении термин применяется в основном по отношению к бактериям, обозначая процесс поглощения рекомбинантной ДНК компетентными клетками, индуцированный температурным фазовым переходом клеточной мембраны. E. coli является самым распространенным организмом при работе с рекомбинантными ДНК, и чтобы обеспечить внедрение в клетки плазмидной ДНК, клетки выдерживают с ледяным раствором СаС12 и ДНК, а затем подвергают тепловому шоку при 42 °С в течение ~1 мин.

По-видимому, в результате такой обработки происходит локальное разрушение клеточной стенки. Эффективность трансформации, которая определяется как число трансформантов на 1 мкг добавленной ДНК,
при этом составляет примерно 10000 - 10000000 . Эффективность этого метода невысока, приблизительно менее 0,1 % клеток оказываются трансформированными, но этот недостаток компенсируется применением схем отбора, позволяющих быстро идентифицировать нужные клоны.

Клетки, способные поглощать чужеродную ДНК, называются компетентными. Доля этих клеток в популяции обычно очень мала, но ее можно повысить, используя специальную питательную среду, условия культивирования и химические индукторы компетентности (подобранные, как правило, эмпирически). Часто используемый этап подготовки компетентных клеток получение сферопластов - клеток, частично или полностью (протопласты) лишенных наружной ригидной клеточной стенки.

Например, только таким способом была осуществлена эффективная трансформация многих грамположительных бактерий родов Bacillus, Listeria, Streptommyces и др. Некоторые методики трансформации дрожжей также включают стадии ферментативного удаления оболочки дрожжевой клетки с помощью глюкозидаз. Для организмов, устойчивых к химическим индукторам компетентности или не обладающих природной компетентностью, применяются другие системы доставки ДНК.

Конъюгация. Существуют бактериальные плазмиды (конъюгативные плазмиды), обладающие способностью создавать межклеточные контакты, через которые они и переходят из одной клетки в другую. Образование контактов между донорной и рецепиентной клетками обеспечивается конъюгативными свойствами плазмид, а сам перенос ДНК - мобилизационными. При этом конъюгативная плазмида может увлекать за собой обычный плазмидный вектор, находящийся в той же клетке.

Таким образом можно трансформировать клетки-реципиенты, с трудом поддающиеся трансформации другими способами. Например, показан мобилизационный перенос челночного вектора pAT187 с широким кругом хозяев из E. coli в различные грамположительные бактерии (родов Bacillus, Enterococcus, Staphylococcus и др.), хотя и с намного меньшей эффективностью, чем для переноса между разными штаммами E. coli.

Более того, недавно была продемонстрирована возможность конъюгативного переноса ДНК из бактериальных клеток в культивируемые клетки животных. В процессе конъюгации переносится только одна цепь донорской плазмиды, на которой затем синтезируется вторая цепь. Это приводит к тому, что конъюгативно передаваемая плазмида не подвергается атаке хозяйских рестриктаз. Эффективность этого метода для бактерий сопоставима с трансформацией.

Вирусная инфекция. Для внедрения векторов на основе вирусов широко используется природный инфекционный путь заражения клетки-хозяина, который зависит от типа вируса.

Перфорационные методы. Одним из популярных методов введения нуклеиновых кислот в клетки-мишени является электропорация - временное создание пор в бислойной липидной мембране под кратким воздействием электрического поля. Является универсальным физическим методом трансформации, методика которого разработана практически для всех типов клеток.

При работе с E. coli подготовленную клеточную суспензию (~50 мкл) и ДНК помещают между электродами и подают единичный импульс тока длительностью ~4,5 мс при напряжении 1,8 кВ, расстояние между электродами составляет 1 мм. После такой обработки эффективность трансформации повышается до 109-1011 для малых плазмид (~3-6 тпн) и до 106 для больших (~135 тпн). Аналогичные условия используют для введения в Е. coli вектора ВАС.

Электропорирующий эффект высоковольтного разряда на бислойную липидную мембрану, по-видимому, зависит от радиуса ее кривизны. Поэтому мелкие бактериальные клетки эффективно поглощают ДНК при значительно большей напряженности (12-18 кВ/см), чем крупные животные и растительные клетки, эффективно поглощающие ДНК при напряженности поля 1-2 кВ/см. Электропорация - наиболее простой, эффективный и воспроизводимый метод введения молекул ДНК в клетки, требующий, однако, специального прибора электропоратора.

Другие перфорационные методы доставки ДНК в клетку: обработка клеток ультразвуком, соскабливание клеток с субстрата в присутствии экзогенного материала, центрифугирование клеток в среде с ДНК в сочетании с электропорацией, осмотическая перфорация плазматической мембраны, пробой клетки лазерным микролучом, использование порообразующего токсина стрептолизина-О.

Трансфекция. Первоначально этот термин обозначал введение в клетки вирусной ДНК, сейчас его значение расширилось до обозначения введения любой чужеродной ДНК в клетки эукариот. Термин «трансформация», обозначающий процесс введения ДНК в клетку для прокариот и дрожжей, оказалось, использовать неудобно, поскольку применительно к животным клеткам трансформация - это превращение нормальных клеток в раковые. В узком смысле под трансфекцией в основном понимают введение ДНК в эукариотические клетки с помощью различных химических реагентов.

Одним из первых разработанных методов эффективной трансфекции была инкубация ДНК с ДЕАЕ-декстраном. Полученная эффективность была сопоставима с трансформацией бактерий и достигала 106 трансфектантов на мкг ДНК.

Механизм действия ДЕАЕ-декстрана окончательно не установлен, но известно, что он связывается с ДНК и с клеточной мембраной, стимулируя пиноцитоз (рис. 2.8), хотя сам клетками не захватывается. К недостаткам метода стоит отнести токсичность ДЕАЕ-декстрана для некоторых типов клеток, зависимость эффективности от качества препарата, очень малую частоту получения стабильных трансфектантов.


Рис. 2.8. Схема введения ДНК в составе различных комплексов в клетку путем эндоцитоза: фагоцитоза и пиноцитоза (а). Схематичное изображение частицы из нелипидного поликатиона в дендроформе со связавшейся ДНК, отрицательный заряд которой компенсируется катионным полимером (б)


Эффективность трансфекции удалось повысить в 10-100 раз инкубацией клеток с осажденной фосфатом кальция ДНК. Плотные частицы кальциевого преципитата ДНК поглощаются клеткой путем фагоцитоза (рис. 2.8), но при этом только небольшая часть проникших молекул достигает ядра и встраивается в хромосомную ДНК. Кальций-фосфатный метод более эффективен и дешев, но вызывает разрыв молекул ДНК, что переводит кольцевые молекулы в линейную форму, иногда неинфекционную в случае трансфекции вирусов. Кроме того, условия кальций-фосфатной трансфекции приходится подбирать для каждых клеток-мишеней индивидуально.

В ходе поисков других трансфецирующих реагентов было выявлено, что полимерные молекулы, несущие избыточный катионный заряд, могут существенно повысить эффективность трансфекции. Полимерные катионы образуют с нуклеиновыми кислотами устойчивые комплексы с нейтрализованными зарядами, которые могут с высокой эффективностью транспортировать ДНК и РНК внутрь клетки, защищая от действия эндонуклеаз на пути к ядру (рис. 2.9).



Рис. 2. 9. Схема транспорта ДНК в ядро клетки в составе комплекса поликатион-ДНК, связанного со специфическим лигандом, путем лиганд-опосредованного эндоцитоза


Синтетические нелипидные полимерные катионы в линейной или разветвленной конформации (дендритная форма) могут конденсировать ДНК и РНК в относительно малые частицы, которые затем связываются с клеточной мембраной и проникают в клетку путем неспецифического эндоцитоза. В настоящее время для трансфекции из группы нелипидных поликатионов используются в основном полиэтиленимин, полиамидоамины и дендримеры на их основе, катионные белки типа полилизина, протамина и гистонов, а также различные коммерческие продукты, например PAMAM.

Революцией явилось введение в практику первого низкотоксичного катионного липида ДОТМА (1,2-диолеил-3-N,N,N-триметиламинопропан), синтезированного Фелгнером (Feigner, 1987) с соавторами. Эффективность трансфекции с использованием катионного липида (рис. 2.10) была приблизительно в 100 раз больше относительно любого другого химического реагента, причем с большой долей стабильных трансгенных клеток.



Рис. 2. 10. Структура комплекса с ДНК (а) и общая структура катионного ли-пидного полимера (б). Катионные липидные полимеры (линейные и разветвленные), похожие по своей структуре и свойствам на клеточные мембранные фосфолипиды формируют комплексы с ДНК в виде многослойных катионных липосом (а) при простом смешивании реагентов. Такие комплексы проникают в клетку путем эндоцитоза или слияния с клеточной мембраной через липидную часть


Одновременно был введен в практику новый термин «липофекция», подчеркивающий высокую эффективность генетической трансформации клеток, приближающую липид-катионные комплексы к инфекционным вирусным частицам.

Развивая успех, были разработаны многочисленные вариации этих соединений (липофектин, липофектамин, селлфектин и др.).

Параллельно разрабатывались средства доставки на основе фосфолипидных липосом, начиненных ДНК или РНК.

Маленькие сферы из искусственных мембран могут сливаться с плазматическими мембранами клеток или поглощаться эндоцитозом, высвобождая содержимое внутрь клетки. Небольшую эффективность липосомной трансфекции повысило введение в структуру липосом фосфолипидов, например, кардиолипина и фосфатидилэтаноламина, образующих наряду с бислойными мембранами также инвертированные мицеллярные структуры, известные как кубические и гексагональные фазы, способные инициировать слияние мембран.

Липосомный метод достаточно капризен и требует тщательного подбора всех условий для эффективной трансфекции конкретных клеток. Кроме того, процедура инкапсулирования, обычно обработка ультразвуком, часто повреждает крупные молекулы ДНК.

Новым этапом в развитии трансфекционных реагентов стала разработка более эффективной и адресной доставки в специфические клетки-мишени нуклеиновых кислот путем введения в структуру синтетических трансфекционных реагентов и липосом различных лигандов для связывания с мембранными белками-рецепторами. Наличие таких адресных групп (лигандов), узнаваемых клеточными рецепторами, позволяет использовать механизмы лиганд-опосредованного эндоцитоза (см. рис. 2.9).

В качестве таких лигандов используют белки и пептиды, узнаваемые рецепторами; олигосахариды, поскольку на поверхности многих животных клеток присутствуют лектины -белки-рецепторы, специфически их связывающие; полисахариды. Процессы взаимодействия с клетками таких адресных комплексов ДНК(РНК)-трансфекционный реагент имеют сходство с проникновением в клетку вирусных частиц.

В настоящее время биотехнологические фирмы предлагают широкий спектр разнообразных трансфекционных реагентов - от самых простых и дешевых до самых последних разработок, специализированных под разные типы клеток и задачи. Также интенсивно продолжается создание новых еще более эффективных трансфецирующих реагентов.

Микроинъекция - клеточная мембрана прокалывается микроиглой и раствор, содержащий ДНК, вводится в цитоплазму клетки или напрямую в ядро, если ядро достаточно большое (например, ядро яйцеклетки). Микроинъекция ДНК в клетки млекопитающих стала возможной с появлением прибора для изготовления микропипеток диаметром 0,1-0,5 мк и микроманипулятора. Метод очень эффективен, доля клеток со стабильной интеграцией и экспрессией инъецированных генов может достигать 50 %. Преимущество описываемого метода заключается также в том, что он позволяет вводить любую ДНК в любые клетки и для сохранения в клетках введенного гена не требуется никакого селективного давления.

Баллистическая трансфекция, биобаллистика, или биолистика (бомбардировка микрочастицами), основана на обстреле клеток микросферами размером около 1 -2 мкм, покрытых ДНК. Применяются микрочастицы золота, вольфрама (иногда бывает фитотоксичен), силикона и различные синтетические наносферы. Микрочастицы, покрытые ДНК, проходят через клеточные слои и переносят генетическую конструкцию непосредственно в органеллы и ядра клеток. Созданный для этой цели «генный пистолет» (gene gun), или «генная пушка», который был разработан Д. Сенфордом (J. Sanford) в 1987 г. для введения ДНК в зерна хлебных злаков, по своему устройству сходен с пневматическим оружием (рис. 2.11).



Рис. 2.11. Введение рекомбинантной ДНК в листья растения с помощью многоразового «генного пистолета» фирмы Bio-Rad (а) и его общая схема (б). Гелиевый импульс выбрасывает микрочастицы, покрытые ДНК или РНК, из капсулы с образцом. Микрочастицы, несущие ДНК, ускоряются и фокусируются для максимального проникновения в клетки, продвигаясь по разгоночному каналу и по стволу пистолета, при этом на широком выходе поток гелия диффузно расходится в стороны. Фильтр-спейсер поддерживает оптимальную дистанцию для поражения цели с максимальным удалением гелия, чтобы свести к минимуму повреждающие воздействия на поверхность клеток


Глубина проникновения микрочастиц, как правило, невелика - до 1 мм, однако при особых условиях обстрела микрочастицы могут проникать в ткань на глубину до 4-5 мм и переносить гены, например, в волокна поперечно-полосатых мышц. Баллистическая трансфекция очень эффективна даже там, где толстые клеточные стенки (дрожжи, растения) являются препятствием для многих других методов доставки, и применяется в том числе для тканей, органов и даже целых организмов. В настоящее время широко используется в генотерапии, для получения трансгенных животных и растений.

Такое разнообразие средств и методов трансфекции обусловлено различными задачам, широким спектром используемых клеток-мишеней и типов доставляемых в клетки нуклеиновых кислот, а также потребностями общества в получении все более эффективных средств доставки генетической информации в клетки, ткани и целые организмы. Особое внимание уделяется развитию трансфекционных реагентов и методов в связи с поразительными перспективами генной терапии человека, для которой необходимы адресные высокоэффективные и безопасные средства генной доставки.

Стабильное и транзиентное внедрение чужеродной ДНК в клетку. После введения рекомбинантной ДНК в эукариотическую клетку, лишь ее малая часть оказывается в ядре, поскольку ядерная мембрана является труднопреодолимым барьером для чужеродной ДНК. В ядре рекомбинантная ДНК может быть интегрирована в хромосому или некоторое время существовать во внехромосомном состоянии.

Соответственно, различают стабильную трансфекцию, когда рекомбинантные ДНК интегрируются в хромосомы клеток-реципиентов и становятся их неотъемлемой частью, а также временную, или транзиентную, трансфекцию (transient transfection), при которой молекулы рекомбинантной ДНК существуют и транскрибируются в ядрах во внехромосомном состоянии непродолжительное время. Стабильное наследование внедренной чужеродной ДНК - основное условие получения трансгенных организмов для хозяйственных целей.

Поэтому разработке методов введения ДНК в клетки, ведущих к получению большей доли стабильных трансформантов, уделяется особое внимание. Кроме того, большой процент стабильных трансформантов, также позволяет отказаться от селективных и маркерных генов, являющихся балластными при создании трансгенных организмов.

Н.А. Воинов, Т.Г. Волова



Новое на сайте

>

Самое популярное